1
|
Wang K, Dai W, Qian K, Scott B, Chen K. A Precise qNMR Method for the Rapid Quantification of Lot-to-Lot Variations in Multiple Quality Attributes of Pentosan Polysulfate Sodium. AAPS J 2023; 25:50. [PMID: 37147461 DOI: 10.1208/s12248-023-00815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Pentosan polysulfate sodium (PPS) is an orphan drug with anticoagulant activity. PPS is prepared from the chemical processing of xylan extracted from beechwood tree to yield a mixture of 4-6 kDa polysaccharides. The chain is mainly composed of sulfated xylose (Xyl) with branched 4-O-methyl-glucuronate (MGA). During generic drug development, the quality attributes (QAs) including monosaccharide composition, modification, and length need to be comparable to those found in the reference list drug (RLD). However, the range of QA variation of the RLD PPS has not been well characterized. Here, multiple PPS RLD lots were studied using quantitative NMR (qNMR) and diffusion ordered spectroscopy (DOSY) to quantitate the components in the mixture and to probe both inter- and intra-lot precision variability. The DOSY precision assessed using coefficient of variation (CV) was 6%, comparable to PPS inter-lot CV of 5%. The QAs obtained from 1D qNMR were highly precise with a precision CV < 1%. The inter-lot MGA content was 4.8 ± 0.1%, indicating a very consistent botanical raw material source. Other process-related chemical modification including aldehyde at 0.51 ± 0.04%, acetylation at 3.3 ± 0.2% and pyridine at 2.08 ± 0.06%, varied more than MGA content. The study demonstrated that 1D qNMR is a quick and precise method to reveal ranges of variation in multiple attributes of RLD PPS which can be used to assess equivalency with generic formulations. Interestingly, the synthetic process appeared to introduce more variations to the PPS product than the botanical source of the material.
Collapse
Affiliation(s)
- Kai Wang
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Maryland, 20993, Silver Spring, USA
| | - Weixiang Dai
- Division of Lifecycle API, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Keduo Qian
- Division of Lifecycle API, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Barbara Scott
- Division of Lifecycle API, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Kang Chen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Maryland, 20993, Silver Spring, USA.
| |
Collapse
|
2
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Iqbal Z, Sadaf S. Commercial Low Molecular Weight Heparins - Patent Ecosystem and Technology Paradigm for Quality Characterization. J Pharm Innov 2022; 18:1-33. [PMID: 35915630 PMCID: PMC9330979 DOI: 10.1007/s12247-022-09665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Heparin is a subject of ever-growing interest for laboratory researchers and pharmaceutical industry. One of the driving factors is its critical life-saving drug status, which during the COVID-19 pandemic has assumed a central role in disease treatment and/or prevention. Apart, heparin is one amongst few drugs enjoying a "demand constant" status. In 2020, heparin market size was valued to US$6.5 bn., and given the ongoing stability in the COVID-19 health crisis, it is expected to reach US$11.43 bn. by 2027 with yearly growth rate momentum (CAGR) of 3.9% during the forecast period (Pepi et al., Mol Cell Proteomics 20:100,025, 2021). As patent is a limited monopoly, every year, many patents on low molecular weight heparin (LMWH; a chemically or enzymatically degraded product of unfractionated heparin) are losing market exclusivity worldwide, inviting the generic/biosimilar drug manufacturers to capture market share with cheaper drug products. By tracking patent expiration, drugs in patent litigation, regulatory setbacks for innovator companies (such as those seeking data exclusivity or patent term extension), or other unexpected events affecting market demand and competition, generics can make investment decisions in manufacturing off-patent LMWH drug products of commercial significance. However, given the US Food and Drug Administration (FDA), European Medicine Agency (EMA), Drug Regulatory Authority of Pakistan (DRAP), and other regulatory authorities scientifically rigorous standards for generic/biosimilar LMWH drug products marketing approval, the market is secured and momentous for drug makers that could demonstrate through scientific and clinical dataset that the generic/biosimilar LMWH drug product is of the same quality and purity as the innovator drug product. This study presents an overview of the patent landscape of commercially available LMWHs and advanced analytical techniques for their structural and biochemical characterization for quality control and quality assurance during manufacturing and post-marketing. The study also covers FDA, EMA, Health Canada, and DRAP's current approaches to evaluating the generic/biosimilar LMWH drug products for quality, safety including immunogenicity, and efficacy.
Collapse
Affiliation(s)
- Zarina Iqbal
- IP and Litigation Department, PakPat World Intellectual Property Protection Services, Lahore, Pakistan
| | - Saima Sadaf
- Biopharmaceutical and Biomarkers Discovery Lab, School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590 Pakistan
| |
Collapse
|
4
|
Chen K. 2D NMR peak profiling to compare chemical differences between batches of pentosan polysulfate sodium. J Pharm Biomed Anal 2022; 211:114589. [PMID: 35038672 DOI: 10.1016/j.jpba.2022.114589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/27/2022]
Abstract
Pentosan Polysulfate Sodium (PPS) is a semi-synthetic polysulfated xylan sourced from beechwood tree barks. PPS, which is mainly composed of a xylose chain with branched O-methyl-glucuronate (MGA), can have heterogeneity in monosaccharide species, sequence and chemical modifications including sulfation and acetylation. The monosaccharide composition in polysaccharide therapeutics is a frequently quoted quality attribute (QA), which has been assessed using two-dimensional (2D) 1H-13C HSQC NMR. However, the sensitivity of 2D NMR for the assessment of PPS inter-lot variability from the same manufacturer was unclear and questions remained whether 2D NMR had sufficient sensitivity to distinguish normal batch to batch variations in this QA. Here, a 2D peak profile method was applied to compare high-resolution semi-quantitative (semi-q) HSQC spectra with the inclusion of intermediate precision spectra collected on two PPS drug lots released 29 months apart (where one of the lots was expired). The semi-q HSQC NMR confirmed the mass equivalence of total polysaccharides, O-Methyl and acetyl groups between the two lots. The 2D spectral peak profile results readily identified significant lot-to-lot differences (p < 0.05) in relative distribution among most monosaccharide species, in addition to heterogeneity in MGA distribution and acetyl transfer from PPS to free acetate in the expired lot. Precisely measured chemical QAs are prerequisites to establish normal batch variation in the innovator product, providing important reference ranges for complex generic drug developers. Overall, high-resolution semi-q HSQC NMR may provide a sensitive tool to measure fine chemical differences in polysaccharide therapeutics needed to establish chemical QAs and compare batches without concerns of intrinsic NMR method variation.
Collapse
Affiliation(s)
- Kang Chen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
5
|
Jiang H, Li X, Ma M, Shi X, Wu X. Quality control and product differentiation of LMWHs marketed in China using 1H NMR spectroscopy and chemometric tools. J Pharm Biomed Anal 2021; 209:114472. [PMID: 34864594 DOI: 10.1016/j.jpba.2021.114472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
Low molecular weight heparins (LMWHs) are heterogeneous mixtures of glycosaminoglycan chains composed of mixture of different lengths and substitution patterns. Structural characterization and quality control of LMWHs have always been challenging. The Chinese drug regulatory authorities have been committed to improve the supervision standards of LMWHs to better regulate the quality and safety of LMWHs in current Chinese market. In the present paper, 80 batches of three types LMWHs (dalteparin, enoxaparin and naldroparin) marketed in China from different manufacturers were studied by 1H NMR experiments and chemometric analysis. The method can be used not only to monitor impurities and contaminants, but also to check the batch-to-batch consistency of each manufacture. Moreover, for the biosimilar LMWHs from different manufactures, they can be differentiated and clustered according to their slightly different structural compositions originated from production process. By using this method, the quality and safety of LMWHs marketed in China were initially assessed.
Collapse
Affiliation(s)
- Haipeng Jiang
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of Technology, Wuhan 430223, PR China.
| | - Xinbai Li
- National Institutes for Food and Drug Control of China, Beijing 102629, PR China
| | - Minglan Ma
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of Technology, Wuhan 430223, PR China
| | - Xiaochun Shi
- National Institutes for Food and Drug Control of China, Beijing 102629, PR China
| | - Xianfu Wu
- National Institutes for Food and Drug Control of China, Beijing 102629, PR China.
| |
Collapse
|
6
|
Bi Y, Le KD, Ramamoorthy G, Kuberan B. Preparation and Application of Nanosensor in Safeguarding Heparin Supply Chain. SLAS Technol 2020; 25:397-403. [PMID: 32589074 DOI: 10.1177/2472630320932890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heparin has been in clinical use as an anticoagulant for the last eight decades and used worldwide in more than 100 million medical procedures every year. This lifesaving drug is predominantly obtained from ~700 million pig intestines or bovine organs through millions of small and medium-sized slaughterhouses. However, the preparations from animal sources have raised many safety concerns, including the contamination of heparin with potential pathogens, proteins, and other impurities. In fact, contaminated heparin preparations caused 149 deaths in several countries, including the United States, Germany, and Japan in 2008, highlighting the need for implementing sensitive and simple analytical techniques to monitor and safeguard the heparin supply chain. The contaminant responsible for the adverse effects in 2008 was identified as oversulfated chondroitin sulfate (OSCS). We have developed a very sensitive, facile method of detecting OSCS in heparin lots using a nanosensor, a gold nanoparticle-heparin dye conjugate. The sensor is an excellent substrate for heparitinase enzyme, which cleaves the heparin polymer into smaller disaccharide fragments, and therefore facilitates recovery of fluorescence from the dye upon heparitinase treatment. However, the presence of OSCS results in diminished fluorescence recovery from the nanosensor upon heparitinase treatment, because OSCS inhibits the enzyme. The newly designed nanosensor can detect as low as 1 × 10-9% (w/w) OSCS, making it the most sensitive tool available to date for the detection of trace amounts of OSCS in pharmaceutical heparins. In this report, we describe a simple methodology for the preparation of nanosensor and its application in the detection of OSCS contaminants.
Collapse
Affiliation(s)
- Yiling Bi
- Departments of Biology, Bioengineering, and Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Khoi Dang Le
- Departments of Biology, Bioengineering, and Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Gurusankar Ramamoorthy
- Departments of Biology, Bioengineering, and Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Balagurunathan Kuberan
- Departments of Biology, Bioengineering, and Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Monakhova YB, Diehl BW. Retrospective multivariate analysis of pharmaceutical preparations using 1H nuclear magnetic resonance (NMR) spectroscopy: Example of 990 heparin samples. J Pharm Biomed Anal 2019; 173:18-23. [DOI: 10.1016/j.jpba.2019.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
|
8
|
Xu S, Qiu M, Zhang Q, Wu J, Huimin X, Chen J. Chain structure and immunomodulatory activity of a fructosylated chondroitin from an engineered Escherichia coli K4. Int J Biol Macromol 2019; 133:702-711. [DOI: 10.1016/j.ijbiomac.2019.04.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/09/2019] [Accepted: 04/20/2019] [Indexed: 12/20/2022]
|
9
|
Muñoz E, Sabín J. The Use of ITC and the Software AFFINImeter for the Quantification of the Anticoagulant Pentasaccharide in Low Molecular Weight Heparin. Methods Mol Biol 2019; 1964:215-223. [PMID: 30929245 DOI: 10.1007/978-1-4939-9179-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this chapter, we describe an original protocol based on ITC experiments and data analysis with the software AFFINImeter to get information of heparin-AT interactions relevant for the elucidation of the anticoagulant activity of heparins. This protocol is used to confirm the presence of the bioactive pentasaccharide with anticoagulant activity in heparins and to determine the amount of this pentasaccharide in the sample. Here we have applied this protocol to the characterization of low molecular weight heparins.
Collapse
Affiliation(s)
- Eva Muñoz
- AFFINImeter Scientific & Development Team, Software 4 Science Developments, S. L. Ed. Emprendia, Santiago de Compostela, 15782, A Coruña, Spain.
| | - Juan Sabín
- AFFINImeter Scientific & Development Team, Software 4 Science Developments, S. L. Ed. Emprendia, Santiago de Compostela, 15782, A Coruña, Spain
| |
Collapse
|
10
|
Abstract
Heparin and heparan sulfate (HS) are polydisperse mixtures of polysaccharide chains between 5 and 50 kDa. Sulfate modifications to discreet regions along the chains form protein binding sites involved in cell signaling cascades and other important cellular physiological and pathophysiological functions. Specific protein affinities of the chains vary among different tissues and are determined by the arrangements of sulfated residues in discreet regions along the chains which in turn appear to be determined by the expression levels of particular enzymes in the biosynthetic pathway. Although not all the rules governing synthesis and modification are known, analytical procedures have been developed to determine composition, and all of the biosynthetic enzymes have been identified and cloned. Thus, through cell engineering, it is now possible to direct cellular synthesis of heparin and HS to particular compositions and therefore particular functional characteristics. For example, directing heparin producing cells to reduce the level of a particular type of polysaccharide modification may reduce the risk of heparin induced thrombocytopenia (HIT) without reducing the potency of anticoagulation. Similarly, HS has been linked to several biological areas including wound healing, cancer and lipid metabolism among others. Presumably, these roles involve specific HS compositions that could be produced by engineering cells. Providing HS reagents with a range of identified compositions should help accelerate this research and lead to new clinical applications for specific HS compositions. Here I review progress in engineering CHO cells to produce heparin and HS with compositions directed to improved properties and advancing medical research.
Collapse
|
11
|
Differential Assessment of Factor Xa Activity and Global Blood Coagulability Utilizing Novel Dielectric Coagulometry. Sci Rep 2018; 8:16129. [PMID: 30382162 PMCID: PMC6208345 DOI: 10.1038/s41598-018-34229-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/12/2018] [Indexed: 11/29/2022] Open
Abstract
An easy-to-use assessment for activated factor X (FXa) is lacking despite its pivotal role in the coagulation. Dielectric blood coagulometry (DBCM) was recently invented as a novel assessment tool for determining the whole blood coagulability by measuring the temporal change in the permittivity of blood. We previously reported that it could evaluate the global blood coagulability. This study aimed to apply the DBCM for assessing FXa activity and its inhibition by anticoagulants. We performed the DBCM analysis along with measurement of the FXa activity by a fluorometric assay in samples from healthy subjects, and identified a new index named maximum acceleration time (MAT) that had a correlation to the FXa activity. Next the DBCM analysis was performed using blood samples mixed with anticoagulants (unfractionated heparin, dalteparin, and edoxaban). Blood samples with three anticoagulants had different profiles of the temporal change in the permittivity, reflecting their different selectivity for FXa. We compared the MAT with the anti-FXa activity assay, and found that the prolongation of MAT was similarly correlated with the anti-FXa activity regardless of the type of anticoagulants. In conclusion, the DBCM has the possibility for evaluating the innate FXa activity and effect of anticoagulants focusing on their FXa inhibition.
Collapse
|
12
|
Patil SM, Li V, Peng J, Kozak D, Xu J, Cai B, Keire DA, Chen K. A Simple and Noninvasive DOSY NMR Method for Droplet Size Measurement of Intact Oil-In-Water Emulsion Drug Products. J Pharm Sci 2018; 108:815-820. [PMID: 30291851 DOI: 10.1016/j.xphs.2018.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022]
Abstract
In a typical oil-in-water emulsion drug product, oil droplets with varied sizes are dispersed in a water phase and stabilized by surfactant molecules. The size and polydispersity of oil droplets are critical quality attributes of the emulsion drug product that can potentially affect drug bioavailability. More critically, to ensure accuracy in characterization of the finished drug product, analytical methods should introduce minimal physical perturbation (e.g., temperature variation or dilution) before the analysis. The classical methods of dynamic light scattering or electron microscopy can be used but they generally require sample dilution or harsh preparation conditions, respectively. By contrast, the size distribution of emulsion formulations can be assessed with a simple and noninvasive solution nuclear magnetic resonance method, namely, two-dimensional Diffusion Ordered SpectroscopY. The two-dimensional Diffusion Ordered SpectroscopY method probed signal decay of methyl resonances from oil and sorbate molecules and was applied to 3 types of U.S.-marketed emulsion drug products, that is, difluprednate, cyclosporine, and propofol, yielding measured droplet sizes of 40-280 nm in diameter. The high precision of ±6 nm of the new nuclear magnetic resonance method allows analytical differentiation of lot-to-lot and brand-to-brand droplet size differences in emulsion drug products, critical for drug-quality development, control, and surveillance.
Collapse
Affiliation(s)
- Sharadrao M Patil
- Division of Pharmaceutical Analysis, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Vincent Li
- Division of Liquid Based Products, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Jiangnan Peng
- Division of Pharmaceutical Analysis, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Darby Kozak
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Jin Xu
- Division of Liquid Based Products, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Bing Cai
- Division of Liquid Based Products, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - David A Keire
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Kang Chen
- Division of Pharmaceutical Analysis, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993.
| |
Collapse
|
13
|
Chen K, Park J, Li F, Patil SM, Keire DA. Chemometric Methods to Quantify 1D and 2D NMR Spectral Differences Among Similar Protein Therapeutics. AAPS PharmSciTech 2018; 19:1011-1019. [PMID: 29110294 DOI: 10.1208/s12249-017-0911-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 11/30/2022] Open
Abstract
NMR spectroscopy is an emerging analytical tool for measuring complex drug product qualities, e.g., protein higher order structure (HOS) or heparin chemical composition. Most drug NMR spectra have been visually analyzed; however, NMR spectra are inherently quantitative and multivariate and thus suitable for chemometric analysis. Therefore, quantitative measurements derived from chemometric comparisons between spectra could be a key step in establishing acceptance criteria for a new generic drug or a new batch after manufacture change. To measure the capability of chemometric methods to differentiate comparator NMR spectra, we calculated inter-spectra difference metrics on 1D/2D spectra of two insulin drugs, Humulin R® and Novolin R®, from different manufacturers. Both insulin drugs have an identical drug substance but differ in formulation. Chemometric methods (i.e., principal component analysis (PCA), 3-way Tucker3 or graph invariant (GI)) were performed to calculate Mahalanobis distance (D M) between the two brands (inter-brand) and distance ratio (D R) among the different lots (intra-brand). The PCA on 1D inter-brand spectral comparison yielded a D M value of 213. In comparing 2D spectra, the Tucker3 analysis yielded the highest differentiability value (D M = 305) in the comparisons made followed by PCA (D M = 255) then the GI method (D M = 40). In conclusion, drug quality comparisons among different lots might benefit from PCA on 1D spectra for rapidly comparing many samples, while higher resolution but more time-consuming 2D-NMR-data-based comparisons using Tucker3 analysis or PCA provide a greater level of assurance for drug structural similarity evaluation between drug brands.
Collapse
|
14
|
Monakhova YB, Diehl BW, Fareed J. Authentication of animal origin of heparin and low molecular weight heparin including ovine, porcine and bovine species using 1D NMR spectroscopy and chemometric tools. J Pharm Biomed Anal 2018; 149:114-119. [DOI: 10.1016/j.jpba.2017.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
|
15
|
An engineered platform based on chitin-affinity immobilization for producing low molecular weight heparin. Carbohydr Polym 2017; 177:297-305. [PMID: 28962771 DOI: 10.1016/j.carbpol.2017.08.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/18/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
Abstract
Using chitin-affinity interaction between triple-functional heparinase I (Hep I) and chitin, an engineered platform was prepared to produce controllable low molecular weight heparin (LMWH). Chitin microspheres with well-defined nanofibrils were fabricated through a "bottom up" pathway. An enhanced soluble protein, ChBD-SUMO-Hep I (CSH-I), was expressed in 3L batch fermentation with a high bioactivity of 2.5×103 IU/L. Chitin binding domain (ChBD) can specifically bind to chitin in noncovalent way, which leads to the immobilization and purification of enzyme in a single step. The immobilized CSH-I was preferred over its free counterpart due to its higher tolerance to heat and pH, as well as improved shelf-life. The restraint enzyme could be reused up to 8 times to achieve a conversion yield exceeding 90%. By using the bioinspired conjugates, the qualified LMWH fractions were obtained by monitoring the degradation process with an absorbance range of 44.5-68.3 at 232nm.
Collapse
|
16
|
Szajek AY, Chess E, Johansen K, Gratzl G, Gray E, Keire D, Linhardt RJ, Liu J, Morris T, Mulloy B, Nasr M, Shriver Z, Torralba P, Viskov C, Williams R, Woodcock J, Workman W, Al-Hakim A. The US regulatory and pharmacopeia response to the global heparin contamination crisis. Nat Biotechnol 2017; 34:625-30. [PMID: 27281424 DOI: 10.1038/nbt.3606] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The contamination of the widely used lifesaving anticoagulant drug heparin in 2007 has drawn renewed attention to the challenges that are associated with the characterization, quality control and standardization of complex biological medicines from natural sources. Heparin is a linear, highly sulfated polysaccharide consisting of alternating glucosamine and uronic acid monosaccharide residues. Heparin has been used successfully as an injectable antithrombotic medicine since the 1930s, and its isolation from animal sources (primarily porcine intestine) as well as its manufacturing processes have not changed substantially since its introduction. The 2007 heparin contamination crisis resulted in several deaths in the United States and hundreds of adverse reactions worldwide, revealing the vulnerability of a complex global supply chain to sophisticated adulteration. This Perspective discusses how the US Food and Drug Administration (FDA), the United States Pharmacopeial Convention (USP) and international stakeholders collaborated to redefine quality expectations for heparin, thus making an important natural product better controlled and less susceptible to economically motivated adulteration.
Collapse
Affiliation(s)
- Anita Y Szajek
- Biologics and Biotechnology Department, US Pharmacopeia, Rockville, Maryland, USA
| | - Edward Chess
- Structure Elucidation/Technology Resources, Baxter Healthcare Corporation, Round Lake, Illinois, USA
| | | | - Gyöngyi Gratzl
- Boehringer Ingelheim, Ben Venue Laboratories, Inc., Bedford, Ohio, USA
| | - Elaine Gray
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, UK
| | - David Keire
- US Food and Drug Administration/Division of Pharmaceutical Analysis, St. Louis, Missouri, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jian Liu
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Tina Morris
- Biologics and Biotechnology Department, US Pharmacopeia, Rockville, Maryland, USA
| | - Barbara Mulloy
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, UK.,Institute of Pharmaceutical Science King's College London, Franklin Wilkins Building, Waterloo Campus, London, UK
| | - Moheb Nasr
- R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Zachary Shriver
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences &Technology, Koch institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pearle Torralba
- Product Development - Analytical Innovation and Development, Fresenius Kabi USA, Skokie, Illinois, USA
| | | | | | - Janet Woodcock
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Wesley Workman
- Pfizer Quality Operations Biotech, Chesterfield, Missouri, USA
| | - Ali Al-Hakim
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
17
|
Liu X, St. Ange K, Lin L, Zhang F, Chi L, Linhardt RJ. Top-down and bottom-up analysis of commercial enoxaparins. J Chromatogr A 2017; 1480:32-40. [DOI: 10.1016/j.chroma.2016.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/14/2016] [Accepted: 12/11/2016] [Indexed: 10/20/2022]
|
18
|
Shibata H, Yoshida H, Izutsu KI, Yomota C, Goda Y, Okuda H. Scientific and regulatory approaches to confirm quality and improve patient perceptions of generic drug products in Japan. AAPS OPEN 2016. [DOI: 10.1186/s41120-016-0008-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Simple NMR methods for evaluating higher order structures of monoclonal antibody therapeutics with quinary structure. J Pharm Biomed Anal 2016; 128:398-407. [PMID: 27344629 DOI: 10.1016/j.jpba.2016.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
Abstract
Monoclonal antibody (mAb) drugs constitute the largest class of protein therapeutics currently on the market. Correctly folded protein higher order structure (HOS), including quinary structure, is crucial for mAb drug quality. The quinary structure is defined as the association of quaternary structures (e.g., oligomerized mAb). Here, several commonly available analytical methods, i.e., size-exclusion-chromatography (SEC) FPLC, multi-angle light scattering (MALS), circular dichroism (CD), NMR and multivariate analysis, were combined and modified to yield a complete profile of HOS and comparable metrics. Rituximab and infliximab were chosen for method evaluation because both IgG1 molecules are known to be homologous in sequence, superimposable in Fab crystal structure and identical in Fc structure. However, herein the two are identified to be significantly different in quinary structure in addition to minor secondary structure differences. All data collectively showed rituximab was mostly monomeric while infliximab was in mono-oligomer equilibrium driven by its Fab fragment. The quinary structure differences were qualitatively inferred from the less used but more reproducible dilution-injection-SEC-FPLC curve method. Quantitative principal component analysis (PCA) was performed on NMR spectra of either the intact or the in-situ enzymatic-digested mAb samples. The cleavage reactions happened directly in NMR tubes without further separation, which greatly enhanced NMR spectra quality and resulted in larger inter- and intra-lot variations based on PCA. The new in-situ enzymatic digestion method holds potential in identifying structural differences on larger therapeutic molecules using NMR.
Collapse
|
20
|
Azarnoush K, Pereira B, Lebreton A, Zenut MC, Chenaf C, Vedat E, Cosserant B, Bouvier D, d'Ostrevy N, Camilleri L. Are all heparins safe for on-pump heart surgery? Expert Opin Drug Saf 2016; 15:897-901. [PMID: 27080923 DOI: 10.1080/14740338.2016.1177020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Intravenous Panpharma heparin(®) was used in all on-pump cardiac surgery in our heart-surgery department for a short period. This brand of heparin replaced the previous Choay heparin(®) heparin supplied by the Sanofi-Aventis Laboratory. Unusual postoperative bleedings over this period prompted us to evaluate postoperative hemostasis by comparing these two heparins. METHODS We compared data from patients who had undergone on-pump cardiac surgery during Panpharma heparin(®) period (group P, 257 patients) to those how received Choay heparin(®) (group C, 194 patients). RESULTS Despite group P receiving a significantly lower dose of heparin (mean dose 21,000 IU/CEC) compared to group C (mean dose 22,000 IU/CEC) (p = 0.05), the number of surgical re-explorations needed to perfect postoperative hemostasis was significantly higher for group P (3.5% vs. 0) (p = 0.01). Heparin anti-Xa activity after surgery was higher in group P at postoperative h1 and h12 compared to group C, which explained reoperations for hemostasis. CONCLUSION Despite standardization, variations remain regarding anticoagulant activity between different manufacturing processes and heparin preparations. Surgical teams need to be aware that the biological effects of different brands of heparin may not be as expected and could endanger a usually safe procedure, such as cardiac surgery.
Collapse
Affiliation(s)
- Kasra Azarnoush
- a Heart Surgery Department , Clermont-Ferrand University Hospital , Clermont-Ferrand , France.,b INRA , UMR 1019 Nutrition Humaine , Saint Genès Champanelle , France
| | - Bruno Pereira
- c Biostatistics Unit, Délégation Recherche Clinique & Innovation , Clermont-Ferrand University Hospital , Clermont-Ferrand , France
| | - Aurelien Lebreton
- b INRA , UMR 1019 Nutrition Humaine , Saint Genès Champanelle , France.,d Haematology Department , CHU Clermont-Ferrand , Clermont-Ferrand , France
| | - Marie-Christine Zenut
- e Centre de pharmacovigilance et laboratoire de pharmacologie, hôpital Gabriel-Montpied , centre hospitalier universitaire de Clermont-Ferrand , Clermont-Ferrand , France
| | - Chouki Chenaf
- e Centre de pharmacovigilance et laboratoire de pharmacologie, hôpital Gabriel-Montpied , centre hospitalier universitaire de Clermont-Ferrand , Clermont-Ferrand , France
| | - Eljezi Vedat
- a Heart Surgery Department , Clermont-Ferrand University Hospital , Clermont-Ferrand , France
| | - Bernard Cosserant
- a Heart Surgery Department , Clermont-Ferrand University Hospital , Clermont-Ferrand , France
| | - Damien Bouvier
- f Service de biochimie médicale, Centre de biologie , CHU de Clermont-Ferrand , Clermont-Ferrand , France
| | - Nicolas d'Ostrevy
- a Heart Surgery Department , Clermont-Ferrand University Hospital , Clermont-Ferrand , France
| | - Lionel Camilleri
- a Heart Surgery Department , Clermont-Ferrand University Hospital , Clermont-Ferrand , France
| |
Collapse
|
21
|
Lester J, Chandler T, Gemene KL. Reversible Electrochemical Sensor for Detection of High-Charge Density Polyanion Contaminants in Heparin. Anal Chem 2015; 87:11537-43. [DOI: 10.1021/acs.analchem.5b03347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jacob Lester
- Department
of Chemistry, Northern Kentucky University, Nunn Drive, Highland Heights, Kentucky 41099, United States
| | - Timothy Chandler
- Department
of Chemistry, Northern Kentucky University, Nunn Drive, Highland Heights, Kentucky 41099, United States
| | - Kebede L. Gemene
- Department
of Chemistry, Northern Kentucky University, Nunn Drive, Highland Heights, Kentucky 41099, United States
| |
Collapse
|
22
|
Mourier PAJ, Agut C, Souaifi-Amara H, Herman F, Viskov C. Analytical and statistical comparability of generic enoxaparins from the US market with the originator product. J Pharm Biomed Anal 2015; 115:431-42. [PMID: 26280926 DOI: 10.1016/j.jpba.2015.07.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 11/29/2022]
Abstract
Low-molecular-weight heparins (LMWHs) are complex anticoagulant drugs, made from heparin porcine mucosa starting material. Enoxaparin sodium manufactured by Sanofi is one of the most widely prescribed LMWHs and has been used since 1993 in the USA. In 2010, US Food and Drug Administration approval for supplying generic enoxaparin was granted to Sandoz and subsequently to Amphastar. Little is known, however, of the differences in composition of these preparations. In this study, samples from several batches of generic enoxaparins were purchased on the US market and analyzed with state of the art methodologies, including disaccharide building blocks quantification, nuclear magnetic resonance (NMR), and a combination of orthogonal separation techniques. Direct high-performance liquid chromatography analysis of the different enoxaparin batches revealed distinct process fingerprints associated with each manufacturer. Disaccharide building block analysis showed differences in the degree of sulfation, the presence of glycoserine derivatives, as well as in proportions of disaccharides. Results were compared by statistical approaches using multivariate analysis with a partial least squares discriminant analysis methodology. The variations were statistically significant and allowed a clear distinction to be made between the enoxaparin batches according to their manufacturer. These results were further confirmed by orthogonal analytical techniques, including NMR, which revealed compositional differences of oligosaccharides both in low- and high-affinity antithrombin fractions of enoxaparin.
Collapse
Affiliation(s)
| | - Christophe Agut
- Sanofi R&D, 371, rue du Professeur Joseph, 34184 Montpellier, France.
| | - Hajer Souaifi-Amara
- External consultant from Experis™ IT, Life Sciences, 92723 Nanterre, France for CMC Biostatistics & Programming, Sanofi, Centre de recherche Vitry-sur-Seine, 13, quai Jules Guesde, 94403 Vitry-sur-Seine, France.
| | - Fréderic Herman
- Sanofi, 13, Quai Jules Guesde, 94403 Vitry-sur-Seine, France.
| | | |
Collapse
|
23
|
Lean QY, Eri RD, Randall-Demllo S, Sohal SS, Stewart N, Peterson GM, Gueven N, Patel RP. Orally Administered Enoxaparin Ameliorates Acute Colitis by Reducing Macrophage-Associated Inflammatory Responses. PLoS One 2015; 10:e0134259. [PMID: 26218284 PMCID: PMC4517792 DOI: 10.1371/journal.pone.0134259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases, such as ulcerative colitis, cause significant morbidity and decreased quality of life. The currently available treatments are not effective in all patients, can be expensive and have potential to cause severe side effects. This prompts the need for new treatment modalities. Enoxaparin, a widely used antithrombotic agent, is reported to possess anti-inflammatory properties and therefore we evaluated its therapeutic potential in a mouse model of colitis. Acute colitis was induced in male C57BL/6 mice by administration of dextran sulfate sodium (DSS). Mice were treated once daily with enoxaparin via oral or intraperitoneal administration and monitored for colitis activities. On termination (day 8), colons were collected for macroscopic evaluation and cytokine measurement, and processed for histology and immunohistochemistry. Oral but not intraperitoneal administration of enoxaparin significantly ameliorated DSS-induced colitis. Oral enoxaparin-treated mice retained their body weight and displayed less diarrhea and fecal blood loss compared to the untreated colitis group. Colon weight in enoxaparin-treated mice was significantly lower, indicating reduced inflammation and edema. Histological examination of untreated colitis mice showed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and the presence of edema, while all aspects of this pathology were alleviated by oral enoxaparin. Reduced number of macrophages in the colon of oral enoxaparin-treated mice was accompanied by decreased levels of pro-inflammatory cytokines. Oral enoxaparin significantly reduces the inflammatory pathology associated with DSS-induced colitis in mice and could therefore represent a novel therapeutic option for the management of ulcerative colitis.
Collapse
Affiliation(s)
- Qi Ying Lean
- Pharmacy, School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
- Faculty of Pharmacy, University of Technology MARA, Puncak Alam, Selangor, Malaysia
| | - Rajaraman D. Eri
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| | - Sarron Randall-Demllo
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| | - Sukhwinder Singh Sohal
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
- Breathe Well Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Niall Stewart
- Pharmacy, School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Gregory M. Peterson
- Pharmacy, School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
- Breathe Well Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
- Health Services Innovation Tasmania, School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Nuri Gueven
- Pharmacy, School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Rahul P. Patel
- Pharmacy, School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
24
|
Modern analytics for naturally derived complex drug substances: NMR and MS tests for protamine sulfate from chum salmon. Anal Bioanal Chem 2014; 407:749-59. [DOI: 10.1007/s00216-014-8172-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
|
25
|
Casu B, Naggi A, Torri G. Re-visiting the structure of heparin. Carbohydr Res 2014; 403:60-8. [PMID: 25088334 DOI: 10.1016/j.carres.2014.06.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/22/2014] [Indexed: 01/12/2023]
Abstract
The sulfated polysaccharide heparin has been used as a life-saving anticoagulant in clinics well before its detailed structure was known. This mini-review is a survey of the evolution in the discovery of the primary and secondary structure of heparin. Highlights in this history include elucidation and synthesis of the specific sequence that binds to antithrombin, the development of low-molecular-weight heparins currently used as antithrombotic drugs, and the most promising start of chemo-enzymatic synthesis. Special emphasis is given to peculiar conformational properties contributing to interaction with proteins that modulate different biological properties.
Collapse
Affiliation(s)
- Benito Casu
- G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo, 81 20133 Milan, Italy.
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo, 81 20133 Milan, Italy
| | - Giangiacomo Torri
- G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo, 81 20133 Milan, Italy
| |
Collapse
|
26
|
Li G, Steppich J, Wang Z, Sun Y, Xue C, Linhardt RJ, Li L. Bottom-up low molecular weight heparin analysis using liquid chromatography-Fourier transform mass spectrometry for extensive characterization. Anal Chem 2014; 86:6626-32. [PMID: 24905078 PMCID: PMC4082394 DOI: 10.1021/ac501301v] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/06/2014] [Indexed: 01/30/2023]
Abstract
Low molecular weight heparins (LMWHs) are heterogeneous, polydisperse, and highly negatively charged mixtures of glycosaminoglycan chains prescribed as anticoagulants. The detailed characterization of LMWH is important for the drug quality assurance and for new drug research and development. In this study, online hydrophilic interaction chromatography (HILIC) Fourier transform mass spectrometry (FTMS) was applied to analyze the oligosaccharide fragments of LMWHs generated by heparin lyase II digestion. More than 40 oligosaccharide fragments of LMWH were quantified and used to compare LMWHs prepared by three different manufacturers. The quantified fragment structures included unsaturated disaccharides/oligosaccharides arising from the prominent repeating units of these LMWHs, 3-O-sulfo containing tetrasaccharides arising from their antithrombin III binding sites, 1,6-anhydro ring-containing oligosaccharides formed during their manufacture, saturated uronic acid oligosaccharides coming from some chain nonreducing ends, and oxidized linkage region oligosaccharides coming from some chain reducing ends. This bottom-up approach provides rich detailed structural analysis and quantitative information with high accuracy and reproducibility. When combined with the top-down approach, HILIC LC-FTMS based analysis should be suitable for the advanced quality control and quality assurance in LMWH production.
Collapse
Affiliation(s)
- Guoyun Li
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China
- Department of Chemistry and Chemical Biology,
Department of Biology, Department of Chemical and Biological Engineering,
Department of Biomedical Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United
States
| | - Julia Steppich
- Department of Chemistry and Chemical Biology,
Department of Biology, Department of Chemical and Biological Engineering,
Department of Biomedical Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United
States
| | - Zhenyu Wang
- Celsus Laboratories, Inc., Cincinnati, Ohio 45241-1569 United States
| | - Yi Sun
- Department of Chemistry and Chemical Biology,
Department of Biology, Department of Chemical and Biological Engineering,
Department of Biomedical Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United
States
| | - Changhu Xue
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology,
Department of Biology, Department of Chemical and Biological Engineering,
Department of Biomedical Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United
States
| | - Lingyun Li
- Department of Chemistry and Chemical Biology,
Department of Biology, Department of Chemical and Biological Engineering,
Department of Biomedical Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United
States
| |
Collapse
|
27
|
Maggio RM, Calvo NL, Vignaduzzo SE, Kaufman TS. Pharmaceutical impurities and degradation products: uses and applications of NMR techniques. J Pharm Biomed Anal 2014; 101:102-22. [PMID: 24853620 DOI: 10.1016/j.jpba.2014.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 11/29/2022]
Abstract
Current standards and regulations demand the pharmaceutical industry not only to produce highly pure drug substances, but to achieve a thorough understanding of the impurities accompanying their manufactured drug substances and products. These challenges have become important goals of process chemistry and have steadily stimulated the search of impurities after accelerated or forced degradation procedures. As a result, impurity profiling is one of the most attractive, active and relevant fields of modern pharmaceutical analysis. This activity includes the identification, structural elucidation and quantitative determination of impurities and degradation products in bulk drugs and their pharmaceutical formulations. Nuclear magnetic resonance (NMR) spectroscopy has evolved into an irreplaceable approach for pharmaceutical quality assessment, currently playing a critical role in unequivocal structure identification as well as structural confirmation (qualitative detection), enabling the understanding of the underlying mechanisms of the formation of process and/or degradation impurities. NMR is able to provide qualitative information without the need of standards of the unknown compounds and multiple components can be quantified in a complex sample without previous separation. When coupled to separative techniques, the resulting hyphenated methodologies enhance the analytical power of this spectroscopy to previously unknown levels. As a result, and by enabling the implementation of rational decisions regarding the identity and level of impurities, NMR contributes to the goal of making better and safer medicines. Herein are discussed the applications of NMR spectroscopy and its hyphenated derivate techniques to the study of a wide range pharmaceutical impurities. Details on the advantages and disadvantages of the methodology and well as specific challenges with regards to the different analytical problems are also presented.
Collapse
Affiliation(s)
- Rubén M Maggio
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| | - Natalia L Calvo
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| | - Silvana E Vignaduzzo
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina.
| |
Collapse
|