1
|
Beran K, Hermans E, Holm R, Sepassi K, Dressman J. Using the refined Developability Classification System (rDCS) to guide the design of oral formulations. J Pharm Sci 2024:S0022-3549(24)00431-3. [PMID: 39374693 DOI: 10.1016/j.xphs.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The refined Developability Classification System (rDCS) provides a comprehensive animal-free approach for assessing biopharmaceutical risks associated with developing oral formulations. This work demonstrates practical application of a recently advanced rDCS framework guiding formulation design for six diverse active pharmaceutical ingredients (APIs) and compares rDCS classifications with those of the Biopharmaceutics Classification System (BCS). While the BCS assigns five of the APIs to class II/IV, indicating potentially unfavorable biopharmaceutical attributes, the rDCS provides a more nuanced risk assessment. Both BCS and rDCS assign acetaminophen to class I at therapeutic doses. Voriconazole and lemborexant (both BCS II) are classified in rDCS class I at therapeutic doses, indicating suitability for development as conventional oral formulations. Fedratinib is classified as BCS IV but the rDCS indicates a stratified risk (class I, IIa or IIb), depending on the relevance of supersaturation/precipitation in vivo. Voxelotor and istradefylline (both BCS II) belong to rDCS class IIb, requiring solubility enhancement to achieve adequate oral bioavailability. Comparing the rDCS analysis with literature on development and pharmacokinetics demonstrates that the rDCS reliably supports oral formulation design over a wide range of API characteristics, thus providing a strong foundation for guiding development.
Collapse
Affiliation(s)
- Kristian Beran
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany; Janssen Pharmaceutica NV, Pharmaceutical & Material Sciences, Beerse, Belgium
| | - Eline Hermans
- Janssen Pharmaceutica NV, Pharmaceutical & Material Sciences, Beerse, Belgium
| | - René Holm
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Odense, Denmark
| | - Kia Sepassi
- Janssen Research & Development, LLC, Discovery Pharmaceutics, San Diego, CA, USA
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Liu X, Wu Z, Cavalli R, Manzoli M, Cravotto G. Ultrasonic Preparation of Nano-CaCO 3 Templates and Hollow Mesoporous SiO 2 Nanoparticles for Voriconazole Loading. AAPS PharmSciTech 2024; 25:165. [PMID: 39009915 DOI: 10.1208/s12249-024-02872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
CaCO3 nanoparticles (nano-CaCO3) as nano-templates were prepared using CaCl2 and Na2CO3 solutions under controlled sonication (19.5 kHz). Using the same ultrasonic device, subsequently, hollow mesoporous silica nanoparticles (HMSNs) were obtained by the hard template of nano-CaCO3. HMSNs were selected as carriers for the antifungal drug voriconazole (VOR) loading to overcome poor water solubility. Three-dimensional CaCO3 nanosheets HMSNs were obtained under gentle sonication. Three-dimensional CaCO3 nanosheets of 24.5 nm (hydrodynamic diameter) were obtained under 17.6 W for 3 min. HMSNs were synthesized by double-template method with nano-CaCO3 as the hard template. Transmission electron microscopy measurements showed that the prepared HMSNs possess hollow structures with particle size between 110 and 120 nm. Nitrogen physisorption at -196 °C revealed that the HMSNs had high surface area (401.57 m2/g), high pore volume (0.11 cm3/g), and uniform pore size (2.22 nm) that facilitated the effective encapsulation of VOR in the HMSNs. The loading capacity of VOR (wt%) on the HMSNs was 7.96%, and the total VOR release amount of VOR-HMSNs material was 71.40% at 480 min. The kinetic model confirmed that the release mechanism of HMSNs nanoparticles followed Fickian diffusion at pH = 7.4 and 37 °C. Moreover, the cumulative VOR release at 42 °C (86.05%) was higher than that at 37 °C (71.40%). The cumulative release amount of VOR from the VOR-HMSNs material was 92.37% at pH = 5.8 at the same temperature. Both nano-CaCO3 templates and HMSNs were prepared by sonication at 19.5 kHz. The as-prepared HMSNs can effectively encapsulate VOR and released drug by Fickian diffusion.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Drug Science and Technology and NIS - Centre, University of Turin, Via Pietro Giuria 9, Turin, 10125, Italy
| | - Zhilin Wu
- Country College of Chemistry and Chemical Engineering, Chemistry and Chemical Engineering Guangdong Province Laboratory, Shantou University, Daxue Road 243, Shantou, 515063, China.
| | - Roberta Cavalli
- Department of Drug Science and Technology and NIS - Centre, University of Turin, Via Pietro Giuria 9, Turin, 10125, Italy
| | - Maela Manzoli
- Department of Drug Science and Technology and NIS - Centre, University of Turin, Via Pietro Giuria 9, Turin, 10125, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology and NIS - Centre, University of Turin, Via Pietro Giuria 9, Turin, 10125, Italy.
| |
Collapse
|
3
|
Chakraborty A, Diwan A, Tatake J. Prospect of nanomaterials as antimicrobial and antiviral regimen. AIMS Microbiol 2023; 9:444-466. [PMID: 37649798 PMCID: PMC10462459 DOI: 10.3934/microbiol.2023024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 09/01/2023] Open
Abstract
In recent years studies of nanomaterials have been explored in the field of microbiology due to the increasing evidence of antibiotic resistance. Nanomaterials could be inorganic or organic, and they may be synthesized from natural products from plant or animal origin. The therapeutic applications of nano-materials are wide, from diagnosis of disease to targeted delivery of drugs. Broad-spectrum antiviral and antimicrobial activities of nanoparticles are also well evident. The ratio of nanoparticles surface area to their volume is high and that allows them to be an advantageous vehicle of drugs in many respects. Effective uses of various materials for the synthesis of nanoparticles impart much specificity in them to meet the requirements of specific therapeutic strategies. The potential therapeutic use of nanoparticles and their mechanisms of action against infections from bacteria, fungi and viruses were the focus of this review. Further, their potential advantages, drawbacks, limitations and side effects are also included here. Researchers are characterizing the exposure pathways of nano-medicines that may cause serious toxicity to the subjects or the environment. Indeed, societal ethical issues in using nano-medicines pose a serious question to scientists beyond anything.
Collapse
|
4
|
de Almeida Campos L, Fin MT, Santos KS, de Lima Gualque MW, Freire Cabral AKL, Khalil NM, Fusco-Almeida AM, Mainardes RM, Mendes-Giannini MJS. Nanotechnology-Based Approaches for Voriconazole Delivery Applied to Invasive Fungal Infections. Pharmaceutics 2023; 15:pharmaceutics15010266. [PMID: 36678893 PMCID: PMC9863752 DOI: 10.3390/pharmaceutics15010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.
Collapse
Affiliation(s)
- Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Kelvin Sousa Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| |
Collapse
|
5
|
Kim E, Ban C, Kim SO, Lim S, Choi YJ. Applications and perspectives of polyphenol-loaded solid lipid nanoparticles and nanostructured lipid carriers for foods. Food Sci Biotechnol 2022; 31:1009-1026. [PMID: 35873373 PMCID: PMC9300790 DOI: 10.1007/s10068-022-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
Abstract
Imbalanced nutrition in modern society is one of the reasons for disorders, such as cancer, cardiovascular disease, and diabetes, which have attracted the interest in bioactives (particularly polyphenols) to assist in the balanced diet of modern people. Although stability can be maintained during preparation and storage, the ingested polyphenols undergo harsh gastrointestinal digestion processes, resulting in limited bioaccessibility and low gut-epithelial permeation and bioavailability. Several lipid-based formulations have been proposed to overcome these issues. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have also been highlighted as carrier systems for the oral delivery of lipophilic bioactives, including polyphenols. This paper summarizes the research on the ingredients, production methods, post-processing procedures, general characteristics, and advantages and disadvantages of SLNs and NLCs. Overall, this paper reviews the applications and perspectives of polyphenol-loaded SLNs and NLCs in foods, as well as their regulation, production, storage, and economic feasibility.
Collapse
Affiliation(s)
- Eunghee Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, Dongdaemungu, Seoul, 02504 Republic of Korea
| | - Sang-Oh Kim
- Department of Plant and Food Sciences, Sangmyung University, Cheonan, Chungnam 31066 Republic of Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeonggi 13120 Republic of Korea
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
| |
Collapse
|
6
|
Zhang W, Zhou Q, Zhang Q, Zhu H, Zhang D. Preparation and performance of SiO 2-nanostructured lipid encapsulating sunscreen. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2043162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wanping Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Qianhui Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Qianjie Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Haiyang Zhu
- Shanghai Ruxi Bio-Tech Co., Ltd, Shanghai, People’s Republic of China
| | - Dongmei Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Nogueira NC, de Sá LLF, de Carvalho ALM. Nanostructured Lipid Carriers as a Novel Strategy for Topical Antifungal Therapy. AAPS PharmSciTech 2021; 23:32. [PMID: 34931256 DOI: 10.1208/s12249-021-02181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
Nanostructured lipid carriers (NLC) were developed as an alternative carrier system optimizing limitations found in topical treatments for superficial fungal infections, such as limited permeation through the skin. However, few published studies are focused on standardization and characterization of determinant variables of these lipid nanosystems' quality. Thus, this systematic review aims to compile information regarding the selection of lipids, surfactants, and preparation method that intimately relates to the final quality of this nanotechnology. For this, the search was carried with the following descriptors: 'nanostructured lipid carriers', 'topical', 'antifungal' separated by the Boolean operators 'and', present in the titles of the databases: Science Direct, Scopus and Pubmed. The review included experimental articles focused on the development of nanostructured lipid carriers targeted for topical application with antifungal activity, published from 2015 to 2021. Review articles, clinical studies, and studies on the development of other nanocarriers intended for other routes of administration were excluded from the study. The research included 26 articles, of which 58% were developed in India and Brazil, 53% published in the years 2019 and 2020. As for the selection of antifungal drugs incorporated into NLCs, the azole class had a preference over other classes, voriconazole being incorporated into 5 of the 26 developed NLC studied. It was also observed a predominance of medium chain triglycerides (MCT) as a liquid lipid and polysorbate 80 as a surfactant. Among other results, this review compiles the influences of each of the variables discussed in the quality parameters of NLCs, in order to guide future research involving the development of this technology. Graphical Abstract.
Collapse
|
8
|
Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int J Mol Sci 2021; 22:ijms221810104. [PMID: 34576268 PMCID: PMC8466259 DOI: 10.3390/ijms221810104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.
Collapse
|
9
|
Wen Y, Chen S, Yuan Y, Shao Q, He X, Qiao H. A quantitative HPLC method for simultaneous determination of prodrug of voriconazole and voriconazole in beagle plasma, and its application to a toxicokinetic study. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2021.00886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
A simple, rapid, efficient and reproducible method based on High Performance Liquid Chromatography (HPLC) for simultaneous determination of prodrug of voriconazole (POV) and voriconazole in beagle plasma has been established and validated. Omeprazole was utilized as the sole internal standard. Analytes and internal standards were extracted through protein precipitation and separated on a Venusil XBP C18 chromatography column (4.6 × 250 mm, 5 µm). The mobile phase was methanol and 20 mmol/L potassium dihydrogen phosphate. Chromatographic separation was achieved by using an isocratic elution procedure that used 65% methanol and a flow rate of 1 mL/min. The ultraviolet (UV) detection wavelength was 256 nm and the total running time was 15 min. This method showed good linear ranges of 100–75,000 ng/mL for voriconazole prodrug and 200–100,000 ng/mL for voriconazole respectively. The precision and accuracy were acceptable. Analytes in plasma samples are stable under different temperatures and storage conditions. The developed HPLC method has been successfully applied to the studies of toxicokinetics of POV after intravenous drip in beagle and provided important information for the further development and application.
Collapse
Affiliation(s)
- Yufa Wen
- 1 Nanjing Tech University, Nanjing 211816, China
| | - Shuang Chen
- 1 Nanjing Tech University, Nanjing 211816, China
| | - Yanjuan Yuan
- 1 Nanjing Tech University, Nanjing 211816, China
| | - Qing Shao
- 2 Jiangsu Provincial Institute of Materia Medica, Nanjing 211816, China
| | - Xuejun He
- 1 Nanjing Tech University, Nanjing 211816, China
| | - Hongqun Qiao
- 1 Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
10
|
Renzi DF, de Almeida Campos L, Miranda EH, Mainardes RM, Abraham WR, Grigoletto DF, Khalil NM. Nanoparticles as a Tool for Broadening Antifungal Activities. Curr Med Chem 2021; 28:1841-1873. [PMID: 32223729 DOI: 10.2174/0929867327666200330143338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Fungal infections are diseases that are considered neglected although their infection rates have increased worldwide in the last decades. Thus, since the antifungal arsenal is restricted and many strains have shown resistance, new therapeutic alternatives are necessary. Nanoparticles are considered important alternatives to promote drug delivery. In this sense, the objective of the present study was to evaluate the contributions of newly developed nanoparticles to the treatment of fungal infections. Studies have shown that nanoparticles generally improve the biopharmaceutical and pharmacokinetic characteristics of antifungals, which is reflected in a greater pharmacodynamic potential and lower toxicity, as well as the possibility of prolonged action. It also offers the proposition of new routes of administration. Nanotechnology is known to contribute to a new drug delivery system, not only for the control of infectious diseases but for various other diseases as well. In recent years, several studies have emphasized its application in infectious diseases, presenting better alternatives for the treatment of fungal infections.
Collapse
Affiliation(s)
- Daniele Fernanda Renzi
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Eduardo Hösel Miranda
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Diana Fortkamp Grigoletto
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| |
Collapse
|
11
|
Qin T, Dai Z, Xu X, Zhang Z, You X, Sun H, Liu M, Zhu H. Nanosuspension as an Efficient Carrier for Improved Ocular Permeation of Voriconazole. Curr Pharm Biotechnol 2021; 22:245-253. [PMID: 32867650 DOI: 10.2174/1389201021999200820154918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/25/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The present limitations related to the ocular administration of antifungal drugs for the treatment of fungal keratitis include poor ocular bioavailability, limited retention time, and low ocular tissue penetration. METHODS This study aimed to prepare a novel ophthalmic voriconazole-loaded nanosuspension based on Eudragit RS 100. Pharmasolve® was explored as a corneal permeation enhancer in voriconazole ophthalmic formulation using in vitro and in vivo experiments. Briefly, 1% voriconazole-loaded nanosuspension was prepared using the quasi-emulsion solvent evaporation process. RESULTS Characterizations of the voriconazole-loaded nanosuspension by Zetasizer Nano ZS and Transmission Electron Microscope (TEM) showed a uniform spherical shape without any agglomeration. The well-discreted nanoparticle with a size of 138 ± 1.3 nm was achieved with high entrapment efficiency (98.6 ± 2.5%) and positive zeta potential in the range of 22.5-31.2mV, indicating excellent physical stability. DISCUSSION Voriconazole-loaded nanosuspension containing the penetration enhancer displayed good permeability both in vitro and in vivo compared with the commercial voriconazole injection. The voriconazole-loaded nanosuspension exhibited good antifungal activity, significantly inhibiting the growth of Candida albicans at a lower concentration of voriconazole (2.5μg/mL, p < 0.05). CONCLUSION In conclusion, the voriconazole-loaded nanosuspension containing Pharmasolve® can be used as an effective ophthalmic formulation for the topical ocular delivery of voriconazole.
Collapse
Affiliation(s)
- Tang Qin
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhu Dai
- Pharmaceutical Department, Hubei Cancer Hospital, Wuhan, China
| | - Xiaodi Xu
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zilin Zhang
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xiangyu You
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hongmei Sun
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Mingxing Liu
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hongda Zhu
- School of Food and Biological Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| |
Collapse
|
12
|
Nami S, Aghebati-Maleki A, Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI JOURNAL 2021; 20:562-584. [PMID: 33883983 PMCID: PMC8056051 DOI: 10.17179/excli2020-3068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Currently, the significance of fungi as human pathogens is not medically concealed in the world. Consequently, suitable recognition and treatment of such infections are of great importance and necessitate the need for comprehensive information in this regard. The introduction of new antifungals and their use today, especially in the last two decades, have revolutionized the treatment of fungal infections. On the other hand, increasing drug resistance in the world has overshadowed such developments. The use of NPs results in the treatment of fungal infections and owing to their specific properties, these particles, unlike the pure antibiotics, can exert a greater inhibitory power although with less concentration compared with conventional drugs. Important reasons that have led to the use of antifungal drugs in delivery systems include reduced drug efficacy, limited penetration through tissue, poor aqueous solubility, decreased bioavailability, and poor drug pharmacokinetics. It is therefore hoped that unfavorable properties of antifungal drugs be mitigated via their incorporation into different types of NPs. This review summarizes the different types of NPs as delivery systems of antifungal as well as their advantages over pure drugs.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Kaur R, Dennison SR, Burrow AJ, Rudramurthy SM, Swami R, Gorki V, Katare OP, Kaushik A, Singh B, Singh KK. Nebulised surface-active hybrid nanoparticles of voriconazole for pulmonary Aspergillosis demonstrate clathrin-mediated cellular uptake, improved antifungal efficacy and lung retention. J Nanobiotechnology 2021; 19:19. [PMID: 33430888 PMCID: PMC7798018 DOI: 10.1186/s12951-020-00731-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/07/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Incidence of pulmonary aspergillosis is rising worldwide, owing to an increased population of immunocompromised patients. Notable potential of the pulmonary route has been witnessed in antifungal delivery due to distinct advantages of direct lung targeting and first-pass evasion. The current research reports biomimetic surface-active lipid-polymer hybrid (LPH) nanoparticles (NPs) of voriconazole, employing lung-specific lipid, i.e., dipalmitoylphosphatidylcholine and natural biodegradable polymer, i.e., chitosan, to augment its pulmonary deposition and retention, following nebulization. RESULTS The developed nanosystem exhibited a particle size in the range of 228-255 nm and drug entrapment of 45-54.8%. Nebulized microdroplet characterization of NPs dispersion revealed a mean diameter of ≤ 5 μm, corroborating its deep lung deposition potential as determined by next-generation impactor studies. Biophysical interaction of LPH NPs with lipid-monolayers indicated their surface-active potential and ease of intercalation into the pulmonary surfactant membrane at the air-lung interface. Cellular viability and uptake studies demonstrated their cytocompatibility and time-and concentration-dependent uptake in lung-epithelial A549 and Calu-3 cells with clathrin-mediated internalization. Transepithelial electrical resistance experiments established their ability to penetrate tight airway Calu-3 monolayers. Antifungal studies on laboratory strains and clinical isolates depicted their superior efficacy against Aspergillus species. Pharmacokinetic studies revealed nearly 5-, 4- and threefolds enhancement in lung AUC, Tmax, and MRT values, construing significant drug access and retention in lungs. CONCLUSIONS Nebulized LPH NPs were observed as a promising solution to provide effective and safe therapy for the management of pulmonary aspergillosis infection with improved patient compliance and avoidance of systemic side-effects.
Collapse
Affiliation(s)
- Ranjot Kaur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Andrea J Burrow
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | - Rajan Swami
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Varun Gorki
- Department of Zoology, Panjab University, Chandigarh, India, 160 014
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Anupama Kaushik
- Dr SSB University Institute Chem Engineering and Technology, Panjab University, Chandigarh, India, 160 014
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India.
- UGC Centre for Excellence in Nano-Biomedical Applications, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India.
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
- UCLan Research Centre for Smarts Materials, University of Central Lancashire, Preston, PR1 2HE, UK.
- UCLan Research Centre for Drug Design and Development, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
14
|
Silva TV, de Barros NR, Costa-Orlandi CB, Tanaka JL, Moro LG, Pegorin GS, Oliveira KSM, Mendes-Gianinni MJS, Fusco-Almeida AM, Herculano RD. Voriconazole-natural latex dressings for treating infected Candida spp. skin ulcers. Future Microbiol 2020; 15:1439-1452. [DOI: 10.2217/fmb-2020-0122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: This work aimed to develop a membrane based on voriconazole (VCZ)-loaded natural rubber latex (NRL) for treating infected ulcers with Candida spp. and study their interaction, drug release, antifungal activity against Candida parapsilosis and biological characterization. Materials & methods: VCZ-loaded NRL membrane was produced by casting method. Results: Infrared spectrum showed that the incorporation of VCZ into the NRL membrane maintained its characteristics. Its mechanical properties were considered suitable for dermal application. The VCZ was able to release from NRL membrane, maintaining its antifungal activity against C. parapsilosis, besides did not present hemolytic effects. Conclusion: The VCZ-NRL membrane showed good results in mechanical, antifungal and biological assays, representing an interesting alternative to treatment of infected wound with Candida spp.
Collapse
Affiliation(s)
- Thainá V da Silva
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Natan R de Barros
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
- Biochemistry & Chemical Technology Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, São Paulo, Brazil
| | - Caroline B Costa-Orlandi
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Jean L Tanaka
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Lincoln G Moro
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Giovana S Pegorin
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
- Biochemistry & Chemical Technology Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, São Paulo, Brazil
| | - Kassandra SM Oliveira
- Rural Engineering & Socioeconomics Department, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, São Paulo, Brazil
| | - Maria JS Mendes-Gianinni
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Ana M Fusco-Almeida
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Rondinelli D Herculano
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| |
Collapse
|
15
|
Araujo VHS, Duarte JL, Carvalho GC, Silvestre ALP, Fonseca-Santos B, Marena GD, Ribeiro TDC, Dos Santos Ramos MA, Bauab TM, Chorilli M. Nanosystems against candidiasis: a review of studies performed over the last two decades. Crit Rev Microbiol 2020; 46:508-547. [PMID: 32795108 DOI: 10.1080/1040841x.2020.1803208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crescent number of cases of candidiasis and the increase in the number of infections developed by non-albicans species and by multi-resistant strains has taken the attention of the scientific community, which has been searching for new therapeutic alternatives. Among the alternatives found the use of nanosystems for delivery of drugs already commercialized and new biomolecules have grown, in order to increase stability, solubility, optimize efficiency and reduce adverse effects. In view of the growing number of studies involving technological alternatives for the treatment of candidiasis, the present review came with the intention of gathering studies from the last two decades that used nanotechnology for the treatment of candidiasis, as well as analysing them critically and pointing out the future perspectives for their application with this purpose. Different studies were considered for the development of this review, addressing nanosystems such as metallic nanoparticles, mesoporous silica nanoparticles, polymeric nanoparticles, liposomes, nanoemulsion, microemulsion, solid lipid nanoparticle, nanostructured lipid carrier, lipidic nanocapsules and liquid crystals; and different clinical presentations of candidiasis. As a general overview, nanotechnology has proven to be an important ally for the treatment against the diversity of candidiasis found in the clinic, whether in increasing the effectiveness of commercialized drugs and reducing their adverse effects, as well as allowing exploring more effectively properties therapeutics of new biomolecules.
Collapse
Affiliation(s)
- Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tais de Cassia Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
16
|
Natural Ergot Alkaloids in Ocular Pharmacotherapy: Known Molecules for Novel Nanoparticle-Based Delivery Systems. Biomolecules 2020; 10:biom10070980. [PMID: 32630018 PMCID: PMC7408209 DOI: 10.3390/biom10070980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Several pharmacological properties are attributed to ergot alkaloids as a result of their antibacterial, antiproliferative, and antioxidant effects. Although known for their biomedical applications (e.g., for the treatment of glaucoma), most ergot alkaloids exhibit high toxicological risk and may even be lethal to humans and animals. Their pharmacological profile results from the structural similarity between lysergic acid-derived compounds and noradrenalin, dopamine, and serotonin neurotransmitters. To reduce their toxicological risk, while increasing their bioavailability, improved delivery systems were proposed. This review discusses the safety aspects of using ergot alkaloids in ocular pharmacology and proposes the development of lipid and polymeric nanoparticles for the topical administration of these drugs to enhance their therapeutic efficacy for the treatment of glaucoma.
Collapse
|
17
|
Iontophoresis enhances voriconazole antifungal potency and corneal penetration. Int J Pharm 2019; 576:118991. [PMID: 31884059 DOI: 10.1016/j.ijpharm.2019.118991] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Strategies to enhance corneal penetration of voriconazole (VOR) could improve the treatment of fungal keratitis. Here, we evaluated the use of iontophoresis for ocular VOR delivery from either: (i) a cyclodextrin inclusion complex (CD VOR), (ii) a liposome (LP VOR), and (iii) a chitosan-coated liposome (LP VOR CS). LP VOR CS presented mean diameter of 139.2 ± 1.3 nm and zeta potential equal to + 3.3 ± 1.5 mV compared to 134.6 ± 1.7 and -8.2 ± 3.0 mV of LP VOR, which, together with mucin mucoadhesion study, confirmed chitosan-coating. Both drug and liposomal formulations were stable under the influence of an applied electric current. Interestingly, in vitro studies in Candida glabrata culture indicated a decrease in VOR MIC values following iontophoresis (from 0.28 to 0.14 µg/mL). Iontophoresis enhanced drug penetration into the cornea. After 10 min of a 2 mA/cm2 applied current, corneal retained amounts were 45.4 ± 11.2, 30.4 ± 2.1 and 30.6 ± 2.9 µg/cm2 for, respectively, CD VOR, LP VOR, and LP VOR CS. In conclusion, iontophoresis increases drug potency and enhances drug penetration into the cornea, showing potential to be used as "an emergency burst delivery approach".
Collapse
|
18
|
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Emerging Lipid Based Drug Delivery Systems. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02017-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Waghule T, Rapalli VK, Singhvi G, Manchanda P, Hans N, Dubey SK, Hasnain MS, Nayak AK. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Bagde A, Patel K, Mondal A, Kutlehria S, Chowdhury N, Gebeyehu A, Patel N, Kumar N, Singh M. Combination of UVB Absorbing Titanium Dioxide and Quercetin Nanogel for Skin Cancer Chemoprevention. AAPS PharmSciTech 2019; 20:240. [PMID: 31250221 DOI: 10.1208/s12249-019-1424-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
Sunscreens are widely prescribed and used to prevent skin cancer; however, they have been reported to contain various chemicals which mimic hormones and disrupt hormonal functioning in humans. The aim of this study was to develop topical nanogel for skin cancer prevention using an antioxidant compound quercetin (Qu) and inorganic titanium dioxide (TiO2). Two formulations of Qu nanocrystals were optimized with low and high concentration of drug using the Box-Behnken design with the quadratic response surface model and further homogenized with TiO2. Qu nanocrystal (0.08% and 0.12%) formulations showed a particle size of 249.65 ± 2.84 nm and 352.48 ± 3.56 nm with zeta potential of - 14.7 ± 0.41 mV and - 19.6 ± 0.37 mV and drug content of 89.27 ± 1.39% and 90.38 ± 1.81% respectively. Scanning electron microscopy (SEM) images showed rod-shaped nanocrystals with a particle size below 400 nm. Qu (0.08%), Qu (0.12%), Qu (0.12%) + TiO2 (5%), and Qu (0.12%) + TiO2 (15%) nanogels showed over 70% drug release with significantly (p < 0.001) enhanced skin deposition of Qu as compare with Qu suspension within 24 h. The average numbers of tumor, tumor volume, and percentage of animals with tumors at onset in the Qu (0.12%) + TiO2 (15%) nanogel-pretreated group was found to be significantly (p < 0.05) less as compared with the UV only exposed group. Further, Qu (0.12%) + TiO2 (15%) nanogel significantly (p < 0.001) downregulated COX-2, EP3, EP4, PCNA, and cyclin D1 expressions in contrast to Qu and TiO2 only pretreated groups. Therefore, novel combination of Qu (0.12%) + TiO2 (15%) with enhanced skin deposition can be used as a chemopreventive strategy in UVB-induced skin photocarcinogenesis.
Collapse
|
21
|
Santos G, Angelo T, Andrade L, Silva S, Magalhães P, Cunha-Filho M, Gelfuso G, Taveira S, Gratieri T. The role of formulation and follicular pathway in voriconazole cutaneous delivery from liposomes and nanostructured lipid carriers. Colloids Surf B Biointerfaces 2018; 170:341-346. [DOI: 10.1016/j.colsurfb.2018.06.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
|
22
|
Lima MPD, Lopes EM, Gomes LDS, França ARDS, Acha BT, Carvalho ALM, Almeida FRDC. Technological development of microemulsions with perspectives for pain treatment: a patent review. Expert Opin Ther Pat 2018; 28:691-702. [PMID: 30175633 DOI: 10.1080/13543776.2018.1519025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Microemulsions are thermodynamically stable translucent systems widely used for systemic delivery of drugs. The present study is the first to analyze the biotechnological potential of microemulsion systems for therapeutic purposes, through transdermal route, for pain treatment. AREAS COVERED Patents were searched in the World Intellectual Property Organization (WIPO), European Patent Office (Espacenet), United States Patent and Trademark Office (USPTO) and National Institute of Intellectual Property (INPI). The inclusion criteria were published patents containing the keywords; 'microemulsion' and 'transdermal' in their title or abstract. 208 patents were found. However, only those patents which mentioned in their abstract or in their description the use of microemulsion system (object of invention) for pain treatment were selected. Were excluded duplicate patents and those that did not report pharmacological use of MEs specifically for pain treatment. Thus, sixteen patents were selected and described in the present study. EXPERT OPINION Patents were found that focused specifically on the development process of microemulsion systems, the inclusion of essential oils in microemulsions, which place microemulsions as delivery systems for NSAIDs and other substances, as well as microemulsions for transdermal administration. These studies reinforce the therapeutic applicability of MEs in the treatment of acute and chronic pain.
Collapse
Affiliation(s)
| | - Everton Moraes Lopes
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | - Laércio da Silva Gomes
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | - Ana Rita de Sousa França
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | - Boris Timah Acha
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | | | | |
Collapse
|
23
|
Niemirowicz K, Durnaś B, Piktel E, Bucki R. Development of antifungal therapies using nanomaterials. Nanomedicine (Lond) 2017; 12:1891-1905. [DOI: 10.2217/nnm-2017-0052] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The number and diversity of chemical structures currently available as antibacterial drugs is much higher compared with the number of active substances in relation to pathogenic fungi. In this review we focus on nanotechnology approaches, which offer promising strategies to create nanoagents that possess broad-spectrum antifungal activity and might overcome mechanisms of antibiotic resistance. Special attention was given to magnetic nanoparticles and their ability to restrict fungal growth directly, which depends on surface chemistry and pathogen strains. We speculate that future developments of new antifungal methods will take advantage of the current knowledge of using of magnetic nanomaterials as anticancer agents based on their ability to induce hyperthermia and enhance photosensitizing processes.
Collapse
Affiliation(s)
- Katarzyna Niemirowicz
- Department of Microbiological & Nanobiomedical Engineering, Medical University of Białystok, 15–222 Białystok, Poland
| | - Bonita Durnaś
- Department Microbiology & Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, 25–317 Kielce, Poland
| | - Ewelina Piktel
- Department of Microbiological & Nanobiomedical Engineering, Medical University of Białystok, 15–222 Białystok, Poland
| | - Robert Bucki
- Department of Microbiological & Nanobiomedical Engineering, Medical University of Białystok, 15–222 Białystok, Poland
| |
Collapse
|
24
|
Approaches in topical ocular drug delivery and developments in the use of contact lenses as drug-delivery devices. Ther Deliv 2017. [DOI: 10.4155/tde-2017-0018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drug-delivery approaches have diversified over the last two decades with the emergence of nanotechnologies, smart polymeric systems and multimodal functionalities. The intended target for specific treatment of disease is the key defining developing parameter. One such area which has undergone significant advancements relates to ocular delivery. This has been expedited by the development of material advancement, mechanistic concepts and through the deployment of advanced process technologies. This review will focus on the developments within lens-based drug delivery while touching on conventional and current methods of topical ocular drug delivery. A summary table will provide quick reference to note the key findings in this area. In addition, the review also elucidates current theranostic and diagnostic approaches based on ocular lenses.
Collapse
|