1
|
van Mever M, Mamani-Huanca M, Faught E, López-Gonzálvez Á, Hankemeier T, Barbas C, Schaaf MJM, Ramautar R. Application of a capillary electrophoresis-mass spectrometry metabolomics workflow in zebrafish larvae reveals new effects of cortisol. Electrophoresis 2024; 45:380-391. [PMID: 38072651 DOI: 10.1002/elps.202300186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 03/20/2024]
Abstract
In contemporary biomedical research, the zebrafish (Danio rerio) is increasingly considered a model system, as zebrafish embryos and larvae can (potentially) fill the gap between cultured cells and mammalian animal models, because they can be obtained in large numbers, are small and can easily be manipulated genetically. Given that capillary electrophoresis-mass spectrometry (CE-MS) is a useful analytical separation technique for the analysis of polar ionogenic metabolites in biomass-limited samples, the aim of this study was to develop and assess a CE-MS-based analytical workflow for the profiling of (endogenous) metabolites in extracts from individual zebrafish larvae and pools of small numbers of larvae. The developed CE-MS workflow was used to profile metabolites in extracts from pools of 1, 2, 4, 8, 12, 16, 20, and 40 zebrafish larvae. For six selected endogenous metabolites, a linear response (R2 > 0.98) for peak areas was obtained in extracts from these pools. The repeatability was satisfactory, with inter-day relative standard deviation values for peak area of 9.4%-17.7% for biological replicates (n = 3 over 3 days). Furthermore, the method allowed the analysis of over 70 endogenous metabolites in a pool of 12 zebrafish larvae, and 29 endogenous metabolites in an extract from only 1 zebrafish larva. Finally, we applied the optimized CE-MS workflow to identify potential novel targets of the mineralocorticoid receptor in mediating the effects of cortisol.
Collapse
Affiliation(s)
- Marlien van Mever
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Maricruz Mamani-Huanca
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Erin Faught
- Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Marcel J M Schaaf
- Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Rawi Ramautar
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Xu X, Zuo Y, Chen S, Hatami A, Gu H. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals. BIOSENSORS 2024; 14:125. [PMID: 38534232 DOI: 10.3390/bios14030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods. While lacking temporal resolution, techniques like HPLC and CE complement electrochemical sensing's selectivity, particularly for structurally similar neurochemicals. This review covers essential neurochemicals and explores miniaturized electrochemical sensors for brain analysis, emphasizing microdialysis integration. It discusses the pros and cons of these techniques, forecasting electrochemical sensing's future in neuroscience research. Overall, this comprehensive review outlines the evolution, strengths, and potential applications of electrochemical sensing in the study of neurochemicals, offering insights into future advancements in the field.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yimei Zuo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Amir Hatami
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
3
|
Goyvaerts L, Schraenen A, Lemaire K, Veld PI, Smolders I, Maroteaux L, Schuit F. Normal Pregnancy-Induced Islet Beta Cell Proliferation in Mouse Models That Are Deficient in Serotonin-Signaling. Int J Mol Sci 2022; 23:ijms232415816. [PMID: 36555462 PMCID: PMC9779327 DOI: 10.3390/ijms232415816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
During mouse pregnancy placental lactogens stimulate prolactin receptors on pancreatic islet beta cells to induce expression of the tryptophan hydroxylase Tph1, resulting in the synthesis and secretion of serotonin. Presently, the functional relevance of this phenomenon is unclear. One hypothesis is that serotonin-induced activation of 5-HT2B receptors on beta cells stimulates beta cell proliferation during pregnancy. We tested this hypothesis via three different mouse models: (i) total Tph1KO mice, (ii) 129P2/OlaHsd mice, which are incompetent to upregulate islet Tph1 during pregnancy, whereas Tph1 is normally expressed in the intestine, mammary glands, and placenta, and (iii) Htr2b-deficient mice. We observed normal pregnancy-induced levels of beta cell proliferation in total Tph1KO mice, 129P2/OlaHsd mice, and in Htr2b-/- mice. The three studied mouse models indicate that islet serotonin production and its signaling via 5-HT2B receptors are not required for the wave of beta cell proliferation that occurs during normal mouse pregnancy.
Collapse
Affiliation(s)
- Lotte Goyvaerts
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Anica Schraenen
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Katleen Lemaire
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Peter in’t Veld
- Department of Pathology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Luc Maroteaux
- INSERM UMR-U1270, Institut du Fer à Moulin, Sorbonne Université Paris, 75006 Paris, France
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
4
|
Nakamoto C, Goto Y, Tomizawa Y, Fukata Y, Fukata M, Harpsøe K, Gloriam DE, Aoki K, Takeuchi T. A novel red fluorescence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro. Mol Brain 2021; 14:173. [PMID: 34872607 PMCID: PMC8647500 DOI: 10.1186/s13041-021-00882-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Dopamine (DA) and norepinephrine (NE) are pivotal neuromodulators that regulate a broad range of brain functions, often in concert. Despite their physiological importance, untangling the relationship between DA and NE in the fine control of output function is currently challenging, primarily due to a lack of techniques to allow the observation of spatiotemporal dynamics with sufficiently high selectivity. Although genetically encoded fluorescent biosensors have been developed to detect DA, their poor selectivity prevents distinguishing DA from NE. Here, we report the development of a red fluorescent genetically encoded GPCR (G protein-coupled receptor)-activation reporter for DA termed 'R-GenGAR-DA'. More specifically, a circular permutated red fluorescent protein (cpmApple) was replaced by the third intracellular loop of human DA receptor D1 (DRD1) followed by the screening of mutants within the linkers between DRD1 and cpmApple. We developed two variants: R-GenGAR-DA1.1, which brightened following DA stimulation, and R-GenGAR-DA1.2, which dimmed. R-GenGAR-DA1.2 demonstrated a reasonable dynamic range (ΔF/F0 = - 43%), DA affinity (EC50 = 0.92 µM) and high selectivity for DA over NE (66-fold) in HeLa cells. Taking advantage of the high selectivity of R-GenGAR-DA1.2, we monitored DA in presence of NE using dual-color fluorescence live imaging, combined with the green-NE biosensor GRABNE1m, which has high selectivity for NE over DA (> 350-fold) in HeLa cells and hippocampal neurons grown from primary culture. Thus, this is a first step toward the multiplex imaging of these neurotransmitters in, for example, freely moving animals, which will provide new opportunities to advance our understanding of the high spatiotemporal dynamics of DA and NE in normal and abnormal brain function.
Collapse
Affiliation(s)
- Chihiro Nakamoto
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
| | - Yoko Tomizawa
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - David E. Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
| | - Tomonori Takeuchi
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
He B, Zhang W, Guled F, Harms A, Ramautar R, Hankemeier T. Analytical techniques for biomass-restricted metabolomics: An overview of the state-of-the-art. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Mass spectrometry based metabolomics of volume-restricted in-vivo brain samples: Actual status and the way forward. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Custers ML, Wouters Y, Jaspers T, De Bundel D, Dewilde M, Van Eeckhaut A, Smolders I. Applicability of cerebral open flow microperfusion and microdialysis to quantify a brain-penetrating nanobody in mice. Anal Chim Acta 2021; 1178:338803. [PMID: 34482878 DOI: 10.1016/j.aca.2021.338803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 02/02/2023]
Abstract
The use of biologics in the therapeutic landscape has increased exponentially since the last 3 decades. Nevertheless, patients with central nervous system (CNS) related disorders could not yet benefit from this revolution because the blood-brain barrier (BBB) severely hampers biologics from entering the brain. Considerable effort has been put into generating methods to modulate or circumvent the BBB for delivery of therapeutics to the CNS. A promising strategy is receptor-mediated transcytosis (RMT). Recently, Wouters et al. (2020) discovered a mouse anti-transferrin receptor nanobody that is able to deliver a biologically active peptide to the brain via RMT. The present study aims to sample a derivative of this brain-penetrating nanobody (Nb105) in the CNS. Therefore, we compared the applicability of cerebral open flow microperfusion (cOFM) and microdialysis as sampling techniques to directly obtain high molecular weight substances from the cerebral interstitial fluid. A custom AlphaScreen™ assay was validated to quantify nanobody concentrations in the samples. In vitro microdialysis probe (AtmosLM™, 1 MDa cut-off) recovery by gain and by loss for Nb105 was 18.3 ± 3.2% and 27.0 ± 2.5% respectively, whereas for cOFM it was 87.2 ± 4.0% and 97.3 ± 1.6%. Although a large difference in in vitro recovery is observed between cOFM and microdialysis, in vivo similar results were obtained. Immunohistochemical stainings showed an astrocytic and microglial reaction in the immediate vicinity along the implantation track for both probe types. Coronal sections showed higher fluorescein isothiocyanate-dextran and immunoglobulin G extravasation around the microdialysis probe track than after cOFM sampling experiments, however this leakage was clearly limited compared to a positive control where the BBB was disrupted. This is the first study that samples a bispecific nanobody in the brain's interstitial fluid in function of time, providing a pharmacokinetic profile of nanobodies in the CNS. Furthermore, this is the first time a cOFM study is performed in awake freely moving mice, providing data on inflammation and blood-brain barrier integrity in the mouse brain. Overall, this work demonstrates that, while taking into account the (bio)analytical considerations, both microdialysis and cOFM are suitable in vivo sampling techniques for quantification of nanobodies in the CNS.
Collapse
Affiliation(s)
- Marie-Laure Custers
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Yessica Wouters
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, Box 602, 3000 Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium.
| | - Tom Jaspers
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, Box 602, 3000 Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium.
| | - Dimitri De Bundel
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Maarten Dewilde
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, Box 602, 3000 Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium.
| | - Ann Van Eeckhaut
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Ilse Smolders
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
8
|
van Mever M, Segers K, Drouin N, Guled F, Heyden YV, Van Eeckhaut A, Hankemeier T, Ramautar R. Direct profiling of endogenous metabolites in rat brain microdialysis samples by capillary electrophoresis-mass spectrometry with on-line preconcentration. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Pierre A, Van Schuerbeek A, Allaoui W, Van Laere S, Singewald N, Van Eeckhaut A, Smolders I, De Bundel D. Effects of ghrelin receptor activation on forebrain dopamine release, conditioned fear and fear extinction in C57BL/6J mice. J Neurochem 2020; 154:389-403. [DOI: 10.1111/jnc.14996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Anouk Pierre
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Andries Van Schuerbeek
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Wissal Allaoui
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Sven Van Laere
- Interfaculty Center Data Processing & Statistics Vrije Universiteit Brussel Brussels Belgium
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology Institute of Pharmacy and CMBI University of Innsbruck Innsbruck Austria
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
10
|
Palomino-Vasco M, Acedo-Valenzuela MI, Rodríguez-Cáceres MI, Mora-Diez N. Automated chromatographic method with fluorescent detection to determine biogenic amines and amino acids. Application to craft beer brewing process. J Chromatogr A 2019; 1601:155-163. [DOI: 10.1016/j.chroma.2019.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022]
|
11
|
Tavakolian-Ardakani Z, Hosu O, Cristea C, Mazloum-Ardakani M, Marrazza G. Latest Trends in Electrochemical Sensors for Neurotransmitters: A Review. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2037. [PMID: 31052309 PMCID: PMC6539656 DOI: 10.3390/s19092037] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/07/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
Neurotransmitters are endogenous chemical messengers which play an important role in many of the brain functions, abnormal levels being correlated with physical, psychotic and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. Therefore, their sensitive and robust detection is of great clinical significance. Electrochemical methods have been intensively used in the last decades for neurotransmitter detection, outclassing more complicated analytical techniques such as conventional spectrophotometry, chromatography, fluorescence, flow injection, and capillary electrophoresis. In this manuscript, the most successful and promising electrochemical enzyme-free and enzymatic sensors for neurotransmitter detection are reviewed. Focusing on the activity of worldwide researchers mainly during the last ten years (2010-2019), without pretending to be exhaustive, we present an overview of the progress made in sensing strategies during this time. Particular emphasis is placed on nanostructured-based sensors, which show a substantial improvement of the analytical performances. This review also examines the progress made in biosensors for neurotransmitter measurements in vitro, in vivo and ex vivo.
Collapse
Affiliation(s)
- Zahra Tavakolian-Ardakani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | - Oana Hosu
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400349 Pasteur 4 Cluj-Napoca, Romania.
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400349 Pasteur 4 Cluj-Napoca, Romania.
| | | | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Instituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136 Roma, Italy.
| |
Collapse
|
12
|
Zhao XE, He Y, Zhu S, Xu Y, You J, Bai Y, Liu H. Stable isotope labeling derivatization and magnetic dispersive solid phase extraction coupled with UHPLC-MS/MS for the measurement of brain neurotransmitters in post-stroke depression rats administrated with gastrodin. Anal Chim Acta 2019; 1051:73-81. [DOI: 10.1016/j.aca.2018.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 11/30/2022]
|
13
|
Shimizu R, Horiguchi N, Yano K, Sakuramoto M, Kanegawa N, Shinohara S, Ohnishi S. Pharmacokinetic-Pharmacodynamic Modeling of Brain Dopamine Levels Based on Dopamine Transporter Occupancy after Administration of Methylphenidate in Rats. J Pharmacol Exp Ther 2019; 369:78-87. [DOI: 10.1124/jpet.118.252262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
|
14
|
Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron 2018; 121:137-152. [DOI: 10.1016/j.bios.2018.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
|
15
|
Bongaerts J, De Bundel D, Mangelings D, Smolders I, Vander Heyden Y, Van Eeckhaut A. Sensitive targeted methods for brain metabolomic studies in microdialysis samples. J Pharm Biomed Anal 2018; 161:192-205. [DOI: 10.1016/j.jpba.2018.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
|
16
|
Abstract
Neurotransmitters are chemicals that act as messengers in the synaptic transmission process. They are essential for human health and any imbalance in their activities can cause serious mental disorders such as Parkinson’s disease, schizophrenia, and Alzheimer’s disease. Hence, monitoring the concentrations of various neurotransmitters is of great importance in studying and diagnosing such mental illnesses. Recently, many researchers have explored the use of unique materials for developing biosensors for both in vivo and ex vivo neurotransmitter detection. A combination of nanomaterials, polymers, and biomolecules were incorporated to implement such sensor devices. For in vivo detection, electrochemical sensing has been commonly applied, with fast-scan cyclic voltammetry being the most promising technique to date, due to the advantages such as easy miniaturization, simple device architecture, and high sensitivity. However, the main challenges for in vivo electrochemical neurotransmitter sensors are limited target selectivity, large background signal and noise, and device fouling and degradation over time. Therefore, achieving simultaneous detection of multiple neurotransmitters in real time with long-term stability remains the focus of research. The purpose of this review paper is to summarize the recently developed sensing techniques with the focus on neurotransmitters as the target analyte, and to discuss the outlook of simultaneous detection of multiple neurotransmitter species. This paper is organized as follows: firstly, the common materials used for developing neurotransmitter sensors are discussed. Secondly, several sensor surface modification approaches to enhance sensing performance are reviewed. Finally, we discuss recent developments in the simultaneous detection capability of multiple neurotransmitters.
Collapse
|
17
|
Abstract
AIM This work presents a label-free platform for dopamine (DA) monitoring based on the spectroscopic properties of laccase. RESULTS Working in batch mode, DA ranging from 25 to 250 μM, can be determined without the interference of norepinephrine and epinephrine. Laccase immobilized in a polyacrylamide film is the basis of a platform for the label-free determination of DA. The linear range goes from 100 to 900 μM with an RSD of 5.3% and a film lifetime of more than 30 measurements. The biosensors also permit the DA + epinephrine + norepinephrine determination. CONCLUSION The method permits the determination of DA and the total concentration of the three neurotransmitters, and could be used for DA monitoring in urine samples.
Collapse
|
18
|
Recent Advances in Biosensing for Neurotransmitters and Disease Biomarkers using Microelectrodes. ChemElectroChem 2017. [DOI: 10.1002/celc.201600810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Hendrickx S, Uğur DY, Yilmaz IT, Şener E, Van Schepdael A, Adams E, Broeckhoven K, Cabooter D. A sensitive capillary LC-UV method for the simultaneous analysis of olanzapine, chlorpromazine and their FMO-mediated N-oxidation products in brain microdialysates. Talanta 2017; 162:268-277. [DOI: 10.1016/j.talanta.2016.09.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 01/14/2023]
|
20
|
Challenges for the in vivo quantification of brain neuropeptides using microdialysis sampling and LC-MS. Bioanalysis 2016; 8:1965-85. [PMID: 27554986 DOI: 10.4155/bio-2016-0119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In recent years, neuropeptides and their receptors have received an increased interest in neuropharmacological research. Although these molecules are considered relatively small compared with proteins, their in vivo quantification using microdialysis is more challenging than for small molecules. Low microdialysis recoveries, aspecific adsorption and the presence of various multiply charged precursor ions during ESI-MS/MS detection hampers the in vivo quantification of these low abundant biomolecules. Every step in the workflow, from sampling until analysis, has to be optimized to enable the sensitive analysis of these compounds in microdialysates.
Collapse
|