1
|
De Souter L, Nitert BJ, Waeytens R, Kumar A, De Beer T. The effect of material properties and process parameters on die filling at varying throughputs: A PLS-model-based analysis. Int J Pharm 2024; 661:124357. [PMID: 38897490 DOI: 10.1016/j.ijpharm.2024.124357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
When tablets are manufactured on a rotary tablet press and the throughput is increased, it leads to changes in powder dynamics during die filling due to formulation characteristics and changing powder flow in the feed frame. This may result, a.o. in increased tablet weight variability, poorer content uniformity, capping and lamination. This research focuses on explaining the die filling performance depending on material properties and process settings, including throughput for small and large tablets. It was concluded that throughput had a negative impact on die filling variability, which is related to reduced residence time and lower fill fraction of the feed frame and dies. Furthermore, the die filling mechanism was inherently different for large tablets in comparison to small tablets. Higher die filling consistency was observed for dense, less porous, less compressible and better flowing powders. As a result of this work, a model was developed to predict the impact of formulation properties and process settings on die filling variability and its dependency on changes in throughput. This model will benefit formulation development at an early stage when active ingredient availability may be challenging as it will avoid the need to conduct experiments at high throughputs.
Collapse
Affiliation(s)
- L De Souter
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium
| | - B J Nitert
- Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - R Waeytens
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium; BIOMATH, Department of Mathematical Modelling, Statistics and Bio-informatics, Ghent University, Belgium
| | - A Kumar
- Pharmaceutical Engineering Research Group, Ghent University, Belgium
| | - T De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium.
| |
Collapse
|
2
|
De Man A, De Souter L, Shi Z, Mao C, De Beer T. Evaluating the Improvement of Blend Potency Measurements in the Feed Frame of a Rotary Tablet Press Using Combined NIR and Raman Spectroscopy. Anal Chem 2024; 96:10586-10593. [PMID: 38887018 DOI: 10.1021/acs.analchem.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This study investigated the added value of combining both near-infrared (NIR) and Raman spectroscopy into a single NIRaman Combi Fiber Probe for in-line blend potency determination in the feed frame of a rotary tablet press. A five-component platform formulation was used, containing acetylsalicylic acid as the Active Pharmaceutical Ingredient (API). Calibration models for the determination of 1 and 5%w/w label claim tablets were developed using NIR and Raman spectra of powder blends ranging from 0.75 to 1.25%w/w and 3.75 to 6.25%w/w API, respectively. Step-change experiments with deliberate 10% deviation steps from the label claims were performed, from which the collected spectra were used for model validation. For model development and validation, low-level data fusion was explored through concatenation of preprocessed NIR and Raman spectra. Mid-level data fusion was also evaluated, based on extracted features of the preprocessed data. Herewith, score vectors were extracted by transforming preprocessed spectra through Principal Component Analysis, followed by critical feature selection through Elastic Net Regression. Partial Least Squares regression was applied to regress singular, low-level or mid-level fused data versus blend potency. It could be concluded that irrespective of the data fusion technique, an increase in Step-Change Sensitivity (SCS) and decrease in Root Mean Squared Error (RMSE) was observed when predicting the 5%w/w step-change experiment. For the prediction of the 1%w/w step-change experiment, no added benefit with regard to SCS and RMSE was observed due to the addition of the noisy NIR spectra.
Collapse
Affiliation(s)
- Alexander De Man
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Lisa De Souter
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Zhenqi Shi
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Chen Mao
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Ozon EA, Mati E, Karampelas O, Anuta V, Sarbu I, Musuc AM, Mitran RA, Culita DC, Atkinson I, Anastasescu M, Lupuliasa D, Mitu MA. The development of an innovative method to improve the dissolution performance of rivaroxaban. Heliyon 2024; 10:e33162. [PMID: 39021978 PMCID: PMC11253053 DOI: 10.1016/j.heliyon.2024.e33162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Recent advancements in the formulation of solid dosage forms involving active ingredient-cyclodextrin complexes have garnered considerable attention in pharmaceutical research. While previous studies predominantly focused on incorporating these complexes into solid states, issues regarding incomplete inclusion prompted the exploration of novel methods. In this study, we aimed to develop an innovative approach to integrate liquid-state drug-cyclodextrin inclusion complexes into solid dosage forms. Our investigation centered on rivaroxaban, a hydrophobic compound practically insoluble in water, included in hydroxypropyl-β-cyclodextrin at a 1:1 M ratio, and maintained in a liquid state. To enhance viscosity, hydroxypropyl-cellulose (2 % w/w) was introduced, and the resulting dispersion was sprayed onto the surface of cellulose pellets (CELLETS®780) using a Caleva Mini Coater. The process parameters were meticulously controlled, with atomization air pressure set at 1.1 atm and a fluidizing airflow maintained at 35-45 m3/h. Characterization of the coated cellets, alongside raw materials, was conducted using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) analyses. Physicochemical evaluations affirmed the successful incorporation of rivaroxaban into hydroxypropyl-β-cyclodextrin, with the final cellets demonstrating excellent flowability, compressibility, and adequate hardness. Quantitative analysis via the HPLC-DAD method confirmed a drug loading of 10 mg rivaroxaban/750 mg coated cellets. In vitro dissolution studies were performed in two distinct media: 0.022 M sodium acetate buffer pH 4.5 with 0.2 % sodium dodecyl sulfate (mirroring compendial conditions for 10 mg rivaroxaban tablets), and 0.05 M phosphate buffer pH 6.8 without surfactants, compared to reference capsules and conventional tablet formulations. The experimental capsules exhibited similar release profiles to the commercial product, Xarelto® 10 mg, with enhanced dissolution rates observed within the initial 10 min. This research presents a significant advancement in the development of solid dosage forms incorporating liquid-state drug-cyclodextrin inclusion complexes, offering a promising avenue for improving drug delivery and bioavailability.
Collapse
Affiliation(s)
- Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Erand Mati
- "Titu Maiorescu" University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 16 Sincai Boulevard, 040314, Bucharest, Romania
| | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Valentina Anuta
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Iulian Sarbu
- "Titu Maiorescu" University, Faculty of Pharmacy, Department of Pharmaceutical Physics and Biophysics, Drug Industry and Pharmaceutical Biotechnologies, 16 Sincai Boulevard, 040314, Bucharest, Romania
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Raul-Augustin Mitran
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Daniela C. Culita
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Irina Atkinson
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Mihai Anastasescu
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Mirela Adriana Mitu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| |
Collapse
|
4
|
Waněk A, Menarini L, Giatti F, Kubelka T, Consoli F, Funaro C, Stasiak P, Štěpánek F. Manufacturing process transfer to a 30 kg/h continuous direct compression line with real-time composition monitoring. Int J Pharm 2024; 656:124100. [PMID: 38609059 DOI: 10.1016/j.ijpharm.2024.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Transferring an existing marketed pharmaceutical product from batch to continuous manufacturing (CM) without changes in regulatory registration is a challenging task in the pharmaceutical industry. Continuous manufacturing can provide an increased production rate and better equipment utilisation while retaining key quality attributes of the final product. Continuous manufacturing necessitates the monitoring of critical quality attributes in real time by appropriate process analytical tools such as near infra-red (NIR) probes. The present work reports a successful transfer of an existing drug product from batch to continuous manufacturing process without changing the formulation. A key step was continuous powder blending, whose design and operating parameters including weir type, agitation rate, dynamic hold-up and residence time were systematically investigated with respect to process repeatability. A NIR-based multivariate data model for in-line composition monitoring has been developed and validated against an existing quality control method for measuring tablet content uniformity. A continuous manufacturing long-run with a throughput of 30 kg/h (approx. 128,000 tablets per hour), uninterrupted for 320 min, has been performed to test and validate the multivariate data model as well as the batch to continuous process transfer. The final disintegration and dissolution properties of tablets manufactured by the continuous process were found to be equivalent to those manufactured by the original batch process.
Collapse
Affiliation(s)
- Adam Waněk
- Zentiva, k.s., U Kabelovny 130, Prague 10, Czech Republic; Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, Prague 6, Czech Republic
| | | | | | - Tomáš Kubelka
- Zentiva, k.s., U Kabelovny 130, Prague 10, Czech Republic
| | | | | | - Pawel Stasiak
- Zentiva, k.s., U Kabelovny 130, Prague 10, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, Prague 6, Czech Republic.
| |
Collapse
|
5
|
Brands R, Tebart N, Thommes M, Bartsch J. UV/Vis spectroscopy as an in-line monitoring tool for tablet content uniformity. J Pharm Biomed Anal 2023; 236:115721. [PMID: 37769525 DOI: 10.1016/j.jpba.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Continuous manufacturing provides advantages compared to batch manufacturing and is increasingly gaining importance in the pharmaceutical industry. In particular, the implementation of tablet processes in continuous plants is an important part of current research. For this, in-line real-time monitoring of product quality through process analytical technology (PAT) tools is crucial. This study focuses on an in-line UV/Vis spectroscopy method for monitoring the active pharmaceutical ingredient (API) content in tablets. UV/Vis spectroscopy is particularly advantageous here, because it allows univariate data analysis without complex data processing. Experiments were conducted on a rotary tablet press. The tablets consisted of 7- 13 wt% theophylline monohydrate as API, lactose monohydrate and magnesium stearate. Two tablet production rates were investigated, 7200 and 20000 tablets per hour. The UV/Vis probe was mounted at the ejection position and measurements were taken on the tablet sidewall. Validation was according to ICH Q2 with respect to specificity, linearity, precision, accuracy and range. The specificity for this formulation was proven and linearity was sufficient with coefficients of determination of 0.9891 for the low throughput and 0.9936 for the high throughput. Repeatability and intermediate precision were investigated. Both were sufficient, indicated by coefficients of variations with a maximum of 6.46% and 6.34%, respectively. The accuracy was evaluated by mean percent recovery. This showed a higher accuracy at 20000 tablets per hour than 7200 tablets per hour. However, both throughputs demonstrate sufficient accuracy. Finally, UV/Vis spectroscopy is a promising alternative to the common NIR and Raman Spectroscopy.
Collapse
Affiliation(s)
- René Brands
- Laboratory of Solids Process Engineering, TU Dortmund University, Emil-Figge-Straße 68, Dortmund 44227, DE, Germany
| | - Noah Tebart
- Laboratory of Solids Process Engineering, TU Dortmund University, Emil-Figge-Straße 68, Dortmund 44227, DE, Germany
| | - Markus Thommes
- Laboratory of Solids Process Engineering, TU Dortmund University, Emil-Figge-Straße 68, Dortmund 44227, DE, Germany
| | - Jens Bartsch
- Laboratory of Solids Process Engineering, TU Dortmund University, Emil-Figge-Straße 68, Dortmund 44227, DE, Germany.
| |
Collapse
|
6
|
Peeters M, Peeters E, Van Hauwermeiren D, Cogoni G, De Beer T. Effect of process parameters and formulation properties on the lead-lag between in-line NIR tablet press feed frame and off-line NIR tablet measurements. Eur J Pharm Biopharm 2023; 189:251-263. [PMID: 37356638 DOI: 10.1016/j.ejpb.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The use of in-line near-infrared (NIR) measurements for tablet potency monitoring and diversion was studied. First, the optimal sample size for in-line NIR measurements inside the feed chute and the dosing and filling chamber of the tablet press feed frame was determined to allow proper comparison between these different measurement positions. Because of the considerably longer measurement time needed to obtain the same sample size inside the feed chute compared to the feed frame, the possibility of powder segregation inside the feed chute and the additional powder mixing inside the feed frame, the latter is preferred over the feed chute for in-line blend potency monitoring. Next, a design of experiments (DoE) was performed to evaluate the effect of paddle speed, turret speed, overfill level and formulation properties upon the lead-lag and the time it takes before the powder blend that is expelled at the dosing station is measured by the NIR inside the dosing chamber. Lead-lag is defined as the difference in time and API concentration between the measured in-line NIR response inside the filling chamber of the feed frame and the off-line NIR tablet response. Paddle speed and turret speed were the only compression parameters affecting lead-lag. Lead-lag decreased with increasing paddle speed for the first formulation. For the second formulation, lead-lag decreased with decreasing paddle speed and/or increasing turret speed. Formulation properties did not have an effect on the lead-lag. The in-line NIR response inside the dosing chamber of the feed frame was found to be closely following the tablet NIR response. Therefore, the dosing chamber could be used as an additional in-line NIR position for tablet potency monitoring and diversion. It can provide an extra layer of confidence about the final tablet quality. To demonstrate this potential benefit of simultaneous in-line NIR measurements inside the filling and dosing chamber of the feed frame, a tableting experiment was performed where a surrogate API spike was introduced into the product stream to mimic a potential process disturbance. The in-line NIR measurements inside the filling chamber allow diverting tablets in-time when the blend potency crosses the predefined control limits. And because the NIR response inside the dosing chamber closely follows the tablet NIR response, tablet diversion can discontinue when the blend potency inside the dosing chamber is again within the control limits. This could increase the yield of the tableting process by avoiding a longer than needed wash-out period and rejecting tablets that meet the release limits.
Collapse
Affiliation(s)
- Michiel Peeters
- Ghent University, Laboratory of Pharmaceutical Process Analytical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Elisabeth Peeters
- Pfizer Inc., Worldwide Research and Development, ARD, Eastern Point Road, Groton, CT 06340, USA
| | - Daan Van Hauwermeiren
- Ghent University, BIOMATH, Department of Data Analysis and Mathematical Modelling, Coupure Links 653, 9000 Ghent, Belgium
| | - Giuseppe Cogoni
- Pfizer Inc., Worldwide Research and Development, ARD, Eastern Point Road, Groton, CT 06340, USA
| | - Thomas De Beer
- Ghent University, Laboratory of Pharmaceutical Process Analytical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Yang TL, Szewc J, Zhong L, Leonova A, Giebułtowicz J, Habashy R, Isreb A, Alhnan MA. The Use of Near-infrared as Process Analytical Technology (PAT) during 3D Printing Tablets at the Point-of-Care. Int J Pharm 2023:123073. [PMID: 37230372 DOI: 10.1016/j.ijpharm.2023.123073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Fused deposition modelling (FDM) is one of the most researched 3D printing technologies that holds great potential for low-cost manufacturing of personalised medicine. To achieve real-time release, timely quality control is a major challenge for applying 3D printing technologies as a point-of-care (PoC) manufacturing approach. This work proposes the use of a low-cost and compact near-infrared (NIR) spectroscopy modality as a process analytical technology (PAT) to monitor a critical quality attribute (drug content) during and after FDM 3D printing process. 3D printed caffeine tablets were used to manifest the feasibility of the NIR model as a quantitative analytical procedure and dose verification method. Caffeine tablets (0-40% w/w) were fabricated using polyvinyl alcohol and FDM 3D printing. The predictive performance of the NIR model was demonstrated in linearity (correlation coefficient, R2) and accuracy (root mean square error of prediction, RMSEP). The actual drug content values were determined using the reference high-performance liquid chromatography (HPLC) method. The model of full-completion caffeine tablets demonstrated linearity (R2 = 0.985) and accuracy (RMSEP =1.4%), indicated to be an alternative dose quantitation method for 3D printed products. The ability of the models to assess caffeine contents during the 3D printing process could not be accurately achieved using the model built with complete tablets. Instead, by building a predictive model for each completion stage of 20%, 40%, 60% and 80%, the model of different completion caffeine tablets displayed linearity (R2 of 0.991, 0.99, 0.987, and 0.983) and accuracy (RMSEP of 2.22%, 1.65%, 1.41%, 0.83%), respectively. Overall, this study demonstrated the feasibility of a low NIR model as a non-destructive, low-cost, compact, and rapid analysis dose verification method enabling the real-time release to facilitate 3D printing medicine production in the clinic.
Collapse
Affiliation(s)
- Tzuyi L Yang
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Jakub Szewc
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Lingu Zhong
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Anna Leonova
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Joanna Giebułtowicz
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | | | - Abdullah Isreb
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
| |
Collapse
|
8
|
Rosas JG, Brush P, Thompson B, Miller C, Overton P, Tugby N, Stoliarskaia D, Hurley S, Ramasamy M, Conway SL. Implementation of a fully integrated CM direct compression and coating process at a commercial pharmaceutical facility - Part 2: PAT and RTD results for normal operational conditions batches. Int J Pharm 2023; 636:122814. [PMID: 36918116 DOI: 10.1016/j.ijpharm.2023.122814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
This is the second of two articles detailing the continuous manufacturing (CM) development and implementation activities for an marketed product which have been realized in novel, qualified equipment, using validated control strategy elements to enable manufacture of batches under current good manufacturing practices (cGMP) and compliant with data integrity principles. Here, the application of process analytical technologies (PAT) and automation tools on batches produced under normal operational conditions is reviewed. The results from residence time distribution (RTD) models for predicting API concentration, in-line near infrared (NIR) testing of blend uniformity (BU) and at-line NIR spectroscopy analysis of core tablet concentration and tablet identity for real-time release testing (RTRT) are discussed. The influences of process equipment and design choices on NIR and RTD model variability, as well as the use of the PAT tools for monitoring the evolving properties understanding of CM process development, such as overcoming flow instabilities, is described. Results demonstrate that the RTD and NIR models developed and validated are robust to operating conditions and are critical for assuring steady state control of the continuous manufacturing process. Finally, the NIR and RTD model lifecycle, including procedures for necessary and normal model upgrades in a cGMP production environment, are presented.
Collapse
Affiliation(s)
- Juan G Rosas
- MSD, Pharmaceutical Technical Operations PAT, UK.
| | - Peter Brush
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | - Bruce Thompson
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | - Charles Miller
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | | | - Neil Tugby
- MSD, Pharmaceutical Technical Operations, UK
| | | | - Samantha Hurley
- Merck & Co. Inc, Pharmaceutical Commercialization Technology, United States
| | - Manoharan Ramasamy
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | | |
Collapse
|
9
|
Biancolillo A, Scappaticci C, Foschi M, Rossini C, Marini F. Coupling of NIR Spectroscopy and Chemometrics for the Quantification of Dexamethasone in Pharmaceutical Formulations. Pharmaceuticals (Basel) 2023; 16:309. [PMID: 37259451 PMCID: PMC9961082 DOI: 10.3390/ph16020309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 11/07/2023] Open
Abstract
Counterfeit or substandard drugs are pharmaceutical formulations in which the active pharmaceutical ingredients (APIs) have been replaced or ingredients do not comply with the drug leaflet. With the outbreak of the COVID-19 pandemic, fraud associated with the preparation of substandard or counterfeit drugs is expected to grow, undermining health systems already weakened by the state of emergency. Analytical chemistry plays a key role in tackling this problem, and in implementing strategies that permit the recognition of uncompliant drugs. In light of this, the present work represents a feasibility study for the development of a NIR-based tool for the quantification of dexamethasone in mixtures of excipients (starch and lactose). Two different regression strategies were tested. The first, based on the coupling of NIR spectra and Partial Least Squares (PLS) provided good results (root mean square error in prediction (RMSEP) of 720 mg/kg), but the most accurate was the second, a strategy exploiting sequential preprocessing through orthogonalization (SPORT), which led (on the external set of mixtures) to an R2pred of 0.9044, and an RMSEP of 450 mg/kg. Eventually, Variable Importance in Projection (VIP) was applied to interpret the obtained results and determine which spectral regions contribute most to the SPORT model.
Collapse
Affiliation(s)
- Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio snc, Coppito, 67100 L’Aquila, Italy
| | - Claudia Scappaticci
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio snc, Coppito, 67100 L’Aquila, Italy
| | - Martina Foschi
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio snc, Coppito, 67100 L’Aquila, Italy
| | - Claudia Rossini
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federico Marini
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
10
|
Ferdoush S, Gonzalez M. Semi-mechanistic reduced order model of pharmaceutical tablet dissolution for enabling Industry 4.0 manufacturing systems. Int J Pharm 2023; 631:122502. [PMID: 36529354 PMCID: PMC10759183 DOI: 10.1016/j.ijpharm.2022.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
We propose a generalization of the Weibull dissolution model, referred to as generalized Weibull dissolution model, that seamlessly captures all three fractional dissolution rates experimentally observed in pharmaceutical solid tablets, namely decreasing, increasing, and non-monotonic rates. This is in contrast to traditional reduced order models, which capture at most two fractional dissolution rates and, thus, are not suitable for a wide range of product formulations hindering, for example, the adoption of knowledge management in the context of Industry 4.0. We extend the generalized Weibull dissolution model further to capture the relationship between critical process parameters (CPPs), critical materials attributes (CMAs), and dissolution profile to, in turn, facilitate real-time release testing (RTRT) and quality-by-control (QbC) strategies. Specifically, we endow the model with multivariate rational polynomials that interpolate the mechanistic limiting behavior of tablet dissolution as CPPs and CMAs approach certain values of physical significance (such as the upper and lower bounds of tablet porosity or lubrication conditions), thus the semi-mechanistic nature of the reduced order model. Restricting attention to direct compaction and using various case studies from the literature, we demonstrate the versatility and the capability of the semi-mechanistic ROM to estimate changes in dissolution due to process disturbances in tablet weight, porosity, lubrication conditions (i.e., the total amount of shear strain imparted during blending), and moisture content in the powder blend. In all of the cases considered in this work, the estimations of the model are in remarkable agreement with experimental data.
Collapse
Affiliation(s)
- Shumaiya Ferdoush
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
11
|
Blue LE, Guan X, Joubert MK, Kuhns ST, Moore S, Semin DJ, Wikström M, Wypych J, Goudar CT. State-of-the-art and emerging trends in analytical approaches to pharmaceutical-product commercialization. Curr Opin Biotechnol 2022; 78:102800. [PMID: 36182871 DOI: 10.1016/j.copbio.2022.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
The biopharmaceutical landscape continues to evolve rapidly, and associated modality complexity and the need to improve molecular understanding require concomitant advances in analytical approaches used to characterize and release the product. The Product Quality Attribute Assessment (PQAA) and Quality Target Product Profile (QTPP) frameworks help catalog and translate molecular understanding to process and product-design targets, thereby enabling reliable manufacturing of high-quality product. The analytical target profile forms the basis of identifying best-fit analytical methods for attribute measurement and continues to be successfully used to develop robust analytical methods for detailed product characterization as well as release and stability testing. Despite maturity across multiple testing platforms, advances continue to be made, several with the potential to alter testing paradigms. There is an increasing role for mass spectrometry beyond product characterization and into routine release testing as seen by the progress in multi-attribute methods and technologies, applications to aggregate measurement, the development of capillary zone electrophoresis (CZE) coupled with mass spectrometry (MS) and capillary isoelectric focusing (CIEF) with MS for measurement of glycans and charged species, respectively, and increased application to host cell protein measurement. Multitarget engaging multispecific modalities will drive advances in bioassay platforms and recent advances both in 1- and 2-D NMR approaches could make it the method of choice for characterizing higher-order structures. Additionally, rigorous understanding of raw material and container attributes is necessary to complement product understanding, and these collectively can enable robust supply of high-quality product to patients.
Collapse
Affiliation(s)
- Laura E Blue
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Xiaoyan Guan
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Marisa K Joubert
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Scott T Kuhns
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Stephanie Moore
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Mats Wikström
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Jette Wypych
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Chetan T Goudar
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
12
|
De Pauw E, Vervaet C, Vanhoorne V. Formation of delta-mannitol by co-spray drying: enhancing the tabletability of paracetamol/mannitol formulations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Parameter optimization in a continuous direct compression process of commercially batch-produced bisoprolol tablets. Int J Pharm 2022; 628:122355. [DOI: 10.1016/j.ijpharm.2022.122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
14
|
Robert G, Dalvi H, Lavoie FB, Abatzoglou N, Gosselin R. Pharmaceutical tablet compression: measuring temporal and radial concentration profiles to better assess segregation. Pharm Dev Technol 2022; 27:448-458. [PMID: 35583396 DOI: 10.1080/10837450.2022.2078348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Concentration monitoring inside a tablet press feed frame is important not only to assess the composition of the powder blend being compressed into tablets but also to detect quality affecting phenomena such as powder segregation. Near infrared spectroscopy has been successfully used to monitor powder concentration inside feed frame; however, so far, this methodology does not provide information on local spatial variability, since it probes a very small area of powder sample. Near infrared chemical imaging (NIR CI) has the potential to improve process monitoring because it can simultaneously acquire a plurality of spectra covering nearly the entire width of feed frame, thereby making it possible to detect local variations in powder concentration.The present work uses both NIRS and NIR CI to monitor the concentration of Ibuprofen and Ascorbic acid in multi-component mock pharmaceutical blends flowing through the feed frame of an industrial tablet press. The concentrations of Ibuprofen and Ascorbic acid were successfully monitored in multi-component powder blends. NIR spectral wavelength ranges and pre-treatments were simultaneously optimized via a genetic algorithm. N-way PLS approach for concentration monitoring was found to be more suitable than regular PLS when analyzing spectral images and provided the ability to visualize spatial segregation.
Collapse
Affiliation(s)
- Giverny Robert
- Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Himmat Dalvi
- Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Francis B Lavoie
- Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Abatzoglou
- Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ryan Gosselin
- Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
15
|
Wulandari L, Idroes R, Noviandy TR, Indrayanto G. Application of chemometrics using direct spectroscopic methods as a QC tool in pharmaceutical industry and their validation. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2022; 47:327-379. [PMID: 35396015 DOI: 10.1016/bs.podrm.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This present review described the application of chemometrics using direct spectroscopic methods at the quality control (QC) laboratory of Pharmaceutical Industries. Using chemometrics methods, all QC assessments during the fabrication processes of the drug preparations can be well performed. Chemometrics methods have some advantages compared to the conventional methods, i.e., non-destructive, can be performed directly to intake samples without any extractions, unnecessary performing stability studies, and cost-effective. To achieve reliable results of analyses, all methods must be validated first prior to routine applications. According to the current Pharmacopeia, the validation parameters are specificity/selectivity, accuracy, repeatability, intermediate precision, range, detection limit, quantification limit and robustness. These validation data must meet the acceptance criteria, that have been described by the analytical target profile (ATP) of the drug preparations.
Collapse
Affiliation(s)
| | - Rinaldi Idroes
- Department of Pharmacy, Banda Aceh, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh, Indonesia
| | - Teuku Rizky Noviandy
- Department of Informatics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh, Indonesia
| | | |
Collapse
|
16
|
Kreiser MJ, Wabel C, Wagner KG. Impact of Vertical Blender Unit Parameters on Subsequent Process Parameters and Tablet Properties in a Continuous Direct Compression Line. Pharmaceutics 2022; 14:pharmaceutics14020278. [PMID: 35214014 PMCID: PMC8879867 DOI: 10.3390/pharmaceutics14020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
The continuous manufacturing of solid oral-dosage forms represents an emerging technology among the pharmaceutical industry, where several process steps are combined in one production line. As all mixture components, including the lubricant (magnesium stearate), are passing simultaneously through one blender, an impact on the subsequent process steps and critical product properties, such as content uniformity and tablet tensile strength, is to be expected. A design of experiment (DoE) was performed to investigate the impact of the blender variables hold-up mass (HUM), impeller speed (IMP) and throughput (THR) on the mixing step and the subsequent continuous manufacturing process steps. Significant impacts on the mixing parameters (exit valve opening width (EV), exit valve opening width standard deviation (EV SD), torque of lower impeller (TL), torque of lower impeller SD (TL SD), HUM SD and blend potency SD), material attributes of the blend (conditioned bulk density (CBD), flow rate index (FRI) and particle size (d10 values)), tableting parameters (fill depth (FD), bottom main compression height (BCH) and ejection force (EF)) and tablet properties (tablet thickness (TT), tablet weight (TW) and tensile strength (TS)) could be found. Furthermore, relations between these process parameters were evaluated to define which process states were caused by which input variables. For example, the mixing parameters were mainly impacted by impeller speed, and material attributes, FD and TS were mainly influenced by variations in total blade passes (TBP). The current work presents a rational methodology to minimize process variability based on the main blender variables hold-up mass, impeller speed and throughput. Moreover, the results facilitated a knowledge-based optimization of the process parameters for optimum product properties.
Collapse
Affiliation(s)
- Marius J. Kreiser
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108 Freiburg, Germany; (M.J.K.); (C.W.)
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Christoph Wabel
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108 Freiburg, Germany; (M.J.K.); (C.W.)
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
- Correspondence:
| |
Collapse
|
17
|
Van Hauwermeiren D, Peeters M, Peeters E, Cogoni G, Yang LA, De Beer T. Development of a tablet press feed frame lead lag determination model using in-line and off-line NIR measurements. Int J Pharm 2022; 612:121284. [PMID: 34813907 DOI: 10.1016/j.ijpharm.2021.121284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/18/2022]
Abstract
For continuous pharmaceutical manufacturing of oral solid dosages, it is essential that product quality is measured inline. In this application, a continuous rotary tablet press is used. The goal is a model-based assessment of the quality of the blend in the feed frame to determine whether the concentration of the active pharmaceutical ingredient (API) will be within the prescribed limits. This is to achieve a better quality assurance than by offline testing of a small sample of tablets. In this way, product quality for real-time release (RTR) could be implemented. With a near-infrared (NIR) probe, the concentration of the API in the feed chute and the feed-frame were measured, as well as the API concentration of the tablets by an offline NIR measurement. These different data sets are connected and used for the residence time distribution characterization of the mixing dynamic of the tablet press. A residence time distribution model is fitted to the data, and is further used to compute the lead-lag time. This yields information on how long it takes for a quantity of product to go from being measured in the feed frame until ending up in tablets. Further, it gives information on the occurrence of mixing in the feed-frame itself. These models allow making accurate predictions of whether tablets fall within specified concentration range in real-time. The real-time prediction can be used in combination with a control system both to maintain the quality of the blend as well as to know which tablets to discard. This real-time quality assurance will lead to less material waste and fewer declined batches of tablets.
Collapse
Affiliation(s)
- Daan Van Hauwermeiren
- Ghent University, Laboratory of Pharmaceutical Process Analytical Technology, Ottergemsesteenweg 460, Gent 9000, Belgium; Ghent University, BIOMATH, Department of Data Analysis and Mathematical Modelling, Coupure Links 653, Gent 9000, Belgium.
| | - Michiel Peeters
- Ghent University, Laboratory of Pharmaceutical Process Analytical Technology, Ottergemsesteenweg 460, Gent 9000, Belgium
| | - Elisabeth Peeters
- Pfizer Inc., Worldwide Research and Development, ARD, Eastern Point Road, Groton, 06340 CT, United States
| | - Giuseppi Cogoni
- Pfizer Inc., Worldwide Research and Development, ARD, Eastern Point Road, Groton, 06340 CT, United States
| | - Liu A Yang
- Pfizer Inc., Worldwide Research and Development, ARD, Eastern Point Road, Groton, 06340 CT, United States
| | - Thomas De Beer
- Ghent University, Laboratory of Pharmaceutical Process Analytical Technology, Ottergemsesteenweg 460, Gent 9000, Belgium
| |
Collapse
|
18
|
Velez NL, Drennen JK, Anderson CA. Challenges, opportunities and recent advances in near infrared spectroscopy applications for monitoring blend uniformity in the continuous manufacturing of solid oral dosage forms. Int J Pharm 2022; 615:121462. [PMID: 35026317 DOI: 10.1016/j.ijpharm.2022.121462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Near infrared (NIR) spectroscopy has been widely recognized as a powerful PAT tool for monitoring blend uniformity in continuous manufacturing (CM) processes. However, the dynamic nature of the powder stream and the fast rate at which it moves, compared to batch processes, introduces challenges to NIR quantitative methods for monitoring blend uniformity. For instance, defining the effective sample size interrogated by NIR, selecting the best sampling location for blend monitoring, and ensuring NIR model robustness against influential sources of variability are challenges commonly reported for NIR applications in CM. This article reviews the NIR applications for powder blend monitoring in the continuous manufacturing of solid oral dosage forms, with a particular focus on the challenges, opportunities for method optimization and recent advances with respect three main aspects: effective sample size measured by NIR, probe location and method robustness.
Collapse
Affiliation(s)
- Natasha L Velez
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| | - James K Drennen
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Carl A Anderson
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
19
|
Determination and understanding of lead-lag between in-line NIR tablet press feed frame and off-line NIR tablet measurements. Int J Pharm 2022; 611:121328. [PMID: 34852290 DOI: 10.1016/j.ijpharm.2021.121328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022]
Abstract
The influence of different tableting process parameters on lead-lag was studied by collecting in-line near-infrared (NIR) spectra in the filling chamber of the tablet press feed frame and off-line NIR tablet data. Lead-lag is defined as the difference in time and API concentration between the measured in-line feed frame NIR response and the off-line NIR tablet data. Lead-lag results from the product formulation blend undergoing additional mixing after passing the NIR probe inside the feed frame, before being filled into the dies of the tablet press. A design of experiments (DoE) was performed to evaluate the effect of the tableting process factors paddle speed, turret speed, overfill level, paddle speed ratio and feed frame type upon lead-lag. Paddle speed and turret speed were identified as the only tableting parameters affecting lead-lag. Lead-lag decreased with increasing paddle speed or turret speed and became negligible at high paddle speed and high turret speed. Overfill level, paddle speed ratio and feed frame type did not affect lead-lag, suggesting that the amount and the trajectory of the recirculating powder in the feed frame did not significantly vary and hence influence the lead-lag within the examined process factor ranges. Finally, a methodology was developed using the in-line feed frame NIR measurements for the continuous monitoring and control of blend potency and tablet content uniformity. Tablet diversion should start when the in-line feed frame monitored blend potency exceeds the predefined control limits and can discontinue when this blend potency is again within the control limits for a duration equal to the lead-lag time. A combination of continuous blend potency monitoring inside the feed frame and in-process tablet weight control allows real-time tablet content uniformity assurance. Although the findings of this study are restricted to the specific equipment, tableting parameter ranges and product formulation used, the suggested approach for lead-lag determination and continuous tablet content uniformity monitoring can be applied to any rotary tablet press and product formulation.
Collapse
|
20
|
Sierra-Vega NO, González-Rosario RA, Rangel-Gil RS, Romañach RJ, Méndez R. Quantitative analysis of blend uniformity within a Three-Chamber feed frame using simultaneously Raman and Near-Infrared spectroscopy. Int J Pharm 2021; 613:121417. [PMID: 34965466 DOI: 10.1016/j.ijpharm.2021.121417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022]
Abstract
This study reports the use of Raman and Near-infrared (NIR) spectroscopy to simultaneously monitor the drug concentration in flowing powder blends within a three-chamber feed frame. The Raman probe was located at the top of the dosing chamber, while the NIR probe was located at the top of the filling chamber. The Raman and NIR spectra were continuously acquired while the powder blends flowed through the feed frame. Calibration models were developed with spectra from a total of five calibration blends ranging in caffeine concentration among 3.50 and 6.50% w/w. These models were optimized to predict three test set blends of 4.00, 5.00, and 6.00% w/w caffeine. The results showed a high predictive ability of the models based on root mean square error of predictions of 0.174 and 0.235% w/w for NIR and Raman spectroscopic models, respectively. Concentration profiles with higher variability were observed for the Raman spectroscopy predictions. An estimate of the mass analyzed by each spectrum showed that a NIR spectrum analyzes approximately 4.5 times the mass analyzed by a Raman spectrum; despite these differences in the mass analyzed, blend uniformity results are equivalent between techniques. Variographic analysis demonstrated that both techniques have significantly low sampling errors for the real-time monitoring process of drug concentration within the feed frame.
Collapse
Affiliation(s)
- Nobel O Sierra-Vega
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico 00681, United States.
| | - Rafael A González-Rosario
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico 00681, United States
| | - Raúl S Rangel-Gil
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico 00681, United States
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico at Mayaguez, Puerto Rico 00681, United States
| | - Rafael Méndez
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico 00681, United States
| |
Collapse
|
21
|
Sacher S, Poms J, Rehrl J, Khinast JG. PAT implementation for advanced process control in solid dosage manufacturing - A practical guide. Int J Pharm 2021; 613:121408. [PMID: 34952147 DOI: 10.1016/j.ijpharm.2021.121408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
Abstract
The implementation of continuous pharmaceutical manufacturing requires advanced control strategies rather than traditional end product testing or an operation within a small range of controlled parameters. A high level of automation based on process models and hierarchical control concepts is desired. The relevant tools that have been developed and successfully tested in academic and industrial environments in recent years are now ready for utilization on the commercial scale. To date, the focus in Process Analytical Technology (PAT) has mainly been on achieving process understanding and quality control with the ultimate goal of real-time release testing (RTRT). This work describes the workflow for the development of an in-line monitoring strategy to support PAT-based real-time control actions and its integration into solid dosage manufacturing. All stages are discussed in this paper, from process analysis and definition of the monitoring task to technology assessment and selection, its process integration and the development of data acquisition.
Collapse
Affiliation(s)
- Stephan Sacher
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria.
| | - Johannes Poms
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | - Jakob Rehrl
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | - Johannes G Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria
| |
Collapse
|
22
|
Bhalode P, Tian H, Gupta S, Razavi SM, Roman-Ospino A, Talebian S, Singh R, Scicolone JV, Muzzio FJ, Ierapetritou M. Using residence time distribution in pharmaceutical solid dose manufacturing - A critical review. Int J Pharm 2021; 610:121248. [PMID: 34748808 DOI: 10.1016/j.ijpharm.2021.121248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
While continuous manufacturing (CM) of pharmaceutical solid-based drug products has been shown to be advantageous for improving the product quality and process efficiency in alignment with FDA's support of the quality-by-design paradigm (Lee, 2015; Ierapetritou et al., 2016; Plumb, 2005; Schaber, 2011), it is critical to enable full utilization of CM technology for robust production and commercialization (Schaber, 2011; Byrn, 2015). To do so, an important prerequisite is to obtain a detailed understanding of overall process characteristics to develop cost-effective and accurate predictive models for unit operations and process flowsheets. These models are utilized to predict product quality and maintain desired manufacturing efficiency (Ierapetritou et al., 2016). Residence time distribution (RTD) has been a widely used tool to characterize the extent of mixing in pharmaceutical unit operations (Vanhoorne, 2020; Rogers and Ierapetritou, 2015; Teżyk et al., 2015) and manufacturing lines and develop computationally cheap predictive models. These models developed using RTD have been demonstrated to be crucial for various flowsheet applications (Kruisz, 2017; Martinetz, 2018; Tian, 2021). Though extensively used in the literature (Gao et al., 2012), the implementation, execution, evaluation, and assessment of RTD studies has not been standardized by regulatory agencies and can thus lead to ambiguity regarding their accurate implementation. To address this issue and subsequently prevent unforeseen errors in RTD implementation, the presented article aims to aid in developing standardized guidelines through a detailed review and critical discussion of RTD studies in the pharmaceutical manufacturing literature. The review article is divided into two main sections - 1) determination of RTD including different steps for RTD evaluation including experimental approach, data acquisition and pre-treatment, RTD modeling, and RTD metrics and, 2) applications of RTD for solid dose manufacturing. Critical considerations, pertaining to the limitations of RTDs for solid dose manufacturing, are also examined along with a perspective discussion of future avenues of improvement.
Collapse
Affiliation(s)
- Pooja Bhalode
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Huayu Tian
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Shashwat Gupta
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sonia M Razavi
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Andres Roman-Ospino
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shahrzad Talebian
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ravendra Singh
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - James V Scicolone
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Fernando J Muzzio
- Department of Chemical and Biochemical Engineering, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
23
|
A hybrid model for multipoint real time potency observation in continuous direct compression manufacturing operations. Int J Pharm 2021; 613:121385. [PMID: 34919995 DOI: 10.1016/j.ijpharm.2021.121385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022]
Abstract
The ongoing transition from batch to continuous manufacturing offers both challenges and opportunities in the field of oral solid dosage form production. In turn, Process Analytical Technology (PAT) offers a path towards the successful deployment of continuous tablet manufacturing in rotary tablet presses. One promising PAT tool for this endeavour is the NIR-derived potency measurement. However, the high degree of noise in the data may hamper the extraction of useful information. For this reason, this work focused on the implementation of an adaptive Kalman filter algorithm that incorporates and reconciles the potency prediction given by one or more NIR probes with those of a semi-mechanistic compartmental model developed for the application at hand. This approach allowed for more robust concentration estimations. Furthermore, it was observed that potency levels in multiple locations in the studied tablet press (including those in the finished tablets) could be appropriately inferred using a single in-line measurement data stream. This methodology thus opens the door to advanced process control applications.
Collapse
|
24
|
Biancolillo A, Battistoni S, Presutto R, Marini F. Green Multi-Platform Solution for the Quantification of Levodopa Enantiomeric Excess in Solid-State Mixtures for Pharmacological Formulations. Molecules 2021; 26:molecules26164944. [PMID: 34443532 PMCID: PMC8398775 DOI: 10.3390/molecules26164944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of the present work was to develop a green multi-platform methodology for the quantification of l-DOPA in solid-state mixtures by means of MIR and NIR spectroscopy. In order to achieve this goal, 33 mixtures of racemic and pure l-DOPA were prepared and analyzed. Once spectra were collected, partial least squares (PLS) was exploited to individually model the two different data blocks. Additionally, three different multi-block approaches (mid-level data fusion, sequential and orthogonalized partial least squares, and sequential and orthogonalized covariance selection) were used in order to simultaneously handle data from the different platforms. The outcome of the chemometric analysis highlighted the quantification of the enantiomeric excess of l-DOPA in enantiomeric mixtures in the solid state, which was possible by coupling NIR and PLS, and, to a lesser extent, by using MIR. The multi-platform approach provided a higher accuracy than the individual block analysis, indicating that the association of MIR and NIR spectral data, especially by means of SO-PLS, represents a valid solution for the quantification of the l-DOPA excess in enantiomeric mixtures.
Collapse
Affiliation(s)
- Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
- Correspondence: (A.B.); (F.M.)
| | - Stefano Battistoni
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.B.); (R.P.)
| | - Regina Presutto
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.B.); (R.P.)
| | - Federico Marini
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.B.); (R.P.)
- Correspondence: (A.B.); (F.M.)
| |
Collapse
|
25
|
Kim EJ, Kim JH, Kim MS, Jeong SH, Choi DH. Process Analytical Technology Tools for Monitoring Pharmaceutical Unit Operations: A Control Strategy for Continuous Process Verification. Pharmaceutics 2021; 13:919. [PMID: 34205797 PMCID: PMC8234957 DOI: 10.3390/pharmaceutics13060919] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Various frameworks and methods, such as quality by design (QbD), real time release test (RTRT), and continuous process verification (CPV), have been introduced to improve drug product quality in the pharmaceutical industry. The methods recognize that an appropriate combination of process controls and predefined material attributes and intermediate quality attributes (IQAs) during processing may provide greater assurance of product quality than end-product testing. The efficient analysis method to monitor the relationship between process and quality should be used. Process analytical technology (PAT) was introduced to analyze IQAs during the process of establishing regulatory specifications and facilitating continuous manufacturing improvement. Although PAT was introduced in the pharmaceutical industry in the early 21st century, new PAT tools have been introduced during the last 20 years. In this review, we present the recent pharmaceutical PAT tools and their application in pharmaceutical unit operations. Based on unit operations, the significant IQAs monitored by PAT are presented to establish a control strategy for CPV and real time release testing (RTRT). In addition, the equipment type used in unit operation, PAT tools, multivariate statistical tools, and mathematical preprocessing are introduced, along with relevant literature. This review suggests that various PAT tools are rapidly advancing, and various IQAs are efficiently and precisely monitored in the pharmaceutical industry. Therefore, PAT could be a fundamental tool for the present QbD and CPV to improve drug product quality.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Ji Hyeon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 heon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Korea;
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| |
Collapse
|
26
|
Zimmermann M, Thommes M. Residence time and mixing capacity of a rotary tablet press feed frame. Drug Dev Ind Pharm 2021; 47:790-798. [PMID: 34042546 DOI: 10.1080/03639045.2021.1934871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Most rotary tablet presses contain a feed frame to provide a continuous powder flow and to feed powder into the dies. The wide residence time distribution (RTD) of these feed frames is problematic, because it negatively affects material traceability in continuous manufacturing. In a rotary tablet press, different machine settings influence the RTD, which is characterized by the mean and the width of the distribution. This study focused on the effects of the rotational speed of the feed frame paddles and the rotary tablet press throughput on the RTD. METHODS An in-line UV/Vis measurement method was developed for determining the RTD in the feed frame. A model based on a plug flow and a continuous stirred tank reactor was adapted to model the experimentally determined RTDs. Finally, the mixing capacity of a feed frame was evaluated and correlated with a model parameter of the RTD. RESULTS Overall, the developed UV/Vis measurement method was suitable and could be used to obtain process information regarding content uniformity in real time. The experimentally-determined RTDs were described well by fitting an inverse mixing and a transport time. In addition, a correlation between the location and the shape of measured RTDs and tablet press throughput was found. In contrast, rotational feed frame paddle speed did not affect the RTDs. Split-feeding experiments indicated the mixing capacity of the rotary tablet press feed frame. CONCLUSION The inverse mixing time can be used as an initial indicator for estimating the mixing capacity.
Collapse
Affiliation(s)
- Maren Zimmermann
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Markus Thommes
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
27
|
Feasibility of Using Light-Induced Fluorescence Spectroscopy for Low-Dose Formulations Monitoring and Control. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09432-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Román-Ospino AD, Baranwal Y, Li J, Vargas J, Igne B, Bate S, Brouckaert D, Chauchard F, Hausner D, Ramachandran R, Singh R, Muzzio FJ. Sampling optimization for blend monitoring of a low dose formulation in a tablet press feed frame using spatially resolved near-infrared spectroscopy. Int J Pharm 2021; 602:120594. [PMID: 33857586 DOI: 10.1016/j.ijpharm.2021.120594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
In-line measurements of low dose blends in the feed frame of a tablet press were performed for API concentration levels as low as 0.10% w/w. The proposed methodology utilizes the advanced sampling capabilities of a Spatially Resolved Near-Infrared (SR-NIR) probe to develop Partial Least-Squares calibration models. The fast acquisition speed of multipoint spectra allowed the evaluation of different numbers of co-adds and feed frame paddle speeds to establish the optimum conditions of data collection to predict low potency blends. The interaction of the feed frame paddles with the SR-NIR probe was captured with high resolution and allowed the implementation of a spectral data selection criterion to remove the effect of the paddles from the calibration and testing process. The method demonstrated accuracy and robustness when predicting drug concentrations across different feed frame paddle speeds.
Collapse
Affiliation(s)
- Andrés D Román-Ospino
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Yukteshwar Baranwal
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Jingzhe Li
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Jenny Vargas
- GlaxoSmithKline (GSK), Collegeville, PA 19426, United States
| | - Benoît Igne
- GlaxoSmithKline (GSK), Collegeville, PA 19426, United States
| | - Simon Bate
- GlaxoSmithKline (GSK), Collegeville, PA 19426, United States
| | | | | | - Douglas Hausner
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Rohit Ramachandran
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Ravendra Singh
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Fernando J Muzzio
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
29
|
Alam MA, Liu YA, Dolph S, Pawliczek M, Peeters E, Palm A. Benchtop NIR method development for continuous manufacturing scale to enable efficient PAT application for solid oral dosage form. Int J Pharm 2021; 601:120581. [PMID: 33839228 DOI: 10.1016/j.ijpharm.2021.120581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 11/15/2022]
Abstract
A Near Infrared (NIR) method was developed using a small benchtop feed frame system to quantify Saccharin potency in a powder blend during continuous manufacturing process. A 15-point Design of Experiments (DoE) was created based on the NIR spectral response and compositions of the formulation to develop a calibration set. The calibration set was designed to create compositional and raw material lots variation using minimum resources. The calibration experiments utilized around 0.5 kg Saccharin (Active Pharmaceutical Ingredient (API) surrogate) and 1.8 kg of excipients. Partial Least Square (PLS) modeling was used to develop a quantitative NIR method from the calibration data. The NIR method was implemented during 5 test batches in two different manufacturing sites across different potency levels at a continuous manufacturing platform for direction compression. Acceptable prediction performance was achieved from the NIR method at both sites. The NIR method was robust against changes in process scale and NIR instruments. The variance information built into the calibration set was found to be critical to successful model performance. This study shows a benchtop feed frame can be used for material sparing calibration method development without operating at a full-scale process line and applied across multiple sites, instruments at different potency levels.
Collapse
Affiliation(s)
- Md Anik Alam
- Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | - Yang Angela Liu
- Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Stephanie Dolph
- Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Marcin Pawliczek
- Pfizer Global Supply, Pfizer Manufacturing Deutschland GmbH, Freiburg, Germany
| | - Elisabeth Peeters
- Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Andrew Palm
- Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| |
Collapse
|
30
|
Nandi U, Trivedi V, Ross SA, Douroumis D. Advances in Twin-Screw Granulation Processing. Pharmaceutics 2021; 13:pharmaceutics13050624. [PMID: 33925577 PMCID: PMC8146340 DOI: 10.3390/pharmaceutics13050624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022] Open
Abstract
Twin-screw granulation (TSG) is a pharmaceutical process that has gained increased interest from the pharmaceutical industry for its potential for the development of oral dosage forms. The technology has evolved rapidly due to the flexibility of the equipment design, the selection of the process variables and the wide range of processed materials. Most importantly, TSG offers the benefits of both batch and continuous manufacturing for pharmaceutical products, accompanied by excellent process control, high product quality which can be achieved through the implementation of Quality by Design (QbD) approaches and the integration of Process Analytical Tools (PAT). Here, we present basic concepts of the various twin-screw granulation techniques and present in detail their advantages and disadvantages. In addition, we discuss the detail of the instrumentation used for TSG and how the critical processing paraments (CPP) affect the critical quality attributes (CQA) of the produced granules. Finally, we present recent advances in TSG continuous manufacturing including the paradigms of modelling of continuous granulation process, QbD approaches coupled with PAT monitoring for granule optimization and process understanding.
Collapse
Affiliation(s)
- Uttom Nandi
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
| | - Vivek Trivedi
- Medway School of Pharmacy, Medway Campus, University of Kent, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
| | - Steven A. Ross
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
- Cubi-Tech Extrusion: 3, Sextant Park, Neptune Cl, Rochester ME2 4LU, UK
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
- Correspondence: ; Tel.: +44-2083318440
| |
Collapse
|
31
|
Cogoni G, Liu YA, Husain A, Alam MA, Kamyar R. A hybrid NIR-soft sensor method for real time in-process control during continuous direct compression manufacturing operations. Int J Pharm 2021; 602:120620. [PMID: 33892059 DOI: 10.1016/j.ijpharm.2021.120620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Near Infrared (NIR) spectroscopy is commonly utilized for continuous manufacturing as Process Analytical Technology (PAT) tool. This paper focus on a continuous direct compression manufacturing process, in which an NIR PAT probe is integrated into the tablet press feed frame and into the tablet diversion control system to ensure continuous monitoring of the potency and homogeneity of the blend within the process line. The quantification of NIR spectra is achieved through Partial Least-Squares (PLS) modeling, calibrated with offline analyzed tablet cores at different potency levels. Because the NIR measurements are often sensitive to sample physical properties caused by raw materials or process conditions, etc., adopting a data-driven approach will require a large amount of representative data throughout the method lifecycle. During the early stages of process development, whenever new uncaptured source of variability in the model space are encountered, the chemometric predictions can deviate from the offline reference, requiring frequent model updates. These deviations can be reduced by integrating process and physico-chemical knowledge in the on-line potency estimation. This paper presents a novel hybrid method combining the online NIR PLS and a potency soft sensor estimation, enabling a robust potency prediction whilst minimizing maintenance downtimes and facilitating cross-site method transfer.
Collapse
Affiliation(s)
- Giuseppe Cogoni
- Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Yang Angela Liu
- Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | - Anas Husain
- Pfizer Global Supply, Pfizer Inc., Freiburg, Germany
| | - Md Anik Alam
- Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Reza Kamyar
- Pfizer Global Supply, Pfizer Inc., Peapack, NJ 07934, USA
| |
Collapse
|
32
|
Igne B, Liu Y, Shi Z, Alam MA, Garrett A, Daughtry S, Liesum L, Nielsen S. Multivariate Spectroscopic Method Lifecycle Management as Part of the Quality Management System. J Pharm Sci 2021; 110:2925-2933. [PMID: 33785351 DOI: 10.1016/j.xphs.2021.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Multivariate model based spectroscopic methods require model maintenance through their lifecycle. A survey conducted by the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) in 2019 showed that regulatory reporting categories for the model related changes can be a hurdle for the routine use of these types of methods. This article introduces industry best practices on multivariate method and model lifecycle management within the Pharmaceutical Quality System. Case studies are provided to demonstrate how the Established Conditions and Post-Approval Change Management Protocol concepts may be leveraged to allow regulatory flexibility for change management and to encourage the use of these techniques for the development and commercialization of pharmaceutical products.
Collapse
Affiliation(s)
- Benoît Igne
- Analytical Development, Vertex Pharmaceuticals Inc., Boston, MA, USA.
| | - Yang Liu
- Pfizer, Worldwide Research and Development, Analytical R&D, Groton, CT, USA
| | - Zhenqi Shi
- Lilly Research Laboratory, Eli Lilly and Company, Indianapolis, IN, USA
| | - Md Anik Alam
- Pfizer, Worldwide Research and Development, Analytical R&D, Groton, CT, USA
| | - Aaron Garrett
- Global Quality Laboratory, Eli Lilly and Company, Indianapolis, IN, USA
| | - Sean Daughtry
- Analytical Development, Vertex Pharmaceuticals Inc., Boston, MA, USA
| | - Lorenz Liesum
- Roche, Pharma Technical Innovation, F. Hoffmann- La Roche Ltd, 4070 Basel, Switzerland
| | - Sarah Nielsen
- Janssen Supply Chain, Johnson & Johnson, New Brunswick, NJ, USA
| |
Collapse
|
33
|
An agile and robust in-line NIR potency deviation detection method for monitoring and control of a continuous direct compression process. Int J Pharm 2021; 601:120521. [PMID: 33775726 DOI: 10.1016/j.ijpharm.2021.120521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/21/2021] [Indexed: 11/23/2022]
Abstract
Near Infrared (NIR) method for blend potency estimation has been commonly used as an essential tool for process monitoring and control in continuous manufacturing of solid oral dosage forms. Robustness has been the main challenge for successful application of an NIR method, which often results in a long development time with frequent method update. Robustness deficiency often presents as an offset (bias) on the mean potency estimation. In this paper, the purpose of the NIR method has been redefined from estimating potency to potency deviation. This quantitative approach uses the mean centered potency to estimate potency deviations from the process mean, therefore, detects the non-conforming materials for continuous process monitoring and control. An NIR method was developed at the lab benchtop scale and directly deployed to a direct compression continuous manufacturing platform at Pfizer for mean centered potency estimation. The benchtop calibration provided a speedy and efficient NIR method development and the method showed enhanced robustness for estimating potency deviation in presence of wide process and raw material variations. Integrating with the mean centered approach, the NIR model from the lab could be implemented to different sites using different instruments without requiring model update for the established range of process conditions and raw material properties.
Collapse
|
34
|
Suzuki Y, Sugiyama H, Kano M, Shimono R, Shimada G, Furukawa R, Mano E, Motoyama K, Koide T, Matsui Y, Kurasaki K, Takayama I, Hikage S, Katori N, Kikuchi M, Sakai H, Matsuda Y. Control strategy and methods for continuous direct compression processes. Asian J Pharm Sci 2021; 16:253-262. [PMID: 33995618 PMCID: PMC8105518 DOI: 10.1016/j.ajps.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 10/31/2022] Open
Abstract
We presented a control strategy for tablet manufacturing processes based on continuous direct compression. The work was conducted by the experts of pharmaceutical companies, machine suppliers, academia, and regulatory authority in Japan. Among different items in the process, the component ratio and blended powder content were selected as the items requiring the control method specific to continuous manufacturing different from the conventional batch manufacturing. The control and management of the Loss in Weight (LIW) feeder were deemed the most important, and the Residence Time Distribution (RTD) model were regarded effective for setting the control range and for controlling of the LIW feeder. Based on these ideas, the concept of process control using RTD was summarized. The presented contents can serve as a solid fundament for adopting a new control method of continuous direct compression processes in and beyond the Japanese market.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Kanagawa 254-0014, Japan
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Manabu Kano
- Department of Systems Science, Kyoto University, Kyoto 606-8501, Japan
| | - Ryutaro Shimono
- CMC Sciences Department, Regulatory Affairs Division, R&D Division, Janssen Pharmaceutical K.K., Tokyo 101-0065, Japan
| | | | - Ryoichi Furukawa
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, Osaka 532-8505, Japan
| | - Eichi Mano
- Chemical Products, CMC Regulatory Affairs Area Japan Development, MSD K.K., Tokyo 102-8667, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yasuhiro Matsui
- Technology Research & Development, Sumitomo Dainippon Pharma Co.,Ltd., Osaka 564-0053, Japan
| | - Kazuki Kurasaki
- Formulation Development Department, Chugai pharmaceutical Co., Ltd., Tokyo 115-8543, Japan
| | - Issei Takayama
- Office of New Drug IV, Pharmaceuticals and Medical Devices Agency, Shin-Kasumigaseki Bldg., Tokyo 100-0013, Japan
| | - Shunin Hikage
- Office of Generic Drugs, Pharmaceuticals and Medical Devices Agency, Shin-Kasumigaseki Bldg., Tokyo 100-0013, Japan
| | - Noriko Katori
- Division of Drugs, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Masahiko Kikuchi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | - Yoshihiro Matsuda
- Pharmaceuticals and Medical Devices Agency, Shin-Kasumigaseki Bldg., Tokyo 100-0013, Japan
| |
Collapse
|
35
|
Shi G, Lin L, Liu Y, Chen G, Luo Y, Wu Y, Li H. Pharmaceutical application of multivariate modelling techniques: a review on the manufacturing of tablets. RSC Adv 2021; 11:8323-8345. [PMID: 35423324 PMCID: PMC8695199 DOI: 10.1039/d0ra08030f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
The tablet manufacturing process is a complex system, especially in continuous manufacturing (CM). It includes multiple unit operations, such as mixing, granulation, and tableting. In tablet manufacturing, critical quality attributes are influenced by multiple factorial relationships between material properties, process variables, and interactions. Moreover, the variation in raw material attributes and manufacturing processes is an inherent characteristic and seriously affects the quality of pharmaceutical products. To deepen our understanding of the tablet manufacturing process, multivariable modeling techniques can replace univariate analysis to investigate tablet manufacturing. In this review, the roles of the most prominent multivariate modeling techniques in the tablet manufacturing process are discussed. The review mainly focuses on applying multivariate modeling techniques to process understanding, optimization, process monitoring, and process control within multiple unit operations. To minimize the errors in the process of modeling, good modeling practice (GMoP) was introduced into the pharmaceutical process. Furthermore, current progress in the continuous manufacturing of tablets and the role of multivariate modeling techniques in continuous manufacturing are introduced. In this review, information is provided to both researchers and manufacturers to improve tablet quality.
Collapse
Affiliation(s)
- Guolin Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Gongsen Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yanqiu Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
36
|
Wu SJ, Qiu P, Li P, Li Z, Li WL. A near-infrared spectroscopy-based end-point determination method for the blending process of Dahuang soda tablets. J Zhejiang Univ Sci B 2020; 21:897-910. [PMID: 33150773 DOI: 10.1631/jzus.b2000417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES This study is aimed to explore the blending process of Dahuang soda tablets. These are composed of two active pharmaceutical ingredients (APIs, emodin and emodin methyl ether) and four kinds of excipients (sodium bicarbonate, starch, sucrose, and magnesium stearate). Also, the objective is to develop a more robust model to determine the blending end-point. METHODS Qualitative and quantitative methods based on near-infrared (NIR) spectroscopy were established to monitor the homogeneity of the powder during the blending process. A calibration set consisting of samples from 15 batches was used to develop two types of calibration models with the partial least squares regression (PLSR) method to explore the influence of density on the model robustness. The principal component analysis-moving block standard deviation (PCA-MBSD) method was used for the end-point determination of the blending with the process spectra. RESULTS The model with different densities showed better prediction performance and robustness than the model with fixed powder density. In addition, the blending end-points of APIs and excipients were inconsistent because of the differences in the physical properties and chemical contents among the materials of the design batches. For the complex systems of multi-components, using the PCA-MBSD method to determine the blending end-point of each component is difficult. In these conditions, a quantitative method is a more suitable alternative. CONCLUSIONS Our results demonstrated that the effect of density plays an important role in improving the performance of the model, and a robust modeling method has been developed.
Collapse
Affiliation(s)
- Si-Jun Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| | - Ping Qiu
- Hunan Zhengqing Pharmaceutical Group Co., Ltd., Huaihua 418005, China
| | - Pian Li
- Langtian Pharmaceutical (Hubei) Co., Ltd., Huangshi 435000, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| | - Wen-Long Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
37
|
Tanimura S, Singh R, Román-Ospino AD, Ierapetritou M. Residence time distribution modelling and in line monitoring of drug concentration in a tablet press feed frame containing dead zones. Int J Pharm 2020; 592:120048. [PMID: 33161037 DOI: 10.1016/j.ijpharm.2020.120048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/15/2020] [Accepted: 11/01/2020] [Indexed: 01/08/2023]
Abstract
The presence of a 'significant dead zone' in any continuous manufacturing equipment may affect the product quality and need to be investigated systematically. Dead zone will affect the residence time distribution (RTD) of continuous manufacturing and thus the mixing and product quality. Tablet press (feed frame) is one of unit operations that directly influence the critical quality attributes (CQA's). However, currently no systematic methods and tools are available to characterize and model the feed frame dead zone. In this manuscript, the RTD of the tablet press feed frame containing dead zone is investigated. Step-change experiments revealed that the feed frame could be expressed as a traditional continuous stirred tank model. The volume fractions of the dead zones are determined experimentally as well as using RTD model. In addition, an in-line NIR method for drug concentration monitoring inside the feed frame is also developed. The developed NIR calibration model enables to monitor the drug concentration precisely and detect the variation immediately with the probe positioned right above the left paddle. It is also found that the feed frame paddle speed slightly affects the predictive accuracy of NIR, while the die disc speed has no significant effect.
Collapse
Affiliation(s)
- Shinji Tanimura
- CMC R&D Center, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731 Japan
| | - Ravendra Singh
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Andrés D Román-Ospino
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE 19716, USA.
| |
Collapse
|
38
|
Quintelas C, Melo A, Costa M, Mesquita DP, Ferreira EC, Amaral AL. Environmentally-friendly technology for rapid identification and quantification of emerging pollutants from wastewater using infrared spectroscopy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103458. [PMID: 32710934 DOI: 10.1016/j.etap.2020.103458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The monitoring of emerging pollutants in wastewaters is nowadays an issue of special concern, with the classical quantification methods being time and reagent consuming. In this sense, a FTIR transmission spectroscopy based chemometric methodology was developed for the determination of eight of these pollutants. A total of 456 samples were, therefore, obtained, from an activated sludge wastewater treatment process spiked with the studied pollutants, and analysed in the range of 200 cm-1 to 14,000 cm-1. Then, a k-nearest neighbour (kNN) analysis aiming at identifying each sample pollutant was employed. Next, partial least squares (PLS) and ordinary least squares (OLS) modelling approaches were employed in order to obtain suitable prediction models. This procedure resulted in good prediction abilities regarding the estimation of atrazine, desloratadine, paracetamol, β-estradiol, ibuprofen, carbamazepine, sulfamethoxazole and ethynylestradiol concentrations in wastewaters. These promising results suggest this technology as a fast, eco-friendly and reagent free alternative methodology for the quantification of emerging pollutants in wastewaters.
Collapse
Affiliation(s)
- C Quintelas
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - A Melo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - M Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - D P Mesquita
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - E C Ferreira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - A L Amaral
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal
| |
Collapse
|
39
|
Sierra-Vega NO, Romañach RJ, Méndez R. Real-time quantification of low-dose cohesive formulations within a sampling interface for flowing powders. Int J Pharm 2020; 588:119726. [DOI: 10.1016/j.ijpharm.2020.119726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/27/2022]
|
40
|
Lines AM, Hall GB, Asmussen S, Allred J, Sinkov S, Heller F, Gallagher N, Lumetta GJ, Bryan SA. Sensor Fusion: Comprehensive Real-Time, On-Line Monitoring for Process Control via Visible, Near-Infrared, and Raman Spectroscopy. ACS Sens 2020; 5:2467-2475. [PMID: 32662261 DOI: 10.1021/acssensors.0c00659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On-line monitoring based on optical spectroscopy provides unprecedented insight into the chemical composition of process streams or batches. Amplifying this approach through utilizing multiple forms of optical spectroscopy in sensor fusion can greatly expand the number and type of chemical species that can be identified and quantified. This is demonstrated herein, on the analysis of used nuclear fuel recycling streams: highly complex processes with multiple target and interfering analytes. The optical techniques of visible absorbance, near-infrared absorbance, and Raman spectroscopy were combined to quantify plutonium(III, IV, VI), uranium(IV, VI), neptunium(IV, V, VI), and nitric acid. Chemometric modeling was used to quantify analytes in process streams in real time, and results were successfully used to enable immediate process control and generation of a product stream at a set composition ratio. This represents a significant step forward in the ability to monitor and control complex chemical processes occurring in harsh chemical environments.
Collapse
Affiliation(s)
- Amanda M. Lines
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gabriel B. Hall
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Susan Asmussen
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jarrod Allred
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sergey Sinkov
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Forrest Heller
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Neal Gallagher
- Eigenvector Research, Manson, Washington 98831, United States
| | - Gregg J. Lumetta
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samuel A. Bryan
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
41
|
In-line monitoring of low drug concentration of flowing powders in a new sampler device. Int J Pharm 2020; 583:119358. [DOI: 10.1016/j.ijpharm.2020.119358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 01/18/2023]
|
42
|
The development and validation of a quality by design based process analytical tool for the inline quantification of Ramipril during hot-melt extrusion. Int J Pharm 2020; 584:119382. [DOI: 10.1016/j.ijpharm.2020.119382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/24/2022]
|
43
|
Muñoz SG, Torres EH. Supervised Extended Iterative Optimization Technology for Estimation of Powder Compositions in Pharmaceutical Applications: Method and Lifecycle Management. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Vanhoorne V, Vervaet C. Recent progress in continuous manufacturing of oral solid dosage forms. Int J Pharm 2020; 579:119194. [PMID: 32135231 DOI: 10.1016/j.ijpharm.2020.119194] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/28/2022]
Abstract
Continuous drug product manufacturing is slowly being implemented in the pharmaceutical industry. Although the benefits related to the quality and cost of continuous manufacturing are widely recognized, several challenges hampered the widespread introduction of continuous manufacturing of drug products. Current review presents an overview of state-of-the art research, equipment, process analytical technology implementations and advanced control strategies. Additionally, guidelines and regulatory viewpoints on implementation of continuous manufacturing in the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- V Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University.
| |
Collapse
|
45
|
Hildebrandt C, Gopireddy SR, Scherließ R, Urbanetz NA. A DEM approach to assess the influence of the paddle wheel shape on force feeding during pharmaceutical tableting. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Karttunen AP, Poms J, Sacher S, Sparén A, Ruiz Samblás C, Fransson M, Martin De Juan L, Remmelgas J, Wikström H, Hsiao WK, Folestad S, Korhonen O, Abrahmsén-Alami S, Tajarobi P. Robustness of a continuous direct compression line against disturbances in feeding. Int J Pharm 2020; 574:118882. [DOI: 10.1016/j.ijpharm.2019.118882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/29/2022]
|
47
|
Characterization of NIR interfaces for the feeding and in-line monitoring of a continuous granulation process. Int J Pharm 2019; 574:118848. [PMID: 31812798 DOI: 10.1016/j.ijpharm.2019.118848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/23/2022]
Abstract
This work describes the characterization of three NIR interfaces intended to monitor a continuous granulation process. Two interfaces (i.e. a barrel interface and a rotating paddle interface) were evaluated to monitor the API concentration at the entrance of the granulator, and a third interface (i.e. an outlet interface), was evaluated to examine the quality of the resulting outlet granules. The barrel interface provided an assessment of the API concentration during the feeding process by scanning the material conveyed by the screws of the loss-in-weight feeder. The rotating paddle interface analyzed discrete amounts of powder upon exiting the feeder via the accumulation of material on the paddles. Partial Least Squares (PLS) calibration models were developed using the same powder blends for the two inlet interfaces and using the outlet granules for the outlet interface. Five independent batches were used to evaluate the prediction performance of each inlet calibration model. The outlet interface produced the lowest error of prediction due to the homogeneity of the granules. The barrel interface produced lower errors of prediction than the rotating paddle interface. However, powder density affected only the barrel interface, producing deviations in the predicted values. Therefore, powder density is a factor that should be considered in the calibration sample design for spectroscopic measurements when using this type of interface. A variographic analysis demonstrated that the continuous 1-dimensional motion in the barrel and outlet interfaces produced representative measurements of each batch during calibration and test experiments, generating a low minimum practical error (MPE).
Collapse
|
48
|
Sierra-Vega NO, Romañach RJ, Méndez R. Feed frame: The last processing step before the tablet compaction in pharmaceutical manufacturing. Int J Pharm 2019; 572:118728. [PMID: 31682965 DOI: 10.1016/j.ijpharm.2019.118728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
Abstract
The feed frame is a force-feeding device used in the die filling process. The die filling process is crucial within pharmaceutical manufacturing to guarantee the critical quality attributes of the tablets. In recent years, interest in this unit has increased because it can affect the properties of the powder blend and tablets, and because of the success in real time monitoring of powder blend uniformity potential for Process Analytical Technology as described in this review. The review focuses on the recent advances in understanding the powder flow behavior inside the feed frame and how the residence time distribution of the powder within the feed frame is affected by the operating conditions and design parameters. Furthermore, this review also highlights the effect of the paddle wheel design and feed frame process parameters on the tablet weight, the principal variable for measuring die filling performance.
Collapse
Affiliation(s)
- Nobel O Sierra-Vega
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, PR 00681, United States
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico at Mayaguez, PR 00681 United States
| | - Rafael Méndez
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, PR 00681, United States.
| |
Collapse
|
49
|
Development and validation of in-line near-infrared spectroscopy based analytical method for commercial production of a botanical drug product. J Pharm Biomed Anal 2019; 174:674-682. [DOI: 10.1016/j.jpba.2019.06.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/21/2022]
|
50
|
Li Y, Anderson CA, Drennen JK, Airiau C, Igne B. Development of an In-Line Near-Infrared Method for Blend Content Uniformity Assessment in a Tablet Feed Frame. APPLIED SPECTROSCOPY 2019; 73:1028-1040. [PMID: 30990067 DOI: 10.1177/0003702819842189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Process analytical technology (PAT) has shown great potential for in-line tableting process monitoring. The study focuses on the development and validation of an in-line near-infrared (NIR) spectroscopic method for the determination of content uniformity of blends in a tablet feed frame. An in-line NIR method was developed after careful evaluation of the impact of potential experimental factors on the robustness and model accuracy and precision. The NIR method was validated according to the principles outlined in International Conference on Harmonization-Q2 for validation of analytical procedures and was demonstrated to be suitable for monitoring blend content for the formulation under evaluation. Reliable measurements of blend homogeneity rely on representative sampling. To reach the appropriate scale of scrutiny for a unit dose, the study assessed factors that influence the effective sample size measured by NIR. Spectral averaging, integration time, and feed frame paddle wheel speed were found to influence the effective sample size measured by the NIR probe. The effective sampling size was also estimated by comparing the distribution of predicted values with the reference values. The development of a robust, in-line PAT method was facilitated by thorough understanding of the sensitivity of PAT sensors to factors affecting pharmaceutical processes and products.
Collapse
Affiliation(s)
- Yi Li
- Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Carl A Anderson
- Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - James K Drennen
- Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Christian Airiau
- GlaxoSmithKline, Analytical Sciences and Development, Collegeville, PA, USA
| | - Benoît Igne
- GlaxoSmithKline, Analytical Sciences and Development, Collegeville, PA, USA
| |
Collapse
|