1
|
Malek-Esfandiari Z, Rezvani-Noghani A, Sohrabi T, Mokaberi P, Amiri-Tehranizadeh Z, Chamani J. Molecular Dynamics and Multi-Spectroscopic of the Interaction Behavior between Bladder Cancer Cells and Calf Thymus DNA with Rebeccamycin: Apoptosis through the Down Regulation of PI3K/AKT Signaling Pathway. J Fluoresc 2023; 33:1537-1557. [PMID: 36787038 DOI: 10.1007/s10895-023-03169-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
The interaction of Rebeccamycin with calf thymus (ctDNA) in the absence and presence of H1 was investigated by molecular dynamics, multi-spectroscopic, and cellular techniques. According to fluorescence and circular dichroism spectroscopies, Rebeccamycin interacted with ctDNA in the absence of H1 through intercalator or binding modes, while the presence of H1 resulted in revealing theintercalator, as the dominant role, and groove binding modes of ctDNA-Rebeccamycin complex. The binding constants, which were calculated to be 1.22 × 104 M-1 and 7.92 × 105 M-1 in the absence and presence of H1, respectively, denoted the strong binding of Rebeccamycin with ctDNA. The binding constants of Rebeccamycin with ct DNA in the absence and presence of H1 were calculated at 298, 303 and 308 K. Considering the thermodynamic parameters (ΔH0 and ΔS0), both vander waals forces and hydrogen bonds played predominant roles throughout the binding of Rebeccamycin to ctDNA in the absence and presence of H1. The outcomes of circular dichroism suggested the lack of any major conformational changes in ctDNA upon interacting with Rebeccamycin, except some perturbations in native B-DNA at local level. Additionally, the effect of NaCl and KI on ctDNA-Rebeccamycin complex provided further evidence for the reliance of their interaction modes on substituted groups. The observed increase in the relative viscosity of ctDNA caused by the enhancement of Rebeccamycin confirmed their intercalation and groove binding modes in the absence and presence of H1. Moreover, the assessments of molecular docking simulation corroborated these experimental results and also elucidated the effectiveness of Rebeccamycinin inhibiting and proliferating T24 and 5637 cells. Meanwhile, the ability of Rebeccamycin in inhibiting cell proliferation and tumor growth through the induction of apoptosis by down regulating the PI3K/AKT signaling pathway were provided.
Collapse
Affiliation(s)
- Zohreh Malek-Esfandiari
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Azadeh Rezvani-Noghani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Tahmineh Sohrabi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
2
|
Chen J, Li F, Gu J, Zhang X, Bartoli M, Domena JB, Zhou Y, Zhang W, Paulino V, C L B Ferreira B, Michael Brejcha N, Luo L, Arduino C, Verde F, Zhang F, Zhang F, Tagliaferro A, Olivier JH, Zhang Y, Leblanc RM. Cancer cells inhibition by cationic carbon dots targeting the cellular nucleus. J Colloid Interface Sci 2023; 637:193-206. [PMID: 36701865 PMCID: PMC9957951 DOI: 10.1016/j.jcis.2023.01.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Nucleus targeting is tremendously important in cancer therapy. Cationic carbon dots (CCDs) are potential nanoparticles which might enter cells and penetrate nuclear membranes. Although some CCDs have been investigated in nucleus targeting and applied in nuclear imaging, the CCDs derived from drugs, that are able to target the nucleus, bind with DNA and inhibit the growth of cancer cells have not been reported. In this project, 1, 2, 4, 5-benzenetetramine (Y15, a focal adhesion kinase inhibitor) derived cationic carbon dots (Y15-CDs) were prepared via a hydrothermal approach utilizing Y15, folic acid and 1,2-ethylenediamine as precursors. Based on the structural, optical, and morphologic characterizations, Y15-CDs possess rich amine groups and nitrogen in structure, an excitation-dependent photoluminescence emission, and a small particle size of 2 to 4 nm. The DNA binding experiments conducted through agarose gel electrophoresis, UV-vis absorption, fluorescence emission, and circular dichroism spectroscopies, prove that Y15-CDs might bind with DNA via electrostatic interactions and partially intercalative binding modes. In addition, the cell imaging and cytotoxicity studies in human foreskin fibroblasts (HFF), prostate cancer (PC3) and osteosarcoma cells (U2OS) indicate the nucleus targeting and anticancer abilities of Y15-CDs. Most interestingly, Y15-CDs exhibit a higher cytotoxicity to cancer cells (PC3 and U2OS) than to normal cells (HFF), inferring that Y15-CDs might be potentially applied in cancer therapy.
Collapse
Affiliation(s)
- Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Fang Li
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Xiao Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; C-Dots, LLC, Miami, FL 33136, USA
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Victor Paulino
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Nicholas Michael Brejcha
- Department of Biochemistry and Molecular Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Liang Luo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Chiara Arduino
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | | | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, FL 33136, USA.
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
3
|
Jeevitha Rani J, Mary Imelda Jayaseeli A, Sankarganesh M, Nandini Asha R. Bovine serum albumin interaction, molecular docking, anticancer and antimicrobial activities of Co(II) Schiff base complex derived from Nophen ligand. J Biomol Struct Dyn 2023; 41:1895-1903. [PMID: 35037822 DOI: 10.1080/07391102.2022.2026249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this report, synthesis, characterization, biological and molecular modeling studies of Nophen Schiff base [N,N-bis(2-hydroxy-1-naphthaldehyde)-o-phenylenediamine] and Co(II)-Nophen complex have been furnished. BSA binding affinities of the ligand and Co(II)-Nophen complex have been appraised by UV-visible, fluorescence and cyclic voltammetric techniques. Spectroscopic measurements indicate strong binding of the complex with BSA protein through static quenching mechanism with binding constant in the order of 104 M-1. The negative shift of the peak potential in cyclic voltammetry suggested an electrostatic interaction. Molecular docking analysis reveals significant binding affinity (-6.3 kcal/mol) of the complex towards BSA protein. It is amazing that the in vitro cytotoxicity of Co(II)-Nophen complex against A549 cell lines (Human lung carcinoma cells) has remarkable potentials with 29 ± 1.2 µM as IC50 value. Comparing the biological activity towards microorganisms, Co(II)-Nophen complex show substantial response than the Nophen ligand.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- J Jeevitha Rani
- Post Graduate and Research Center of Chemistry, Jayaraj Annapackiam College for Women (Autonomous), Affiliated to Mother Teresa Women's University, Kodaikanal, Periyakulam, Theni, Tamil Nadu, India
| | - A Mary Imelda Jayaseeli
- Post Graduate and Research Center of Chemistry, Jayaraj Annapackiam College for Women (Autonomous), Affiliated to Mother Teresa Women's University, Kodaikanal, Periyakulam, Theni, Tamil Nadu, India
| | - M Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - R Nandini Asha
- Department of Chemistry, Pope's College (Autonomous), Sawyerpuram, Thoothukudi, Tamil Nadu, India
| |
Collapse
|
4
|
Xie J, Wang L, Zhang X, Li Y, Liao X, Yang C, Tang RY. Discovery of New Anti-MRSA Agents Based on Phenoxyethanol and Its Mechanism. ACS Infect Dis 2022; 8:2291-2306. [PMID: 36255441 DOI: 10.1021/acsinfecdis.2c00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a severe threat to public health and safety. The discovery and development of novel anti-MRSA drugs with a new mode of action are a challenge. In this study, a class of novel aryloxyethyl propiolates and their homologues as anti-MRSA agents have been designed and synthesized based on phenoxyethanol, of which compound II-39 showed high inhibitory activity against MRSA with an MIC of 0.78 μg/mL and an MBC of 3.13 μg/mL, which was better than that of vancomycin. Compound II-39 could destroy the cell wall and cell membrane, inhibited the formation of a biofilm, and bound to the DNA of MRSA through the electrostatic and groove interaction. Proteomic and metabolomic studies revealed that compound II-39 affected multiple intracellular metabolic pathways of MRSA. Notably, compound II-39 could effectively inhibit the expression of CrtPQMN proteins and block the biosynthesis of virulence factor (staphyloxanthin). Thus, aryloxyethyl propiolates and their homologues are promising anti-MRSA agents with multiple targets.
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Lijuan Wang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou510642, China
| | - Yiyang Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou510642, China
| | - Xin Liao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Caixin Yang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China.,Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou510642, China
| |
Collapse
|
5
|
Ponkarpagam S, Vennila KN, Elango KP. Intercalation of diafenthiuron insecticide with calf thymus DNA: spectroscopic and molecular dynamics analysis. J Biomol Struct Dyn 2022:1-9. [PMID: 35848349 DOI: 10.1080/07391102.2022.2098824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A series of biophysical experiments like UV-Vis, fluorescence, circular dichroism (CD), competitive displacement assays, voltammetric studies, viscosity measurements and denaturation effect and metadynamics simulation studies were performed to establish the mode of binding of diafenthiuron (DF) insecticide with calf thymus DNA (CT-DNA). Analysis of absorption and fluorescence spectra in Tris-HCl buffer of pH 7.4 indicates the formation of a complex between DF and CT-DNA and the binding constant of which is in the order of 104 M-1. Competitive displacement assay with ethidium bromide (EB) and Hoechst 33258 suggests that the most probable mode of binding of DF with CT-DNA may be via intercalation mode. The results of other experiments such as CD spectral studies, viscosity measurements and the effect of denaturation agent urea support the intercalation of DF with CT-DNA. Thermodynamic parameters (ΔHo, ΔSo and ΔGo) reveal that hydrogen bonds (H-bonds) or van der Waals (vdW) force is the main binding force in the spontaneous interaction between DF and CT-DNA. Molecular dynamics (MD) simulation studies confirmed the intercalation of DF into the base pairs of CT-DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Ponkarpagam
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| |
Collapse
|
6
|
Ponkarpagam S, Vennila KN, Elango KP. Investigating binding of insecticide buprofezin to DNA by experimental and metadynamics simulation studies. J Biomol Struct Dyn 2022; 41:3476-3484. [PMID: 35285769 DOI: 10.1080/07391102.2022.2050949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Buprofezin (BUP) is an insecticide which belongs to the thiadiazine structural family and known to damage DNA in mice. Though its toxic effect on human is not known clearly, understanding the mechanism of interaction of BUP with DNA can prove useful when required. Multi-spectroscopic experiments such as UV-Vis, fluorescence, circular dichroism (CD) and 1H NMR coupled with viscosity measurements, urea effect and voltametric studies were performed to ascertain the mode of binding of BUP with calf thymus DNA (CT-DNA). Analysis of UV-Vis and fluorescence spectra indicated the formation of a complex between BUP and CT-DNA. Other experiments such as competitive binding assays with ethidium bromide (EB) and Hoechst 33258, viscosity measurements, effect of urea, CD, voltammetric studies and 1H NMR spectral analysis suggested that BUP intercalates into the base pairs of CT-DNA. All these results revealed that the binding mode of BUP with CT-DNA should be intercalation and the binding constant is in the order of 104 M-1. The ΔHo < 0 and ΔSo < 0 suggested that H-bonding or van der Waals force was the main binding force between BUP and CT-DNA. The proposed mode of binding of BUP with CT-DNA has been visualized using in silico molecular docking and metadynamics simulation studies, which showed that the phenyl ring of BUP binds to CT-DNA via π-π stacking interaction in addition to H-bond formation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Ponkarpagam
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| |
Collapse
|
7
|
Mallappa M, Savanur MA, Gowda BG, Reddy MBM, Mulla SI. Unravelling the Molecular Interaction of Pentoxifylline with Calf Thymus DNA: A Multitechnique Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. Mallappa
- Department of Chemistry Maharani's Science College for Women Bangalore 560 001 India
- School of Chemical Science Reva University Bangalore 560 063 India
| | - Mohammed Azharuddin Savanur
- PG Department of Biochemistry Karnatak University Dharwad 580 003 India
- Department of Biochemistry Indian Institute of Science Bangalore 560 012 India
| | - Babu G. Gowda
- Department of Chemistry Maharani's Science College for Women Bangalore 560 001 India
| | | | - Sikandar I Mulla
- Department of Biochemistry School of Applied Sciences REVA University Bangalore 560 064 India
| |
Collapse
|
8
|
Muhamedejevs R, Živković L, Dzintare M, Sjakste N. DNA-binding activities of compounds acting as enzyme inhibitors, ion channel blockers and receptor binders. Chem Biol Interact 2021; 348:109638. [PMID: 34508711 DOI: 10.1016/j.cbi.2021.109638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/25/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022]
Abstract
The DNA-binding activities of compounds used as remedies can display DNA-protection, but also damaging effects in biological systems. The current review compiles literature data on DNA-binding activities of drugs widely used as remedies with different therapeutic indications. The compounds are classified according their mechanism of action: enzyme inhibitors, ion channel inhibitors, inhibitors of viral RNA replication and HIV protease and receptor agonists. DNA binding was reported for such widely used drugs as paracetamol, aspirin, metformin, statins and many others. The capability of the drug to bind DNA is sometimes coupled to genotoxic effects, but in some cases - to genome protection. Data on atoms and chemical groups involved in the drug-DNA interactions are also presented. In many cases the same atoms are involved in both interactions of the compounds with proteins and DNA.
Collapse
Affiliation(s)
- Ruslans Muhamedejevs
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga, LV-1006, Latvia
| | - Lada Živković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Maija Dzintare
- Department of Anatomy, Physiology, Biochemistry, Biomechanics, Hygiene and Informatics, Latvian Academy of Sport Education, Brivibas gatve 333, Riga, LV-1006, Latvia
| | - Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, Jelgavas Street 1, Riga, LV-1004, Latvia.
| |
Collapse
|
9
|
Rani JJ, Jayaseeli AMI, Rajagopal S, Seenithurai S, Chai JD, Raja JD, Rajasekaran R. Synthesis, characterization, antimicrobial, BSA binding, DFT calculation, molecular docking and cytotoxicity of Ni(II) complexes with Schiff base ligands. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Ender Biçer, Billy TA, Macit M. Voltammetric and Docking Investigation of the Binding Interaction between (E)-1-[(2-Phenoxyphenylimino)methyl]naphthalen-2-ol and Calf Thymus DNA. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193520120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Majlesi K, Bretti C, De Stefano C, Sammartano S. Thermodynamic Study on the Protonation and Complexation of the Neuroleptic Drug, Gabapentin with Na+, Ca2+ and Mg2+ at Various Temperatures and Ionic Strengths. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-01022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Şenel P, Agar S, Sayin VO, Altay F, Yurtsever M, Gölcü A. Elucidation of binding interactions and mechanism of Fludarabine with dsDNA via multispectroscopic and molecular docking studies. J Pharm Biomed Anal 2020; 179:112994. [DOI: 10.1016/j.jpba.2019.112994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/03/2023]
|
13
|
Agrawal R, Siddiqi MK, Thakur Y, Tripathi M, Asatkar AK, Khan RH, Pande R. Explication of bovine serum albumin binding with naphthyl hydroxamic acids using a multispectroscopic and molecular docking approach along with its antioxidant activity. LUMINESCENCE 2019; 34:628-643. [PMID: 31190435 DOI: 10.1002/bio.3645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
In the present investigation, the protein-binding properties of naphthyl-based hydroxamic acids (HAs), N-1-naphthyllaurohydroxamic acid (1) and N-1-naphthyl-p-methylbenzohydroxamic acid (2) were studied using bovine serum albumin (BSA) and UV-visible spectroscopy, fluorescence spectroscopy, diffuse reflectance spectroscopy-Fourier transform infrared (DRS-FTIR), circular dichroism (CD), and cyclic voltammetry along with computational approaches, i.e. molecular docking. Alteration in the antioxidant activities of compound 1 and compound 2 during interaction with BSA was also studied. From the fluorescence studies, thermodynamic parameters such as Gibb's free energy (ΔG), entropy change (ΔS) and enthalpy change (ΔH) were calculated at five different temperatures (viz., 298, 303, 308, 313 or 318 K) for the HAs-BSA interaction. The results suggested that the binding process was enthalpy driven with dominating hydrogen bonds and van der Waals' interactions for both compounds. Warfarin (WF) and ibuprofen (IB) were used for competitive site-specific marker binding interaction and revealed that compound 1 and compound 2 were located in subdomain IIA (Sudlow's site I) on the BSA molecule. Conclusions based on above-applied techniques signify that various non-covalent forces were involved during the HAs-BSA interaction. Therefore the resulted HAs-BSA interaction manifested its effect in transportation, distribution and metabolism for the drug in the blood circulation system, therefore establishing HAs as a drug-like molecule.
Collapse
Affiliation(s)
- Rainy Agrawal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | | | - Yamini Thakur
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | | | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
14
|
Lanez E, Bechki L, Lanez T. Computational Molecular Docking, Voltammetric and Spectroscopic DNA Interaction Studies of 9N-(Ferrocenylmethyl)adenine. CHEMISTRY & CHEMICAL TECHNOLOGY 2019. [DOI: 10.23939/chcht13.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Qais FA, Ahmad I. In vitro interaction of cefotaxime with calf thymus DNA: Insights from spectroscopic, calorimetric and molecular modelling studies. J Pharm Biomed Anal 2017; 149:193-205. [PMID: 29121574 DOI: 10.1016/j.jpba.2017.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
Abstract
Cefotaxime is third generation antibiotic with known therapeutic efficacy against bacterial infections including cerebral abscesses and bacterial meningitis. The β-lactam group of drugs are considered safest antibiotics. Many antibiotics directly interact with DNA and alter their expression profile. Thus, it is necessary to understand the binding mode and its relevance to drug activity and toxicity. There is considerably a remarkable focus on deciphering the binding mechanism of these therapeutic agents as DNA is one of the major target for wide range of drugs. Cefotaxime has been extensively studied for its pharmacological properties while its binding mode to DNA has not been explicated so far. In this study, we have unveiled the binding mechanism of cefotaxime to DNA by using various biophysical, thermodynamic and in silico techniques. UV-vis spectroscopy confirmed the formation cefotaxime-DNA complex along with a brief idea about the extent of interaction. Fluorescence spectroscopy yielded the values of various binding constants and explained mode of fluorescence quenching to be static. CD spectroscopy, thermal denaturation, KI quenching and viscosity measurement explained that cefotaxime is groove binder. Measuring the effect of ions on cefotaxime-DNA complex ensured that it does not bind to DNA electrostatically. Dye displacement experiments finally confirmed that cefotaxime binds to the minor groove of DNA. ITC gave the thermodynamic profile of this binding in which negative value of Gibb's free energy change revealed that the process is spontaneous. Molecular modelling finally strengthened our experimental results that cefotaxime was located in curved contour of minor groove of DNA. The findings support on safety of drug and may have a little interference on normal biological functions.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP 202002, India.
| |
Collapse
|
16
|
Asaadi S, Hajian R. DNA binding studies of Sunset Yellow FCF using spectroscopy, viscometry and electrochemical techniques. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Hajian R, Tayebi Z, Shams N. Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J Pharm Anal 2016; 7:27-33. [PMID: 29404015 PMCID: PMC5686857 DOI: 10.1016/j.jpha.2016.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/10/2016] [Accepted: 07/16/2016] [Indexed: 11/02/2022] Open
Abstract
In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin (DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode (Pt/MWCNTs). DOX was effectively accumulated on the surface of modified electrode and generated a pair of redox peaks at around 0.522 and 0.647 V (vs. Ag/AgCl) in Britton Robinson (B-R) buffer (pH 4.0, 0.1 M). The electrochemical parameters including pH, type of buffer, accumulation time, amount of modifier and scan rate were optimized. Under the optimized conditions, there was a linear correlation between cathodic peak current and concentration of DOX in the range of 0.05-4.0 µg/mL with the detection limit of 0.002 µg/mL. The number of electron transfers (n) and electron transfer-coefficient (α) were estimated as 2.0 and 0.25, respectively. The constructed sensor displayed excellent precision, sensitivity, repeatability and selectivity in the determination of doxorubicin in plasma. Moreover, cyclic voltammetry studies of DOX in the presence of DNA showed an intercalation mechanism with binding constant (Kb) of 1.12×105 L/mol.
Collapse
Affiliation(s)
- Reza Hajian
- Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, 75818-63876 Gachsaran, Iran
| | - Zahra Tayebi
- Department of Chemistry, College of Science, Gachsaran Branch, Islamic Azad University, 75818-63876 Gachsaran, Iran
| | - Nafiseh Shams
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M. Studying non-covalent drug-DNA interactions. Arch Biochem Biophys 2015; 576:49-60. [PMID: 25951786 DOI: 10.1016/j.abb.2015.03.024] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/09/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
Drug-DNA interactions have been extensively studied in the recent past. Various techniques have been employed to decipher these interactions. DNA is a major target for a wide range of drugs that may specifically or non-specifically interact with DNA and affect its functions. Interaction between small molecules and DNA are of two types, covalent interactions and non-covalent interactions. Three major modes of non-covalent interactions are electrostatic interactions, groove binding and intercalative binding. This review primarily focuses on discussing various techniques used to study non-covalent interactions that occur between drugs and DNA. Additionally, we report several techniques that may be employed to analyse the binding mode of a drug with DNA. These techniques provide data that are reliable and simple to interpret.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Tarique Sarwar
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Mohammed Amir Husain
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Hassan Mubarak Ishqi
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India.
| |
Collapse
|
19
|
Xie J, Chen D, Wu Q, Wang J, Qiao H. Spectroscopic analyses on interaction of melamine, cyanuric acid and uric acid with DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:714-721. [PMID: 25988817 DOI: 10.1016/j.saa.2015.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/10/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
In this work, the interaction of DNA with melamine (MEL), cyanuric acid (CYA) and uric acid (UA) were studied, respectively, by means of UV-vis, fluorescence, circular dichroism (CD) spectroscopy, viscosity and gel electrophoresis methods. The fluorescence quenching was used to study the interaction models of MEL, CYA and UA with DNA, respectively, and the bimolecular quenching constant (Kq), apparent quenching constant (Ksv), effective binding constant (KA) and corresponding dissociation constant (KD) and binding site number (n) were calculated by adopting Stern-Volmer, Lineweaver-Burk and Double logarithm equations. The results show that MEL, CYA and UA are all able to markedly bind to DNA, and the binding strength order is DNA-UA>DNA-CYA>DNA-MEL. It is wished that these researches would facilitate the understanding of the formation of kidney stones and gout in the body after ingesting excess MEL.
Collapse
Affiliation(s)
- Jinhui Xie
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Dandan Chen
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Qiong Wu
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Heng Qiao
- College of Environment, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|
20
|
Zhao T, Bi S, Wang Y, Wang T, Pang B, Gu T. In vitro studies on the behavior of salmeterol xinafoate and its interaction with calf thymus DNA by multi-spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 132:198-204. [PMID: 24866086 DOI: 10.1016/j.saa.2014.04.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/18/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
The salmeterol xinafoate (SX) binding to calf thymus DNA in vitro was explored by fluorescence, resonance light scattering (RLS), UV-vis absorption, as well as viscometry, ionic strength effect and DNA melting techniques. It was found that SX could bind to DNA weakly, and the binding constants (Ka) were determined as 8.52×10(3), 8.31×10(3) and 6.14×10(3) L mol(-1) at 18, 28 and 38°C respectively. When bound to DNA, SX showed fluorescence quenching in the fluorescence spectra and hyperchromic effect in the absorption spectra. Stern-Volmer plots revealed that the quenching of fluorescence of SX by DNA was a static quenching. Furthermore, the relative viscosity and melting temperature of DNA solution were hardly influenced by SX, while the fluorescence intensity of SX-DNA was observed to decrease with the increasing ionic strength of system. Also, the binding constant between SX and double stranded DNA (dsDNA) was much weaker than that between SX and single stranded DNA (ssDNA). All these results suggested that the binding mode of SX to DNA should be groove binding. The obtained thermodynamic parameters indicated that electrostatic force might play a predominant role in SX binding to DNA. The quantum yield (φ) of SX was measured as 0.13 using comparative method. Based on the Förster resonance energy transfer theory (FRET), the binding distance (r0) between the acceptor and donor was calculated as 4.10 nm.
Collapse
Affiliation(s)
- Tingting Zhao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Yu Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Tianjiao Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Bo Pang
- TechnologyCenterofInspectionandQuarantine, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062, China
| | - Tingting Gu
- TechnologyCenterofInspectionandQuarantine, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062, China
| |
Collapse
|
21
|
Zhang G, Wang L, Zhou X, Li Y, Gong D. Binding characteristics of sodium saccharin with calf thymus DNA in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:991-1000. [PMID: 24437661 DOI: 10.1021/jf405085g] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The binding characteristics of sodium saccharin (SSA), an artificial sweetener, with calf thymus DNA (ctDNA) were investigated by multispectroscopic techniques, chemometrics, and molecular simulation. A combined fluorescence and UV-vis spectroscopic data matrix was resolved by the multivariate curve resolution-alternating least-squares (MCR-ALS) chemometrics algorithm. The MCR-ALS analysis extracted simultaneously the concentration profiles and spectra for the three components (SSA, ctDNA, and SSA-ctDNA complex) to quantitatively monitor the SSA-ctDNA interaction, which is difficult to perform by conventional spectroscopic approach. The binding mode of SSA to ctDNA was principally through groove binding as revealed by ctDNA melting temperature studies, viscosity measurements, and iodide and salt quenching effects. Analysis of the Fourier transform infrared and circular dichroism spectra as well as molecular docking indicated that SSA preferentially bound to the guanine base of ctDNA and led to a transformation from B-like DNA structure to A-like conformation. Moreover, gel electrophoresis results suggested that SSA did not induce any significant cleavage in plasmid DNA.
Collapse
Affiliation(s)
- Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | | | | | | | | |
Collapse
|
22
|
Zhang L, Tang GQ. Elucidation of the binding properties of a photosensitizer to salmon sperm DNA and its photobleaching processes by spectroscopic methods. J Fluoresc 2012; 23:303-10. [PMID: 23161107 DOI: 10.1007/s10895-012-1148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/05/2012] [Indexed: 11/28/2022]
Abstract
Methylene blue (MB) is a tricyclic heteroaromatic photosensitizer with a promising application in the photodynamic therapy (PDT) for anticancer treatment. The binding properties of MB to salmon sperm DNA have been investigated by the measurements of absorption spectra, quenching experiments and the photobleaching processes. Remarkable hypochromic and bathochromic effects of MB in the presence of increasing amounts of DNA have been observed in the absorption spectra. The quenching of MB by the DNA bases obeys the Stern-Volmer equation and ferrocyanide quenching of MB in the absence and presence of DNA is also measured as extended experiments. Results from the above spectral measurements are all consistent with the intercalative binding mode of MB to DNA with the K b value of 5.6 × 10(3) M(-1). The photobleaching processes of MB and its DNA complex have also been studied, which indicate that the photobleaching of MB and its DNA complex proceed with different mechanisms and the reactive oxygen species are responsible for the self-sensitized photooxidation of MB.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Modern Optics, Nankai University, Tianjin 300071, People's Republic of China.
| | | |
Collapse
|