1
|
Liang D, Li F, Duan J, Sun W, Yu X. Two Novel Hydrate Salts of Norfloxacin with Phenolic Acids and Their Physicochemical Properties. Antibiotics (Basel) 2024; 13:888. [PMID: 39335061 PMCID: PMC11429011 DOI: 10.3390/antibiotics13090888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Norfloxacin (NORF) is a broad-spectrum quinolone that is widely utilized for the treatment of various bacterial infections and is considered one of the most commonly used fluoroquinolone antibiotics. However, NORF's clinical utility is limited by its poor water solubility and relatively low oral bioavailability. This study presents an optimization and synergistic enhancement approach through salt/co-crystal, aiming to maximize the biopharmaceutical properties of NORF with the use of phenolic acid. Following this strategy, two new hydrate salts of NORF with phenolic acid, namely, NORF-3,5-DBA hydrate (salt 1) and NORF-VA hydrate (salt 2), were prepared and systematically confirmed. Two hydrate salts were produced by means of the slow evaporation crystallization method, and the structures were determined through single-crystal X-ray diffraction (SCXRD). Additionally, powder X-ray diffraction (PXRD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and high-performance liquid chromatography (HPLC) were applied to analyze the features of the two salts. The experimental results indicated that the formation of the two salts could enhance the solubility and improve the release behavior of NORF. Interestingly, the physicochemical properties of NORF were significantly improved as a result, leading to an enhancement in its antibacterial activity. This was demonstrated by the enhanced inhibition of bacterial strains and the lower minimum inhibitory concentration values.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoyan Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.L.); (F.L.); (J.D.); (W.S.)
| |
Collapse
|
2
|
Solid Form and Phase Transformation Properties of Fexofenadine Hydrochloride during Wet Granulation Process. Pharmaceutics 2021; 13:pharmaceutics13060802. [PMID: 34072083 PMCID: PMC8229471 DOI: 10.3390/pharmaceutics13060802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
The quality control of drug products during manufacturing processes is important, particularly the presence of different polymorphic forms in active pharmaceutical ingredients (APIs) during production, which could affect the performance of the formulated products. The objective of this study was to investigate the phase transformation of fexofenadine hydrochloride (FXD) and its influence on the quality and performance of the drug. Water addition was key controlling factor for the polymorphic conversion from Form I to Form II (hydrate) during the wet granulation process of FXD. Water-induced phase transformation of FXD was studied and quantified with XRD and thermal analysis. When FXD was mixed with water, it rapidly converted to Form II, while the conversion is retarded when FXD is formulated with excipients. In addition, the conversion was totally inhibited when the water content was <15% w/w. The relationship between phase transformation and water content was studied at the small scale, and it was also applicable for the scale-up during wet granulation. The effect of phase transition on the FXD tablet performance was investigated by evaluating granule characterization and dissolution behavior. It was shown that, during the transition, the dissolved FXD acted as a binder to improve the properties of granules, such as density and flowability. However, if the water was over added, it can lead to the incomplete release of the FXD during dissolution. In order to balance the quality attributes and the dissolution of granules, the phase transition of FXD and the water amount added should be controlled during wet granulation.
Collapse
|
3
|
Seoane RG, Garcia-Recio V, Garrosa M, Rojo MÁ, Jiménez P, Girbés T, Cordoba-Diaz M, Cordoba-Diaz D. Human Health Effects of Lactose Consumption as a Food and Drug Ingredient. Curr Pharm Des 2020; 26:1778-1789. [PMID: 32048961 DOI: 10.2174/1381612826666200212114843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
Abstract
Lactose is a reducing sugar consisting of galactose and glucose, linked by a β (1→4) glycosidic bond, considered as an antioxidant due to its α-hydroxycarbonyl group. Lactose is widely ingested through the milk and other unfermented dairy products and is considered to be one of the primary foods. On the other hand, lactose is also considered as one of the most widely used excipients for the development of pharmaceutical formulations. In this sense, lactose has been related to numerous drug-excipient or drug-food pharmacokinetic interactions. Intolerance, maldigestion and malabsorption of carbohydrates are common disorders in clinical practice, with lactose-intolerance being the most frequently diagnosed, afflicting 10% of the world's population. Four clinical subtypes of lactose intolerance may be distinguished, namely lactase deficiency in premature infants, congenital lactase deficiency, adult-type hypolactasia and secondary lactase intolerance. An overview of the main uses of lactose in human nutrition and in the pharmaceutical industry and the problems derived from this circumstance are described in this review.
Collapse
Affiliation(s)
- Rafael G Seoane
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Verónica Garcia-Recio
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Manuel Garrosa
- Area of Histology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain
| | - María Á Rojo
- Area of Experimental Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain
| | - Pilar Jiménez
- Area of Nutrition and Food Sciences, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Tomás Girbés
- Area of Nutrition and Food Sciences, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Manuel Cordoba-Diaz
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.,University Institute of Industrial Pharmacy (IUFI), Complutense University of Madrid, 28040 Madrid, Spain
| | - Damián Cordoba-Diaz
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.,University Institute of Industrial Pharmacy (IUFI), Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Xu J, Gong XF, Li P, Chen XF, Wang HP, Ning LF. Mifepristone polymorph with enhanced solubility, dissolution and oral bioavailability. Steroids 2020; 159:108649. [PMID: 32389717 DOI: 10.1016/j.steroids.2020.108649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Mifepristone is one of potent anti-progesterone agents, which binds to progesterone receptors and glucocorticoid receptors. Until now, there are a lot of research focusing on enhancing the solubility and oral bioavailability of Mifepristone. However, poor solubility and oral bioavailability has some undesirable consequences. In this work, Mifepristone in form D was discovered for the first time and characterized by PXRD, TGA, DSC, FT-IR, SEM and SS NMR. Form D was a metastable crystal type which manifested favorable stability under ambient conditions. Form D had better dissolution characteristic compared with commercial Mifepristone in 0.5% SDS solution. In addition, Mifepristone in form D exhibited a 1.43-fold higher peak plasma concentration (Cmax) and 1.46-fold higher area under the curve (AUC) in rats. The work in this paper is a complement to the present understanding of drug polymorphism on the in vitro and in vivo behavior, and establishes the ground work for future development of Mifepristone in form D as a promising drug for the market.
Collapse
Affiliation(s)
- Juan Xu
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Xiao-Fang Gong
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Peng Li
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Xiao-Feng Chen
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Hui-Ping Wang
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Li-Feng Ning
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China.
| |
Collapse
|
5
|
Guo W, Li C, Du P, Wang Y, Zhao S, Wang J, Yang C. Thermal properties of drug polymorphs: A case study with felodipine form I and form IV. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Mazurek AH, Szeleszczuk Ł, Pisklak DM. Periodic DFT Calculations-Review of Applications in the Pharmaceutical Sciences. Pharmaceutics 2020; 12:E415. [PMID: 32369915 PMCID: PMC7284980 DOI: 10.3390/pharmaceutics12050415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
In the introduction to this review the complex chemistry of solid-state pharmaceutical compounds is summarized. It is also explained why the density functional theory (DFT) periodic calculations became recently so popular in studying the solid APIs (active pharmaceutical ingredients). Further, the most popular programs enabling DFT periodic calculations are presented and compared. Subsequently, on the large number of examples, the applications of such calculations in pharmaceutical sciences are discussed. The mentioned topics include, among others, validation of the experimentally obtained crystal structures and crystal structure prediction, insight into crystallization and solvation processes, development of new polymorph synthesis ways, and formulation techniques as well as application of the periodic DFT calculations in the drug analysis.
Collapse
Affiliation(s)
| | - Łukasz Szeleszczuk
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (A.H.M.); (D.M.P.)
| | | |
Collapse
|
7
|
Surov AO, Vasilev NA, Voronin AP, Churakov AV, Emmerling F, Perlovich GL. Ciprofloxacin salts with benzoic acid derivatives: structural aspects, solid-state properties and solubility performance. CrystEngComm 2020. [DOI: 10.1039/d0ce00514b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, three new pharmaceutical hydrated salts of ciprofloxacin with selected derivatives of benzoic acid were obtained and systematically investigated by several solid-state analytical techniques.
Collapse
Affiliation(s)
- Artem O. Surov
- G.A. Krestov Institute of Solution Chemistry RAS
- Ivanovo
- Russia
| | | | | | | | - Franziska Emmerling
- Federal Institute for Materials Research and Testing (BAM)
- 12489 Berlin
- Germany
| | | |
Collapse
|
8
|
Gong N, Yang D, Jin G, Liu S, Du G, Lu Y. Structure, characterization, solubility and stability of podophyllotoxin polymorphs. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Rietveld IB, Barrio M, Lloveras P, Céolin R, Tamarit JL. Polymorphism of spironolactone: An unprecedented case of monotropy turning to enantiotropy with a huge difference in the melting temperatures. Int J Pharm 2018; 552:193-205. [DOI: 10.1016/j.ijpharm.2018.09.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|