1
|
Kairys V, Baranauskiene L, Kazlauskiene M, Zubrienė A, Petrauskas V, Matulis D, Kazlauskas E. Recent advances in computational and experimental protein-ligand affinity determination techniques. Expert Opin Drug Discov 2024; 19:649-670. [PMID: 38715415 DOI: 10.1080/17460441.2024.2349169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Tongkanarak K, Loupiac C, Neiers F, Chambin O, Srichana T. Evaluating the biomolecular interaction between delamanid/formulations and human serum albumin by fluorescence, CD spectroscopy and SPR: Effects on protein conformation, kinetic and thermodynamic parameters. Colloids Surf B Biointerfaces 2024; 239:113964. [PMID: 38761495 DOI: 10.1016/j.colsurfb.2024.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Delamanid is an anti-tuberculosis drug used for the treatment of drug-resistant tuberculosis. Since delamanid has a high protein bound potential, even patients with low albumin levels should experience high and rapid delamanid clearance. However, the interaction between delamanid and albumin should be better controlled to optimize drug efficacy. This study was designed to evaluate the binding characteristics of delamanid to human serum albumin (HSA) using various methods: fluorescence spectroscopy, circular dichroism (CD), surface plasmon resonance (SPR), and molecular docking simulation. The fluorescence emission band without any shift indicated the interaction was not affected by the polarity of the fluorophore microenvironment. The reduction of fluorescence intensity at 344 nm was proportional to the increment of delamanid concentration as a fluorescence quencher. UV-absorbance measurement at the maximum wavelength (λmax, 280 nm) was evaluated using inner filter effect correction. The HSA conformation change was explained by the intermolecular energy transfer between delamanid and HSA during complex formation. The study, which was conducted at temperatures of 298 K, 303 K, and 310 K, revealed a static quenching mechanism that correlated with a decreased of bimolecular quenching rate constant (kq) and binding constant (Ka) at increased temperatures. The Ka was 1.75-3.16 × 104 M-1 with a specific binding site with stoichiometry 1:1. The negative enthalpy change, negative entropy change, and negative Gibbs free energy change demonstrated an exothermic-spontaneous reaction while van der Waals forces and hydrogen bonds played a vital role in the binding. The molecular displacement approach and molecular docking confirmed that the binding occurred mainly in subdomain IIA, which is a hydrophobic pocket of HSA, with a theoretical binding free energy of -9.33 kcal/mol. SPR exhibited a real time negative sensorgram that resulted from deviation of the reflex angle due to ligand delamanid-HSA complex forming. The binding occurred spontaneously after delamanid was presented to the HSA surface. The SPR mathematical fitting model revealed that the association rate constant (kon) was 2.62 × 108 s-1M-1 and the dissociation rate constant (koff) was 5.65 × 10-3 s-1. The complexes were performed with an association constant (KA) of 4.64 × 1010 M-1 and the dissociation constant (KD) of 2.15 × 10-11 M. The binding constant indicated high binding affinity and high stability of the complex in an equilibrium. Modified CD spectra revealed that conformation of the HSA structure was altered by the presence of delamanid during preparation of the proliposomes that led to the reduction of secondary structure stabilization. This was indicated by the percentage decrease of α-helix. These findings are beneficial to understanding delamanid-HSA binding characteristics as well as the drug administration regimen.
Collapse
Affiliation(s)
- Krittawan Tongkanarak
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Camille Loupiac
- Univ. Bourgogne Franche - Comté, L'Institut Agro, Université de Bourgogne, INRAE, UMR PAM 1517, Joint Unit Food Processing and Microbiology, Food and Wine Physico-Chemistry Unit, 1 esplanade Erasme, Dijon 21000, France
| | - Fabrice Neiers
- Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, 7 bd Jeanne d'Arc, Dijon 21000, France
| | - Odile Chambin
- Univ. Bourgogne Franche - Comté, L'Institut Agro, Université de Bourgogne, INRAE, UMR PAM 1517, Joint Unit Food Processing and Microbiology, Food and Wine Physico-Chemistry Unit, 1 esplanade Erasme, Dijon 21000, France; Department of Pharmaceutical Technology, Faculty of Health Sciences, Université de Bourgogne, 7 bd Jeanne d'Arc, Dijon Cedex 21079, France
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
3
|
Sookai S, Akerman MP, Munro OQ. Chiral Au(III) chelates exhibit unique NCI-60 cytotoxicity profiles and interactions with human serum albumin. Dalton Trans 2024; 53:5089-5104. [PMID: 38375922 DOI: 10.1039/d3dt04024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Au(III) bis(pyrrolide-imine) chelates are emerging as a class of versatile, efficacious metallodrug candidates. Here, we synthesised two enantiopure chiral ligands H2L1 and H2L2 (tetradentate cyclohexane-1,2-diamine-bridged bis(pyrrole-imine) derivatives). Metallation of the ligands with Au(III) afforded the chiral cationic complexes AuL1 and AuL2. The in vitro cytotoxicities of AuL1 and AuL2 determined in the NCI-60 single-dose drug screen were 56.5% and 89.1%, respectively. AuL1 was subsequently selected for a five-dose NCI-60 screen, attaining GI50, IC50, and LC50 values of 4.7, 9.3 and 39.8 μM, respectively. Hierarchical cluster analysis of the NCI-60 data indicated that the profile for AuL1 was similar to that of vinblastine sulfate, a microtubule-targeting vinca alkaloid. Reactions of AuL1 with glutathione (GSH) in vitro confirmed its susceptibility to reduction, Au(III) → Au(I), by intracellular thiols. Because human serum albumin (HSA) is responsible for transporting clinically deployed and investigational drugs, we studied the uptake of AuL1 and AuL2 by HSA to delineate how chirality impacts their protein-binding affinity. Steady-state fluorescence quenching data acquired on the native protein and data from site-specific probes showed that the compounds bind at sites close enough to Trp-214 (subdomain IIA) of HSA to quench the fluorophore. The bimolecular quenching rate constants, Kq, were ca. 102 times higher than the maximum diffusion-controlled collision constant of a biomolecule in water (1010 M-1 s-1), confirming that static fluorescence quenching was the dominant mechanism. The Stern-Volmer constants, KSV, were ∼104 M-1 at 37 °C, while the affinity constants, Ka (37 °C), measured ∼2.1 × 104 M-1 (AuL1) and ∼1.2 × 104 M-1 (AuL2) for enthalpy-driven ligand uptake targeting Sudlow's site I. Although far- and near-UV CD spectroscopy indicated that both complexes minimally perturb the secondary and tertiary structure of HSA, substantial shifts in the CD spectra were recorded for both protein-bound ligands. This study highlights the role of chirality in determining the cytotoxicity profiles and protein binding behaviour of enantiomeric Au(III) chelates.
Collapse
Affiliation(s)
- Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
| | - Matthew P Akerman
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Côrte-Real L, Pósa V, Martins M, Colucas R, May NV, Fontrodona X, Romero I, Mendes F, Pinto Reis C, Gaspar MM, Pessoa JC, Enyedy ÉA, Correia I. Cu(II) and Zn(II) Complexes of New 8-Hydroxyquinoline Schiff Bases: Investigating Their Structure, Solution Speciation, and Anticancer Potential. Inorg Chem 2023. [PMID: 37441730 PMCID: PMC10369496 DOI: 10.1021/acs.inorgchem.3c01066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
We report the synthesis and characterization of three novel Schiff bases (L1-L3) derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with amines containing morpholine or piperidine moieties. These were reacted with CuCl2 and ZnCl2 yielding six new coordination compounds, with the general formula ML2, where M = Cu(II) or Zn(II) and L = L1-L3, which were all characterized by analytical, spectroscopic (Fourier transform infrared (FTIR), UV-visible absorption, nuclear magnetic resonance (NMR), or electron paramagnetic resonance (EPR)), and mass spectrometric techniques, as well as by single-crystal X-ray diffraction. In the solid state, two Cu(II) complexes, with L1 and L2, are obtained as dinuclear compounds, with relatively short Cu-Cu distances (3.146 and 3.171 Å for Cu2(L1)4 and Cu2(L2)4, respectively). The free ligands show moderate lipophilicity, while their complexes are more lipophilic. The pKa values of L1-L3 and formation constants of the complex (for ML and ML2) species were determined by spectrophotometric titrations, with the Cu(II) complexes showing higher stability than the Zn(II) complexes. EPR indicated the presence of several species in solution as pH varied and binding modes were proposed. The binding of the complexes to bovine serum albumin (BSA) was evaluated by fluorescence and circular dichroism (CD) spectroscopies. All complexes bind BSA, and as demonstrated by CD, the process takes several hours to reach equilibrium. The antiproliferative activity was evaluated in malignant melanoma cells (A375) and in noncancerous keratinocytes (HaCaT). All complexes display significant cytotoxicity (IC50 < 10 μM) but modest selectivity. The complexes show higher activity than the free ligands, the Cu(II) complexes being more active than the Zn(II) complexes, and approximately twice more cytotoxic than cisplatin. A Guava ViaCount assay corroborated the antiproliferative activity.
Collapse
Affiliation(s)
- Leonor Côrte-Real
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Vivien Pósa
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Matilde Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Raquel Colucas
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Xavier Fontrodona
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares and Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km139,7), 2695-066 Bobadela LRS, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Hubbard MA, Luyet C, Kumar P, Elvati P, VanEpps JS, Violi A, Kotov NA. Chiral chromatography and surface chirality of carbon nanoparticles. Chirality 2022; 34:1494-1502. [PMID: 36221174 PMCID: PMC9828453 DOI: 10.1002/chir.23507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
Chiral carbon nanoparticles (CNPs) represent a rapidly evolving area of research for optical and biomedical technologies. Similar to small molecules, applications of CNPs as well as fundamental relationships between their optical activity and structural asymmetry would greatly benefit from their enantioselective separations by chromatography. However, this technique remains in its infancy for chiral carbon and other nanoparticles. The possibility of effective separations using high performance liquid chromatography (HPLC) with chiral stationary phases remains an open question whose answer can also shed light on the components of multiscale chirality of the nanoparticles. Herein, we report a detailed methodology of HPLC for successful separation of chiral CNPs and establish a path for its future optimization. A mobile phase of water/acetonitrile was able to achieve chiral separation of CNPs derived from L- and D-cysteine denoted as L-CNPs and D-CNPs. Molecular dynamics simulations show that the teicoplanin-based stationary phase has a higher affinity for L-CNPs than for D-CNPs, in agreement with experiments. The experimental and computational findings jointly indicate that chiral centers of chiral CNPs are present at their surface, which is essential for the multiple applications of these chiral nanostructures and equally essential for interactions with biomolecules and circularly polarized photons.
Collapse
Affiliation(s)
- Misché A. Hubbard
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA,Department of Emergency MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Chloe Luyet
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Prashant Kumar
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Paolo Elvati
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - J. Scott VanEpps
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA,Department of Emergency MedicineUniversity of MichiganAnn ArborMichiganUSA,Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMichiganUSA,The Max Harry Weil Institute for Critical Care Research and InnovationUniversity of MichiganAnn ArborMichiganUSA
| | - Angela Violi
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Mechanical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biophysics ProgramUniversity of MichiganAnn ArborMichiganUSA,Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborMichiganUSA
| | - Nicholas A. Kotov
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA,Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Materials Science and EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
6
|
Bertozo LDC, Kogut M, Maszota-Zieleniak M, Samsonov SA, Ximenes VF. Induced circular dichroism as a tool to monitor the displacement of ligands between albumins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121374. [PMID: 35597161 DOI: 10.1016/j.saa.2022.121374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The induction of chirality in a ligand can be a powerful analytical tool for studying protein-ligand interactions. Here, we advanced by applying the technique to monitor the inversion of the induced circular dichroism (ICD) spectrum when ligands move between human and bovine serum albumin proteins (HSA and BSA). ICD experiments were performed using dimers of methyl vanillate (DVT) and vanillin (DVN). The sign and spectra shape were dependent on the albumin type. DVN presented a positive maximum in 312 nm when complexed with HSA and a negative one in BSA. It was possible to induce and follow the time-dependent displacement of the ligand from BSA (2.2 × 106 M-1) to HSA (6.6 × 105 M-1) via ICD inversion. The Molecular Mechanics Generalized Born Surface Area approach was used to calculate the binding free energy of the conformers, and a dissociation pathway for each system was proposed using Umbrella Sampling calculations. Four energy minima dihedral angle conformers were identified, and the corresponding CD spectra were calculated using the quantum chemistry approach. Then, weighted spectra for the conformationally accessible conformers were obtained based on each conformer's Boltzmann probability distribution. In conclusion, the methodology described in the manuscript might be helpful in monitoring the movement of ligands between proteins that they bind.
Collapse
Affiliation(s)
- Luiza de Carvalho Bertozo
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University, 17033-360 Bauru, São Paulo, Brazil
| | - Małgorzata Kogut
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Valdecir F Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University, 17033-360 Bauru, São Paulo, Brazil.
| |
Collapse
|
7
|
Ribeiro N, Albino M, Ferreira A, Escrevente C, Barral DC, Pessoa JC, Reis CP, Gaspar MM, Correia I. Liposomal Formulations of a New Zinc(II) Complex Exhibiting High Therapeutic Potential in a Murine Colon Cancer Model. Int J Mol Sci 2022; 23:ijms23126728. [PMID: 35743176 PMCID: PMC9223407 DOI: 10.3390/ijms23126728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the second leading cause of cancer-related mortality. Many current therapies rely on chemotherapeutic agents with poor specificity for tumor cells. The clinical success of cisplatin has prompted the research and design of a huge number of metal-based complexes as potential chemotherapeutic agents. In this study, two zinc(II) complexes, [ZnL2] and [ZnL(AcO)], where AcO is acetate and L is an organic compound combining 8-hydroxyquinoline and a benzothiazole moiety, were developed and characterized. Analytical and spectroscopic studies, namely, NMR, FTIR, and UV-Vis allowed us to establish the complexes’ structures, demonstrating the ligand-binding versatility: tetradentate in [ZnL(AcO)] and bidentate in [ZnL2]. Complexes were screened in vitro using murine and human colon cancer cells cultured in 2D and 3D settings. In 2D cells, the IC50 values were <22 µM, while in 3D settings, much higher concentrations were required. [ZnL(AcO)] displayed more suitable antiproliferative properties than [ZnL2] and was chosen for further studies. Moreover, based on the weak selectivity of the zinc-based complex towards cancer cell lines in comparison to the non-tumorigenic cell line, its incorporation in long-blood-circulating liposomes was performed, aiming to improve its targetability. The resultant optimized liposomal nanoformulation presented an I.E. of 76% with a mean size under 130 nm and a neutral surface charge and released the metal complex in a pH-dependent manner. The antiproliferative properties of [ZnL(AcO)] were maintained after liposomal incorporation. Preliminary safety assays were carried out through hemolytic activity that never surpassed 2% for the free and liposomal forms of [ZnL(AcO)]. Finally, in a syngeneic murine colon cancer mouse model, while free [ZnL(AcO)] was not able to impair tumor progression, the respective liposomal nanoformulation was able to reduce the relative tumor volume in the same manner as the positive control 5-fluorouracil but, most importantly, using a dosage that was 3-fold lower. Overall, our results show that liposomes were able to solve the solubility issues of the new metal-based complex and target it to tumor sites.
Collapse
Affiliation(s)
- Nádia Ribeiro
- Centro Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.); (J.C.P.)
| | - Melissa Albino
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (M.A.); (C.P.R.)
| | - Andreia Ferreira
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.E.); (D.C.B.)
| | - Cristina Escrevente
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.E.); (D.C.B.)
| | - Duarte C. Barral
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.E.); (D.C.B.)
| | - João Costa Pessoa
- Centro Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.); (J.C.P.)
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (M.A.); (C.P.R.)
- IBEB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (M.A.); (C.P.R.)
- Correspondence: (M.M.G.); (I.C.)
| | - Isabel Correia
- Centro Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.); (J.C.P.)
- Correspondence: (M.M.G.); (I.C.)
| |
Collapse
|
8
|
Computational analysis of altered one- and two-photon CD of sterols inside a protein binding pocket. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Pápay ZE, Magramane S, Király M, Szalkai P, Ludányi K, Horváth P, Antal I. Optimization and Development of Albumin-Biopolymer Bioconjugates with Solubility-Improving Properties. Biomedicines 2021; 9:biomedicines9070737. [PMID: 34206983 PMCID: PMC8301381 DOI: 10.3390/biomedicines9070737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Bioconjugation is an emerging field in the food and pharmaceutical industry. Due to its biocompatibility and high ligand binding capacity, albumin is widely used in modern drug delivery systems. However, the protein is sensitive to environmental stresses; albumin conjugates, on the other hand, have improved functional properties. Biopolymers are gaining interest due to their biodegradability and safety, compared to synthetic polymers. In this study, albumin–biopolymer bioconjugates were prepared by nonenzymatic Maillard reaction at 60 °C and 80% relative humidity. This nonenzymatic conjugation takes place between reducing sugars and available amino groups of a protein in certain conditions. The optimal molar ratio and time for the conjugation were studied by several investigation methods, including circular dichroism and fluorescence spectroscopy, sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and determination of available amino groups with ortho-phthaldialdehyde (OPA) assay. All of the measurements provided evidence for the covalent bonding of albumin and biopolymers, resulting in bioconjugates. Based on the results, a higher molar ratio and longer time are necessary to complete the reaction with the available amino groups. However, the optimal parameters are specific to each given biopolymer. The rheological behavior of the conjugates is characteristic of the initial biopolymer, which can be useful in drug development. Moreover, both the physical characteristics of albumin and the solubility-improving capacity were enhanced. Therefore, the potential use of albumin–biopolymer bioconjugates in the pharmaceutical industry could be considered.
Collapse
Affiliation(s)
- Zsófia Edit Pápay
- Department of Pharmaceutics, Semmelweis University, H-1092 Budapest, Hungary; (Z.E.P.); (S.M.); (M.K.); (P.S.); (K.L.)
| | - Sabrina Magramane
- Department of Pharmaceutics, Semmelweis University, H-1092 Budapest, Hungary; (Z.E.P.); (S.M.); (M.K.); (P.S.); (K.L.)
| | - Márton Király
- Department of Pharmaceutics, Semmelweis University, H-1092 Budapest, Hungary; (Z.E.P.); (S.M.); (M.K.); (P.S.); (K.L.)
| | - Petra Szalkai
- Department of Pharmaceutics, Semmelweis University, H-1092 Budapest, Hungary; (Z.E.P.); (S.M.); (M.K.); (P.S.); (K.L.)
| | - Krisztina Ludányi
- Department of Pharmaceutics, Semmelweis University, H-1092 Budapest, Hungary; (Z.E.P.); (S.M.); (M.K.); (P.S.); (K.L.)
| | - Péter Horváth
- Department of Pharmaceutical Chemistry, Semmelweis University, H-1092 Budapest, Hungary;
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, H-1092 Budapest, Hungary; (Z.E.P.); (S.M.); (M.K.); (P.S.); (K.L.)
- Correspondence: ; Tel.: +36-112170914
| |
Collapse
|
10
|
Zhang H, Deng H, Wang Y. Comprehensive investigations about the binding interaction of acesulfame with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118410. [PMID: 32361316 DOI: 10.1016/j.saa.2020.118410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In this work, the binding interaction of an artificial sweetener, acesulfame (ACS) with human serum albumin (HSA) are investigated at the molecular level by using spectral methods and molecular modeling. ACS has the ability to induce static quenching of the intrinsic fluorescence of HSA by a complex formed between HSA and ACS through weak multi-noncovalent forces including hydrophobic, hydrogen bond and van der Waals forces. ACS enters subdomain IIA of HSA to induce the tertiary structure changes of HSA and decreased the hydrophobicity of protein. In addition, ACS binding does not obviously alter the secondary structure of HSA. This study is hoped to provide some crucial information for further investigations of the biosafety of sweetener.
Collapse
Affiliation(s)
- Hongmei Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Hao Deng
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
11
|
Ionita G, Mocanu S, Matei I. Conformational preferences of TEMPO type radicals in complexes with cyclodextrins revealed by a combination of EPR spectroscopy, induced circular dichroism and molecular modeling. Phys Chem Chem Phys 2020; 22:12154-12165. [PMID: 32440670 DOI: 10.1039/d0cp01937b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is the main tool for evidencing the formation of inclusion complexes of cyclodextrins with paramagnetic guests, based on changes in the EPR parameters. In-depth information on complexation can only be obtained by a combination of physico-chemical methods. Herein we report on the interaction of three TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl) type radicals with cyclodextrins by collecting and analysing data provided experimentally by EPR and circular dichroism spectroscopies and theoretically by density functional theory and molecular docking. The study focused on the pH influence on the complexation of three paramagnetic probes with cyclodextrins. The EPR spectra revealed that the type and protonation state of the substituent linked to the TEMPO structure influences the affinity of the paramagnetic group for the cyclodextrin cavity. Neutral radical species favour stronger association with cyclodextrins and inclusion of the nitroxide group into the cavity, especially in the case of 4-carboxy-TEMPO. Induced circular dichroism signals of neutral species varied in sign and intensity as a function of substituent and cyclodextrin type. Density functional theory and molecular docking results supported the experimental data regarding the conformational preferences of TEMPO radicals in complexes with cyclodextrins.
Collapse
Affiliation(s)
- Gabriela Ionita
- "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, Bucharest 060021, Romania.
| | - Sorin Mocanu
- "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, Bucharest 060021, Romania.
| | - Iulia Matei
- "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, Bucharest 060021, Romania.
| |
Collapse
|
12
|
Kovalska V, Kuperman M, Losytskyy M, Vakarov S, Potocki S, Yarmoluk S, Voloshin Y, Varzatskii O, Gumienna-Kontecka E. Induced CD of iron(ii) clathrochelates: sensing of the structural and conformational alterations of serum albumins. Metallomics 2020; 11:338-348. [PMID: 30516230 DOI: 10.1039/c8mt00278a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An ability of inherently achiral macrobicyclic metal complexes iron(ii) clathrochelates to acquire an induced CD (ICD) output in the visible spectral range upon interaction with bovine serum albumin (BSA) was recently discovered. In the present work, the CD-reporting properties of iron(ii) clathrochelates to proteins and the thermodynamic parameters of their binding to albumins are evaluated. It is shown that iron(ii) clathrochelates functionalized by six ribbed carboxyphenylsulfide groups are able to discriminate between serum albumins of relative structure (here human and bovine albumins) by giving distinct ICD spectra. Besides, by the variation of the shape and intensity of CD bands, these cage metal complexes reflect the pH-triggered alterations of the tertiary structure of albumins. The constitutional isomerism (ortho-, meta- or para-isomers) of terminal carboxyphenylsulfide groups of iron(ii) clathrochelates strongly affects both the character of their ICD output upon binding with proteins and the parameters of the formed guest-host associates. Using isothermal titration calorimetry, it was determined that cage metal complexes bearing meta- and ortho-isomers of carboxyphenylsulfide groups possess higher association constants (Ka ∼ 2 × 104 M-1) and clathrochelate-to-BSA binding ratios (n = 2) than the para-isomer (Ka ∼ 5 × 103 M-1, n = 1). The iron(ii) clathrochelates are suggested to be potential molecular three-dimensional scaffolds for the design of CD-sensitive reporters able to recognize specific elements of protein surfaces.
Collapse
Affiliation(s)
- Vladyslava Kovalska
- Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Carvalho Bertozo L, Fernandes AJFC, Yoguim MI, Bolean M, Ciancaglini P, Ximenes VF. Entropy‐driven binding of octyl gallate in albumin: Failure in the application of temperature effect to distinguish dynamic and static fluorescence quenching. J Mol Recognit 2020; 33:e2840. [DOI: 10.1002/jmr.2840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/25/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Luiza Carvalho Bertozo
- Department of Chemistry, Faculty of SciencesUNESP—São Paulo State University São Paulo Brazil
| | - Ana J. F. C. Fernandes
- Department of Chemistry, Faculty of SciencesUNESP—São Paulo State University São Paulo Brazil
| | - Maurício I. Yoguim
- Department of Chemistry, Faculty of SciencesUNESP—São Paulo State University São Paulo Brazil
| | - Maytê Bolean
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão PretoUniversity of São Paulo Ribeirão Preto SP Brazil
| | - Pietro Ciancaglini
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão PretoUniversity of São Paulo Ribeirão Preto SP Brazil
| | - Valdecir F. Ximenes
- Department of Chemistry, Faculty of SciencesUNESP—São Paulo State University São Paulo Brazil
| |
Collapse
|
14
|
Zhang H, Han Q, Yin X, Wang Y. Insights into the binding mechanism of two-dimensional black phosphorus nanosheets-protein associations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117662. [PMID: 31654845 DOI: 10.1016/j.saa.2019.117662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Exploring the protein-nanomaterials interactions is the topic of high relevance for the future applications of new nanomaterials in biological system. Herein, the binding mechanism of bovine serum albumin(BSA) and bovine hemoglobin(BHB) with two-dimensional black phosphorus nanosheets (BP NSs) was reported. Muti-spectral results showed that the combination of BP NPs with protein resulted in the fluorescence quenching of BSA and BHB and induced the extension of the protein peptide chain by van der Waals forces, hydrophobic forces, and electron-transfer forces. Both BSA and BHB retain their structure in α-helix form. The induced circular dichroism (ICD) spectral results showed that the presence of BP NPs partly destroyed the binding domain of BHB with bilirubin and altered the tertiary structure of BHB by BP NPs binding.
Collapse
Affiliation(s)
- Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224007, PR China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, PR China.
| | - Qianqian Han
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, PR China
| | - Xuelian Yin
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, PR China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224007, PR China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, PR China.
| |
Collapse
|
15
|
Hong A, Min A, Jang H, Moon CJ, Jeong C, Choi MY, Heo J, Kim NJ. Induced Circular Dichroism of Jet-Cooled Phenol Complexes with ( R)-(-)-2-Butanol. J Phys Chem A 2019; 123:8913-8920. [PMID: 31549840 DOI: 10.1021/acs.jpca.9b07237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The induced circular dichroism (ICD) of phenol complexed with (R)-(-)-2-butanol [PhOH-(-)BOH] in a supersonic jet is investigated using resonant two-photon ionization circular dichroism (R2PICD) spectroscopy. The R2PICD spectrum of PhOH-(-)BOH exhibits nonzero ICD bands near the absorption region of bare PhOH, where (-)BOH is transparent. Two different conformers containing a single hydrogen bond between PhOH and (-)BOH are identified using ultraviolet-ultraviolet hole-burning and infrared ion-dip spectroscopy combined with quantum theoretical calculations. The ICD values of the two conformers are similar to each other. To understand these similar ICD effects of the conformers, the geometrical asymmetry of the PhOH moiety bound to (-)BOH and the coupling strength of the electric transition dipole moments between PhOH and (-)BOH are estimated. Comparing the ICD values of PhOH-(-)BOH with those of PhOH-(-)-l-methyl lactate in the previous report [ Hong , A. ; J. Phys. Chem. Lett. 2018 , 9 , 476 -480 ], we investigate the physical properties that may govern the differences of the ICD values between the two complexes.
Collapse
Affiliation(s)
- Aram Hong
- Department of Chemistry , Chungbuk National University , Cheongju , Chungbuk 28644 , Korea
| | - Ahreum Min
- Department of Chemistry , Chungbuk National University , Cheongju , Chungbuk 28644 , Korea
| | - Heeseon Jang
- Department of Chemistry , Chungbuk National University , Cheongju , Chungbuk 28644 , Korea
| | - Cheol Joo Moon
- Department of Chemistry (BK21+) and Research Institute of Natural Science , Gyeongsang National University , Jinju 52828 , Korea
| | - Changseop Jeong
- Department of Chemistry , Chungbuk National University , Cheongju , Chungbuk 28644 , Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21+) and Research Institute of Natural Science , Gyeongsang National University , Jinju 52828 , Korea
| | - Jiyoung Heo
- Department of Green Chemical Engineering , Sangmyung University , Cheonan , Chungnam 31066 , Korea
| | - Nam Joon Kim
- Department of Chemistry , Chungbuk National University , Cheongju , Chungbuk 28644 , Korea
| |
Collapse
|
16
|
Design and preparation of mesoporous silica carriers with chiral structures for drug release differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109737. [DOI: 10.1016/j.msec.2019.109737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/21/2019] [Accepted: 05/08/2019] [Indexed: 11/24/2022]
|
17
|
Ivanov AA, Falaise C, Laouer K, Hache F, Changenet P, Mironov YV, Landy D, Molard Y, Cordier S, Shestopalov MA, Haouas M, Cadot E. Size-Exclusion Mechanism Driving Host–Guest Interactions between Octahedral Rhenium Clusters and Cyclodextrins. Inorg Chem 2019; 58:13184-13194. [DOI: 10.1021/acs.inorgchem.9b02048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anton A. Ivanov
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- The Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Clément Falaise
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Kevin Laouer
- Laboratoire d’Optique et Biosciences and Ecole Polytechnique, CNRS, INSERM, Institut polytechnique de Paris, Palaiseau 91128, France
| | - François Hache
- Laboratoire d’Optique et Biosciences and Ecole Polytechnique, CNRS, INSERM, Institut polytechnique de Paris, Palaiseau 91128, France
| | - Pascale Changenet
- Laboratoire d’Optique et Biosciences and Ecole Polytechnique, CNRS, INSERM, Institut polytechnique de Paris, Palaiseau 91128, France
| | - Yuri V. Mironov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant, ULCO, Dunkerque EA 4492, France
| | - Yann Molard
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Rennes, France
| | - Stéphane Cordier
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Rennes, France
| | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- The Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| |
Collapse
|
18
|
Ren Y, Bai Y, Zhang Z, Cai W, Del Rio Flores A. The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development. Molecules 2019; 24:molecules24173122. [PMID: 31466265 PMCID: PMC6749352 DOI: 10.3390/molecules24173122] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
Polysaccharides are ubiquitous biomolecules found in nature that contain various biological and pharmacological activities that are employed in functional foods and therapeutic agents. Natural polysaccharides are obtained mainly by extraction and purification, which may serve as reliable procedures to enhance the quality and the yield of polysaccharide products. Moreover, structural analysis of polysaccharides proves to be promising and crucial for elucidating structure–activity relationships. Therefore, this report summarizes the recent developments and applications in extraction, separation, purification, and structural analysis of polysaccharides of plants and fungi.
Collapse
Affiliation(s)
- Yan Ren
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China.
| | - Yueping Bai
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Zhidan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
de Vasconcelos DN, Lima AN, Philot EA, Scott AL, Ferreira Boza IA, de Souza AR, Morgon NH, Ximenes VF. Methyl divanillate: redox properties and binding affinity with albumin of an antioxidant and potential NADPH oxidase inhibitor. RSC Adv 2019; 9:19983-19992. [PMID: 35514705 PMCID: PMC9065500 DOI: 10.1039/c9ra02465d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
Vanillic acid is a widely used food additive (flavouring agent, JECFA number: 959) with many reported beneficial biological effects. The same is true for its ester derivative (methyl vanillate, JECFA number: 159). Based on the increasing evidence that diapocynin, the dimer of apocynin (NADPH oxidase inhibitor), has some improved pharmacological properties compared to its monomer, here the dimer of methyl vanillate (MV), i.e., methyl divanillate (dimer of methyl vanillate, DMV) was synthesized and studied in the context of its redox properties and binding affinity with human serum albumin (HSA). We found that the antioxidant potency of DMV was significantly increased compared to MV. In this regard, the reduction of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical by DMV was 30-fold more effective compared to MV. Ferric ion reduction was 4-fold higher and peroxyl radical reduction was 2.7-fold higher. The interaction with HSA was significantly improved (Stern–Vomer constants, 3.8 × 105 mol−1 L and 2.3 × 104 mol−1 L, for DMV and MV, respectively). The complexation between DMV and HSA was also evidenced by induced circular dichroism (ICD) signal generation in the former due to its fixation in the asymmetric protein pocket. Density-functional calculations (TD-DFT) showed that the ICD spectrum was related to a DMV conformation bearing a dihedral angle of approximately −60°. Similar dihedral angles were obtained in the lowest and most populated DMV cluster poses obtained by molecular docking simulations. The computational studies and experimental displacement studies revealed that DMV binds preferentially at site I. In conclusion, besides being a powerful antioxidant, DMV is also a strong ligand of HSA. This is the first study on the chemical and biophysical properties of DMV, a compound with potential beneficial biological effects. Methyl divanillate, a derivative of the vanillic acid (flavouring agent, JECFA number: 959) with promising beneficial biological effects.![]()
Collapse
Affiliation(s)
- Debora Naliati de Vasconcelos
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University 17033-360 Bauru São Paulo Brazil +55-14-3301-6088
| | - Angélica Nakagawa Lima
- Laboratory of Computational Biology and Bioinformatics, UFABC - Federal University of ABC 09210-580 Santo André SP Brazil
| | - Eric Allison Philot
- Laboratory of Computational Biology and Bioinformatics, UFABC - Federal University of ABC 09210-580 Santo André SP Brazil
| | - Ana Lígia Scott
- Laboratory of Computational Biology and Bioinformatics, UFABC - Federal University of ABC 09210-580 Santo André SP Brazil
| | - Izabelle Amorim Ferreira Boza
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University 17033-360 Bauru São Paulo Brazil +55-14-3301-6088
| | - Aguinaldo Robinson de Souza
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University 17033-360 Bauru São Paulo Brazil +55-14-3301-6088
| | - Nelson Henrique Morgon
- Department of Physical Chemistry, Institute of Chemistry, Campinas State University (UNICAMP) 13083-861 Campinas São Paulo Brazil
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University 17033-360 Bauru São Paulo Brazil +55-14-3301-6088
| |
Collapse
|
20
|
Kairys V, Baranauskiene L, Kazlauskiene M, Matulis D, Kazlauskas E. Binding affinity in drug design: experimental and computational techniques. Expert Opin Drug Discov 2019; 14:755-768. [DOI: 10.1080/17460441.2019.1623202] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
21
|
Zhang H, Zhang T, Wang Y. Mechanistic understanding and binding analysis of two-dimensional MoS 2 nanosheets with human serum albumin by the biochemical and biophysical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:18-25. [PMID: 30502580 DOI: 10.1016/j.saa.2018.11.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
With the advent of molybdenum disulfide nanosheets (MoS2 NSs) for biological applications, their complex interactions with human serum albumin (HSA) need to be understood in great detail for the molecular mechanisms of protein structure and activity. It was observed that MoS2 NSs quench the intrinsic fluorescence of HSA as a consequence of ground-state complex formation by the electron transfer, van der Waals, and hydrophobic forces. The presence of MoS2 NSs partly altered the conformation of HSA and destroyed the binding domain of HSA with bilirubin. In addition, MoS2 NSs can decrease the rate of the formation of beta sheet structures of HSA, reduce the non-enzymatic glycosylation, and increase the esterase-like activity of HSA. We hope that the present study will be helpful to understand the fundamental interactions of the two-dimensional materials with various biomacromolecules in human blood.
Collapse
Affiliation(s)
- Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224007, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Tingting Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224007, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
22
|
Wei Y, Chen L, Wang J, Liu X, Yang Y, Yu S. Investigation on the chirality mechanism of chiral carbon quantum dots derived from tryptophan. RSC Adv 2019; 9:3208-3214. [PMID: 35518943 PMCID: PMC9059925 DOI: 10.1039/c8ra09649j] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/12/2019] [Indexed: 01/15/2023] Open
Abstract
Chiral carbon quantum dots (CQDs) with chirality, fluorescence and biocompatibility were synthesized by a one-step method with l-/d-tryptophan (l-/d-Trp), as both carbon source and chiral source. Levogyration-/dextrorotation-CQDs (l-/d-CQDs) were characterized by transmission electron microscopy, Fourier transform infrared spectrometry, ultraviolet-visible absorption, excitation and emission spectrometry and circular dichroism (CD) spectrometry. Results show that l-CQDs and d-CQDs present similar spherical morphology, functional groups and optical properties. The CD signal, around 220, 240 and 290 nm are opposite and symmetric, which conclusively demonstrates that l-CQDs and d-CQDs are enantiomers. Besides the CD signal around 220 nm from the inheritance of l-/d-Trp, two new chiral signals around 240 and 290 nm were induced by chiral environment. To clarify the chirality mechanism of chiral CQDs prepared by l-/d-tryptophan, the chirality origin in CQD structure was revealed.![]()
Collapse
Affiliation(s)
- Yingying Wei
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
- Key Laboratory of Interface Science and Engineering in Advanced Materials
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Taiyuan University of Technology
- Ministry of Education
- Taiyuan 030024
- China
| | - Junli Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Taiyuan University of Technology
- Ministry of Education
- Taiyuan 030024
- China
| | - Xuguang Liu
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
- Key Laboratory of Interface Science and Engineering in Advanced Materials
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Taiyuan University of Technology
- Ministry of Education
- Taiyuan 030024
- China
| | - Shiping Yu
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Taiyuan University of Technology
- Ministry of Education
- Taiyuan 030024
- China
| |
Collapse
|
23
|
Tramarin A, Tedesco D, Naldi M, Baldassarre M, Bertucci C, Bartolini M. New insights into the altered binding capacity of pharmaceutical-grade human serum albumin: site-specific binding studies by induced circular dichroism spectroscopy. J Pharm Biomed Anal 2019; 162:171-178. [DOI: 10.1016/j.jpba.2018.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022]
|
24
|
Ribeiro N, Di Paolo RE, Galvão AM, Marques F, Costa Pessoa J, Correia I. Photophysical properties and biological evaluation of a Zinc(II)-5-methyl-1H-pyrazole Schiff base complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:317-327. [PMID: 29957410 DOI: 10.1016/j.saa.2018.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
A new ZnL2 complex containing two molecules of a tridentate Schiff base derived from 5-methyl-1H-pyrazole (HL) is synthesized and characterized. The photophysical properties of HL and ZnL2 are disclosed and supported by CAMB3LYP DFT/TDDFT calculations. It is shown that there is keto-tautomer stabilization upon excitation with an energetically accessible triplet state in HL, not present in ZnL2, this explaining the differences found in the emissions of the compounds. The intrinsic fluorescence of ZnL2 is used as probe for a detailed study of its binding to human serum albumin. The protein-complex association is thermodynamically favourable and it is shown by fluorescence quenching and time-resolved analysis that the fluorescence quenching involves a mixed mechanism with prevalence of static quenching, which corroborates adduct formation at site I, close to the Trp214 residue. The ability of ZnL2 to bind DNA was also evaluated, as well as its cytotoxic activity against MCF7 (breast), PC3 (prostate) cancer cells and hamster V79 fibroblasts. ZnL2 is a moderate DNA intercalator (Kapp = 3.9 × 104 M-1) and depicts a quite low IC50 value at 48 h against MCF7 cells (IC50 = 530 nM), but much higher for PC3 and V79 cells. The relevance of a more careful speciation evaluation of ZnL2 and other potential metal-based drugs in incubation media used in in vitro tests is highlighted.
Collapse
Affiliation(s)
- Nádia Ribeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Roberto E Di Paolo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Adelino M Galvão
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
25
|
Wu C, Wang X, Chu B, Tang S, Wang Y. Self-Assembly of Core-Corona β-Glucan into Stiff and Metalizable Nanostructures from 1D to 3D. ACS NANO 2018; 12:10545-10553. [PMID: 30234296 DOI: 10.1021/acsnano.8b06560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of self-assembly strategies for well-studied biopolymers is an important route to complex and functional nanostructures. Here, we report the self-assembly of a stiff polysaccharide, formylated yeast β-glucan, into multiple highly ordered nanostructures from 1D to 3D. This polysaccharide could fold into a two-component helix that consisted of a rod-like helical core and flexible coronas. Annealing in formic acid can trigger the cross-linking of the coronas, resulting in the packing of helices into rod-like, sheet-like, or tube-like supramolecular nanostructures. The specific morphology of the resultant assemblies can be controlled by different annealing conditions such as annealing speed or polymer concentrations. Owing to the presence of reductant formyl groups, these β-glucan nanostructures can reduce silver ions in situ, leading to the guided assembly of ultrathin silver nanowires, silver-polymer nanorods, and silver-polymer necklaces.
Collapse
Affiliation(s)
| | | | - Bin Chu
- Key Laboratory of Biomedical Materials and Implants , Research Institute of Tsinghua University in Shenzhen , Shenzhen 518057 , China
| | | | | |
Collapse
|
26
|
Bertozo LDC, Tavares Neto E, Oliveira LCD, Ximenes VF. Oxidative Alteration of Trp-214 and Lys-199 in Human Serum Albumin Increases Binding Affinity with Phenylbutazone: A Combined Experimental and Computational Investigation. Int J Mol Sci 2018; 19:ijms19102868. [PMID: 30241420 PMCID: PMC6213266 DOI: 10.3390/ijms19102868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Human serum albumin (HSA) is a target for reactive oxygen species (ROS), and alterations of its physiological functions caused by oxidation is a current issue. In this work, the amino-acid residues Trp-214 and Lys-199, which are located at site I of HSA, were experimentally and computationally oxidized, and the effect on the binding constant with phenylbutazone was measured. HSA was submitted to two mild oxidizing reagents, taurine monochloramine (Tau-NHCl) and taurine dibromamine (Tau-NBr₂). The oxidation of Trp-214 provoked spectroscopic alterations in the protein which were consistent with the formation of N'-formylkynurenine. It was found that the oxidation of HSA by Tau-NBr₂, but not by Tau-NHCl, provoked a significant increase in the association constant with phenylbutazone. The alterations of Trp-214 and Lys-199 were modeled and simulated by changing these residues using the putative oxidation products. Based on the Amber score function, the interaction energy was measured, and it showed that, while native HSA presented an interaction energy of -21.3 kJ/mol, HSA with Trp-214 altered to N'-formylkynurenine resulted in an energy of -28.4 kJ/mol, and HSA with Lys-199 altered to its carbonylated form resulted in an energy of -33.9 kJ/mol. In summary, these experimental and theoretical findings show that oxidative alterations of amino-acid residues at site I of HSA affect its binding efficacy.
Collapse
Affiliation(s)
- Luiza de Carvalho Bertozo
- Department of Chemistry, Faculty of Sciences, UNESP⁻São Paulo State University, Bauru, SP 17033-360, Brazil.
| | - Ernesto Tavares Neto
- Department of Physics⁻Institute of Biosciences, Humanities and Exact Sciences, UNESP⁻São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil.
| | - Leandro Cristante de Oliveira
- Department of Physics⁻Institute of Biosciences, Humanities and Exact Sciences, UNESP⁻São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil.
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP⁻São Paulo State University, Bauru, SP 17033-360, Brazil.
| |
Collapse
|
27
|
Hong A, Moon CJ, Jang H, Min A, Choi MY, Heo J, Kim NJ. Isomer-Specific Induced Circular Dichroism Spectroscopy of Jet-Cooled Phenol Complexes with (-)-Methyl l-Lactate. J Phys Chem Lett 2018; 9:476-480. [PMID: 29309156 DOI: 10.1021/acs.jpclett.7b03241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Induced circular dichroism (ICD) is the CD observed in the absorption of an achiral molecule bound to a transparent chiral molecule through noncovalent interactions. ICD spectroscopy has been used to probe the binding between molecules, such as protein-ligand interactions. However, most ICD spectra have been measured in solution, which only exhibit the averaged CD values of all conformational isomers in solution. Here, we obtained the first isomer-selective ICD spectra by applying resonant two-photon ionization CD spectroscopy to jet-cooled phenol complexes with (-)-methyl l-lactate (PhOH-(-)ML). The well-resolved CD bands in the spectra were assigned to two conformers, which contained different types of hydrogen-bonding interactions between PhOH and (-)ML. The ICD values of the two conformers have different signs and magnitudes, which were explained by differences both in the geometrical asymmetries of PhOH bound to (-)ML and in the electronic coupling strengths between PhOH and (-)ML.
Collapse
Affiliation(s)
- Aram Hong
- Department of Chemistry, Chungbuk National University , Chungbuk 28644, Korea
| | - Cheol Joo Moon
- Department of Chemistry (BK21+) and Research Institute of Natural Science, Gyeongsang National University , Jinju 52828, Korea
| | - Heeseon Jang
- Department of Chemistry, Chungbuk National University , Chungbuk 28644, Korea
| | - Ahreum Min
- Department of Chemistry, Chungbuk National University , Chungbuk 28644, Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21+) and Research Institute of Natural Science, Gyeongsang National University , Jinju 52828, Korea
| | - Jiyoung Heo
- Department of Green Chemical Engineering, Sangmyung University , Chungnam 31066, Korea
| | - Nam Joon Kim
- Department of Chemistry, Chungbuk National University , Chungbuk 28644, Korea
| |
Collapse
|
28
|
Nevídalová H, Michalcová L, Glatz Z. In-depth insight into the methods of plasma protein-drug interaction studies: Comparison of capillary electrophoresis-frontal analysis, isothermal titration calorimetry, circular dichroism and equilibrium dialysis. Electrophoresis 2017; 39:581-589. [DOI: 10.1002/elps.201700325] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/20/2017] [Accepted: 10/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Hana Nevídalová
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| |
Collapse
|
29
|
Górecki M, Zinna F, Biver T, Di Bari L. Induced circularly polarized luminescence for revealing DNA binding with fluorescent dyes. J Pharm Biomed Anal 2017; 144:6-11. [DOI: 10.1016/j.jpba.2017.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/13/2017] [Accepted: 02/04/2017] [Indexed: 11/28/2022]
|
30
|
Structural basis for the magnesium-dependent activation of transketolase from Chlamydomonas reinhardtii. Biochim Biophys Acta Gen Subj 2017; 1861:2132-2145. [DOI: 10.1016/j.bbagen.2017.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 01/18/2023]
|
31
|
Venturini D, de Souza AR, Caracelli I, Morgon NH, da Silva-Filho LC, Ximenes VF. Induction of axial chirality in divanillin by interaction with bovine serum albumin. PLoS One 2017; 12:e0178597. [PMID: 28575123 PMCID: PMC5456067 DOI: 10.1371/journal.pone.0178597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022] Open
Abstract
Vanillin is a plant secondary metabolite and has numerous beneficial health applications. Divanillin is the homodimer of vanillin and used as a taste enhancer compound and also a promissory anticancer drug. Here, divanillin was synthesized and studied in the context of its interaction with bovine serum albumin (BSA). We found that divanillin acquires axial chirality when complexed with BSA. This chiroptical property was demonstrated by a strong induced circular dichroism (ICD) signal. In agreement with this finding, the association constant between BSA and divanillin (3.3 x 105 mol-1L) was higher compared to its precursor vanillin (7.3 x 104 mol-1L). The ICD signal was used for evaluation of the association constant, demonstration of the reversibility of the interaction and determination of the binding site, revealing that divanillin has preference for Sudlow's site I in BSA. This property was confirmed by displacement of the fluorescent markers warfarin (site I) and dansyl-L-proline (site II). Molecular docking simulation confirmed the higher affinity of divanillin to site I. The highest scored conformation obtained by docking (dihedral angle 242°) was used for calculation of the circular dichroism spectrum of divanillin using Time-Dependent Density Functional Theory (TDDFT). The theoretical spectrum showed good similarity with the experimental ICD. In summary, we have demonstrated that by interacting with the chiral cavities in BSA, divanillin became a atropos biphenyl, i.e., the free rotation around the single bound that links the aromatic rings was impeded. This phenomenon can be explained considering the interactions of divanillin with amino acid residues in the binding site of the protein. This chiroptical property can be very useful for studying the effects of divanillin in biological systems. Considering the potential pharmacological application of divanillin, these findings will be helpful for researchers interested in the pharmacological properties of this compound.
Collapse
Affiliation(s)
- Diego Venturini
- Department of Chemistry, Faculty of Sciences, UNESP—São Paulo State University, Bauru, São Paulo, Brazil
| | | | - Ignez Caracelli
- BioMat, Department of Physics, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Nelson Henrique Morgon
- Department of Physical Chemistry, Institute of Chemistry, Campinas State University (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Carlos da Silva-Filho
- Department of Chemistry, Faculty of Sciences, UNESP—São Paulo State University, Bauru, São Paulo, Brazil
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP—São Paulo State University, Bauru, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
32
|
Surface plasmon resonance and circular dichroism characterization of cucurbitacins binding to serum albumins for early pharmacokinetic profiling. J Pharm Biomed Anal 2016; 122:166-72. [DOI: 10.1016/j.jpba.2016.01.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/22/2016] [Accepted: 01/23/2016] [Indexed: 11/22/2022]
|
33
|
Domonkos C, Zsila F, Fitos I, Visy J, Kassai R, Bálint B, Kotschy A. Synthesis and serum protein binding of novel ring-substituted harmine derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra06426k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Potential anticancer derivatives of the β-carboline alkaloid harmine exhibit substituent dependent serum protein binding.
Collapse
Affiliation(s)
- Celesztina Domonkos
- Research Group of Chemical Biology
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
| | - Ferenc Zsila
- Research Group of Chemical Biology
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
| | - Ilona Fitos
- Research Group of Chemical Biology
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
| | - Júlia Visy
- Research Group of Chemical Biology
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
| | - Rudolf Kassai
- Servier Research Institute of Medicinal Chemistry
- Budapest
- Hungary
| | - Balázs Bálint
- Servier Research Institute of Medicinal Chemistry
- Budapest
- Hungary
| | - András Kotschy
- Servier Research Institute of Medicinal Chemistry
- Budapest
- Hungary
| |
Collapse
|