1
|
Chango G, García-Gómez D, García Pinto C, Rodríguez-Gonzalo E, Pérez Pavón JL. Rapid and reliable quantification of urinary malondialdehyde by HILIC-MS/MS: A derivatization-free breakthrough approach. Anal Chim Acta 2024; 1311:342737. [PMID: 38816151 DOI: 10.1016/j.aca.2024.342737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The development of fast analytical methods is crucial for the research, discovery, and confirmation of crucial biomarkers. Furthermore, the implementation of fast analytical strategies contributes to efficient and time-effective procedures. In this sense, analysis of malondialdehyde (MDA) has become an important tool for understanding the role of oxidative stress in various diseases and for evaluating the efficacy of therapeutic interventions. RESULTS A rapid and robust liquid chromatography tandem mass spectrometry method (HPLC-MS/MS) has been developed to determine endogenous amounts of malondialdehyde (MDA) in human urine without any associated derivatization reaction. MDA was separated in 4 min through a Urea-HILIC column and was analyzed using a triple quadrupole mass spectrometer in negative electrospray ionization mode. With a 50-fold dilution as the only sample pretreatment after alkaline hydrolysis, no matrix effect was present, which allowed for a fast and simple quantification by means of an external standard calibration with a limit of detection of 0.20 ng mL-1. The whole methodology was validated by analyzing unspiked and spiked urine samples from ten healthy individuals and comparing with the results obtained by the standard addition method. MDA was detected in all cases, with natural concentrations varying from 0.11 ± 0.03 to 0.31 ± 0.03 mg g-1 creatinine. Accuracies were found to be satisfactory, ranging from 95 % to 101 %. The proposed method also exhibited good repeatability and reproducibility (RSD<15 %) for four quality control levels. SIGNIFICANCE The main significance of this method is the avoidance of a derivatization reaction for the determination of urinary MDA, this constituting a step forward when compared with previous literature. This breakthrough not only streamlines time analysis to less than 5 min per sample but also results in a more robust procedure. Consequently, the method here developed could be applied to subsequent future research involving the determination of MDA as a lipid peroxidation biomarker, where simple, rapid, and reliable methods could represent a significant improvement.
Collapse
Affiliation(s)
- Gabriela Chango
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008, Salamanca, Spain
| | - Diego García-Gómez
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008, Salamanca, Spain.
| | - Carmelo García Pinto
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008, Salamanca, Spain
| | - Encarnación Rodríguez-Gonzalo
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008, Salamanca, Spain
| | - José Luis Pérez Pavón
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008, Salamanca, Spain
| |
Collapse
|
2
|
Havlickova K, Snopkova S, Pohanka M, Svacinka R, Vydrar D, Husa P, Zavrelova J, Zlamal F, Fabianova L, Penka M, Husa P. Oxidative stress, microparticles, and E-selectin do not depend on HIV suppression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024. [PMID: 38390755 DOI: 10.5507/bp.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Oxidative stress and inflammation are considered predictors of diseases associated with aging. Markers of oxidative stress, inflammation, and endothelial activation were investigated in people with HIV on antiretroviral treatment to determine whether they had an immunosenescent phenotype that might predispose to the development of premature age-related diseases. PATIENTS AND METHODS This study was conducted on 213 subjects with HIV. The control groups consisted of healthy HIV-negative adults. The level of oxidative stress was measured by assessing the production of malondialdehyde levels, which were detected by thiobarbituric acid reactive substance (TBARS) assay. The level of microparticles indicated the presence of inflammation and endothelial activation was measured by E-selectin levels. Significant differences were determined by appropriate statistical tests, depending on the distribution of variables. Relationships between continuous variables were quantified using Spearman's rank correlation coefficient. RESULTS TBARS, and microparticle and E-selectin levels were significantly higher in untreated and treated subjects with HIV compared with HIV-negative controls (P<0.001). The levels of the investigated markers were not significantly different between untreated and treated patients and no significant correlation of these markers was found with CD4+ count, CD4+/CD8+ ratio, and the number of HIV-1 RNA copies. CONCLUSIONS Elevated markers of oxidative stress, inflammatory and endothelial activation were independent of the virologic and immunologic status of people with HIV. These results support the hypothesis that residual viremia in cellular reservoirs of various tissues is a key factor related to the premature aging of the immune system and predisposition to the premature development of diseases associated with aging.
Collapse
|
3
|
Bencivenga D, Arcadio F, Piccirillo A, Annunziata M, Della Ragione F, Cennamo N, Borriello A, Zeni L, Guida L. Plasmonic optical fiber biosensor development for point-of-care detection of malondialdehyde as a biomarker of oxidative stress. Free Radic Biol Med 2023; 199:177-188. [PMID: 36841362 DOI: 10.1016/j.freeradbiomed.2023.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Numerous pieces of evidence demonstrate that oxidative stress impairs biological functions, speeds up aging, and has a role in a variety of human diseases, including systemic and oral inflammatory disorders, and even cancer. Therefore, technologies providing accurate measures of oxidative stress indicators or biomarkers appear essential in the identification/prevention of such diseases, and in their management. Particularly advantageous is the employement of point-of-care tests based on affordable and small biochips since they can quickly process biological samples and deliver results near the point of care for a prompt therapeutic intervention. Malondialdehyde (MDA) is a key byproduct of oxidative reaction and has been identified as an effective marker of oxidative stress. Herein, we describe the detection of MDA in buffer and in a complex matrix such as saliva, using a plasmonic optical fiber device combined with a highly selective anti-MDA antibody. The experimental results highlight the excellent performance of the proposed biosensor, as well as its ability to provide a low-cost point-of-care test (PoC-T) to be used in real life situations. We demonstrated that a single saliva dilution step and a short incubation time are required for the accurate detection of low concentrations of total MDA (free and conjugated). As a proof-of-concept of future biomedical applications, the method has been tested to determine MDA concentration in saliva of a periodontitis patient compared to that of a healthy control. The obtained findings represent the basis for developing PoC-Ts to be employed in monitoring oral diseases like periodontitis, oral cancers or systemic oxidative-stress associated pathologies. Conclusively, our study puts the ground for an oxidative stress biosensor widely-applicable to different scenarios.
Collapse
Affiliation(s)
- Debora Bencivenga
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via de Crecchio, 7 - 80138, Naples, Italy
| | - Francesco Arcadio
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma, 9 - 81031, Aversa, (CE), Italy
| | - Angelantonio Piccirillo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", via De Crecchio, 6 - 80138, Naples, Italy
| | - Marco Annunziata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", via De Crecchio, 6 - 80138, Naples, Italy.
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via de Crecchio, 7 - 80138, Naples, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma, 9 - 81031, Aversa, (CE), Italy.
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via de Crecchio, 7 - 80138, Naples, Italy.
| | - Luigi Zeni
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma, 9 - 81031, Aversa, (CE), Italy
| | - Luigi Guida
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", via De Crecchio, 6 - 80138, Naples, Italy
| |
Collapse
|
4
|
Ben Attig J, Latrous L, Galvan I, Zougagh M, Ríos Á. Rapid determination of malondialdehyde in serum samples using a porphyrin-functionalized magnetic graphene oxide electrochemical sensor. Anal Bioanal Chem 2023; 415:2071-2080. [PMID: 36808275 PMCID: PMC10079708 DOI: 10.1007/s00216-023-04594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
An electrochemical sensor based on a screen-printed carbon electrode (SPCE) modified with porphyrin-functionalized magnetic graphene oxide (TCPP-MGO) was developed for the sensitive and selective determination of malondialdehyde (MDA), an important biomarker of oxidative damage, in serum samples. The coupling of TCPP with MGO allows the exploitation of the magnetic properties of the material for separation, preconcentration, and manipulation of analyte, which is selectively captured onto the TCPP-MGO surface. The electron-transfer capability in the SPCE was improved through derivatization of MDA with diaminonaphthalene (DAN) (MDA-DAN). TCPP-MGO-SPCEs have been employed to monitor the differential pulse voltammetry (DVP) levels of the whole material, which is related to the amount of the captured analyte. Under optimum conditions, the nanocomposite-based sensing system has proved to be suitable for the monitoring of MDA, presenting a wide linear range (0.01-100 µM) with a correlation coefficient of 0.9996. The practical limit of quantification (P-LOQ) of the analyte was 0.010 µM, and the relative standard deviation (RSD) was 6.87% for 30 µM MDA concentration. Finally, the developed electrochemical sensor has demonstrated to be adequate for bioanalytical applications, presenting an excellent analytical performance for the routine monitoring of MDA in serum samples.
Collapse
Affiliation(s)
- Jihène Ben Attig
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain.,Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain.,Laboratoire de Chimie Analytique Et Electrochimie, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, University Campus of El Manar II, 2092, Tunis, Tunisia
| | - Latifa Latrous
- Laboratoire de Chimie Minérale Appliquée, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, University Campus of El Manar II, 2092, Tunis, Tunisia
| | - Ismael Galvan
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, 28006, Madrid, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain.,Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, 02071, Albacete, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain. .,Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain.
| |
Collapse
|
5
|
Bodaghi A, Fattahi N, Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 2023; 9:e13323. [PMID: 36744065 PMCID: PMC9884646 DOI: 10.1016/j.heliyon.2023.e13323] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The use of biomarkers as early warning systems in the evaluation of disease risk has increased markedly in the last decade. Biomarkers are indicators of typical biological processes, pathogenic processes, or pharmacological reactions to therapy. The application and identification of biomarkers in the medical and clinical fields have an enormous impact on society. In this review, we discuss the history, various definitions, classifications, characteristics, and discovery of biomarkers. Furthermore, the potential application of biomarkers in the diagnosis, prognosis, and treatment of various diseases over the last decade are reviewed. The present review aims to inspire readers to explore new avenues in biomarker research and development.
Collapse
Affiliation(s)
- Ali Bodaghi
- Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| | - Nadia Fattahi
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Trita Nanomedicine Research and Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, 45371-38791, Iran,Corresponding author. Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.;
| |
Collapse
|
6
|
Metal nanoparticles-assisted early diagnosis of diseases. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Nadar PM, Merrill MA, Austin K, Strakowski SM, Halpern JM. The emergence of psychoanalytical electrochemistry: the translation of MDD biomarker discovery to diagnosis with electrochemical sensing. Transl Psychiatry 2022; 12:372. [PMID: 36075922 PMCID: PMC9452859 DOI: 10.1038/s41398-022-02138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 01/30/2023] Open
Abstract
The disease burden and healthcare costs of psychiatric diseases along with the pursuit to understand their underlying biochemical mechanisms have led to psychiatric biomarker investigations. Current advances in evaluating candidate biomarkers for psychiatric diseases, such as major depressive disorder (MDD), focus on determining a specific biomarker signature or profile. The origins of candidate biomarkers are heterogenous, ranging from genomics, proteomics, and metabolomics, while incorporating associations with clinical characterization. Prior to clinical use, candidate biomarkers must be validated by large multi-site clinical studies, which can be used to determine the ideal MDD biomarker signature. Therefore, identifying valid biomarkers has been challenging, suggesting the need for alternative approaches. Following validation studies, new technology must be employed to transition from biomarker discovery to diagnostic biomolecular profiling. Current technologies used in discovery and validation, such as mass spectroscopy, are currently limited to clinical research due to the cost or complexity of equipment, sample preparation, or measurement analysis. Thus, other technologies such as electrochemical detection must be considered for point-of-care (POC) testing with the needed characteristics for physicians' offices. This review evaluates the advantages of using electrochemical sensing as a primary diagnostic platform due to its rapidity, accuracy, low cost, biomolecular detection diversity, multiplexed capacity, and instrument flexibility. We evaluate the capabilities of electrochemical methods in evaluating current candidate MDD biomarkers, individually and through multiplexed sensing, for promising applications in detecting MDD biosignatures in the POC setting.
Collapse
Affiliation(s)
- Priyanka M Nadar
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Mckenna A Merrill
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Katherine Austin
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Stephen M Strakowski
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
8
|
Montoro-Leal P, Zougagh M, Sánchez-Ruiz A, Ríos Á, Vereda Alonso E. Magnetic graphene molecularly imprinted polypyrrole polymer (MGO@MIPy) for electrochemical sensing of malondialdehyde in serum samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Lipid Peroxidation Produces a Diverse Mixture of Saturated and Unsaturated Aldehydes in Exhaled Breath That Can Serve as Biomarkers of Lung Cancer-A Review. Metabolites 2022; 12:metabo12060561. [PMID: 35736492 PMCID: PMC9229171 DOI: 10.3390/metabo12060561] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The peroxidation of unsaturated fatty acids is a widely recognized metabolic process that creates a complex mixture of volatile organic compounds including aldehydes. Elevated levels of reactive oxygen species in cancer cells promote random lipid peroxidation, which leads to a variety of aldehydes. In the case of lung cancer, many of these volatile aldehydes are exhaled and are of interest as potential markers of the disease. Relevant studies reporting aldehydes in the exhaled breath of lung cancer patients were collected for this review by searching the PubMed and SciFindern databases until 25 May 2022. Information on breath test results, including the biomarker collection, preconcentration, and quantification methods, was extracted and tabulated. Overall, 44 studies were included spanning a period of 34 years. The data show that, as a class, aldehydes are significantly elevated in the breath of lung cancer patients at all stages of the disease relative to healthy control subjects. The type of aldehyde detected and/or deemed to be a biomarker is highly dependent on the method of exhaled breath sampling and analysis. Unsaturated aldehydes, detected primarily when derivatized during preconcentration, are underrepresented as biomarkers given that they are also likely products of lipid peroxidation. Pentanal, hexanal, and heptanal were the most reported aldehydes in studies of exhaled breath from lung cancer patients.
Collapse
|
10
|
Abed AS, Mishaal Mohammed A, Khalaf YH. Novel photothermal therapy using platinum nanoparticles in synergy with near-infrared radiation (NIR) against human breast cancer MCF-7 cell line. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Breath as the mirror of our body is the answer really blowing in the wind? Recent technologies in exhaled breath analysis systems as non-invasive sensing platforms. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Tudorachi NB, Totu EE, Fifere A, Ardeleanu V, Mocanu V, Mircea C, Isildak I, Smilkov K, Cărăuşu EM. The Implication of Reactive Oxygen Species and Antioxidants in Knee Osteoarthritis. Antioxidants (Basel) 2021; 10:985. [PMID: 34205576 PMCID: PMC8233827 DOI: 10.3390/antiox10060985] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Knee osteoarthritis (KOA) is a chronic multifactorial pathology and a current and essential challenge for public health, with a negative impact on the geriatric patient's quality of life. The pathophysiology is not fully known; therefore, no specific treatment has been found to date. The increase in the number of newly diagnosed cases of KOA is worrying, and it is essential to reduce the risk factors and detect those with a protective role in this context. The destructive effects of free radicals consist of the acceleration of chondrosenescence and apoptosis. Among other risk factors, the influence of redox imbalance on the homeostasis of the osteoarticular system is highlighted. The evolution of KOA can be correlated with oxidative stress markers or antioxidant status. These factors reveal the importance of maintaining a redox balance for the joints and the whole body's health, emphasizing the importance of an individualized therapeutic approach based on antioxidant effects. This paper aims to present an updated picture of the implications of reactive oxygen species (ROS) in KOA from pathophysiological and biochemical perspectives, focusing on antioxidant systems that could establish the premises for appropriate treatment to restore the redox balance and improve the condition of patients with KOA.
Collapse
Affiliation(s)
- Nicoleta Bianca Tudorachi
- Faculty of Medicine, “Ovidius” University of Constanța, Mamaia Boulevard 124, 900527 Constanța, Romania; (N.B.T.); (V.A.)
| | - Eugenia Eftimie Totu
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1–5 Polizu Street, 011061 Bucharest, Romania
| | - Adrian Fifere
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Valeriu Ardeleanu
- Faculty of Medicine, “Ovidius” University of Constanța, Mamaia Boulevard 124, 900527 Constanța, Romania; (N.B.T.); (V.A.)
| | - Veronica Mocanu
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (V.M.); (C.M.)
| | - Cornelia Mircea
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (V.M.); (C.M.)
| | - Ibrahim Isildak
- Faculty of Chemistry-Metallurgy, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Katarina Smilkov
- Faculty of Medical Sciences, Division of Pharmacy, Department of Applied Pharmacy, Goce Delcev University, Krste Misirkov Street, No. 10-A, 2000 Stip, North Macedonia;
| | - Elena Mihaela Cărăuşu
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, “Nicolae Leon” Building, 13 Grigore Ghica Street, 700259 Iasi, Romania;
| |
Collapse
|
13
|
Non-invasive bioassay of Cytokeratin Fragment 21.1 (Cyfra 21.1) protein in human saliva samples using immunoreaction method: An efficient platform for early-stage diagnosis of oral cancer based on biomedicine. Biomed Pharmacother 2020; 131:110671. [DOI: 10.1016/j.biopha.2020.110671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
|
14
|
Khalid M, Hassani S, Abdollahi M. Metal-induced oxidative stress: an evidence-based update of advantages and disadvantages. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
16
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
17
|
Ultrasensitive immunoassay of breast cancer type 1 susceptibility protein (BRCA1) using poly (dopamine-beta cyclodextrine-Cetyl trimethylammonium bromide) doped with silver nanoparticles: A new platform in early stage diagnosis of breast cancer and efficient management. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Eftekhari A, Hasanzadeh M, Sharifi S, Dizaj SM, Khalilov R, Ahmadian E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. Int J Biol Macromol 2018; 124:1246-1255. [PMID: 30513307 DOI: 10.1016/j.ijbiomac.2018.11.277] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
Abstract
Non-invasive diagnosis of cancer is often the key to effective treatment and patient survival. Saliva as a multi-constituent oral fluid comprises various disease signaling biomarkers, holds great potential for early-stage cancer diagnostics with cost-effective and easy collection, storage, transport and processing. Therefore, detection of biomarkers and proteins in the saliva samples is highly demand. The current review was performed using reliable internet database (mainly PubMed) to provide an overview of the most recent developments on non-invasive diagnosis of cancers in saliva and highlights main challenges and future prospects in sensing of the salivary biomarkers. The conventional detection methods of cancer biomarkers in saliva is discussed in the paper, however, the main focus is on non-invasive diagnosis of cancers in saliva using immunosensing (electrochemical, optical, piezoelectric), DNA based sensors, aptasensors and peptide based bio-assays The reviewed literature revealed that non-invasive cancer detection methods using the mentioned biosensors and without any processing of saliva sample offers a quick, sensitive, specific and cost effective analytical tool. Besides, salivary based detection methods can be used for simultaneous detection of panels of disease specific biomarkers in a real time manner or as home testing kits in near future.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rovshan Khalilov
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan, Institute of Radiation Problems of NAS Azerbaijan, Baku, Azerbaijan
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|