1
|
Ranjan S, Adams E, Deconinck E. Multidimensional Chromatographic Fingerprinting Combined with Chemometrics for the Identification of Regulated Plants in Suspicious Plant Food Supplements. Molecules 2023; 28:molecules28083632. [PMID: 37110870 PMCID: PMC10146433 DOI: 10.3390/molecules28083632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The popularity of plant food supplements has seen explosive growth all over the world, making them susceptible to adulteration and fraud. This necessitates a screening approach for the detection of regulated plants in plant food supplements, which are usually composed of complex plant mixtures, thus making the approach not so straightforward. This paper aims to tackle this problem by developing a multidimensional chromatographic fingerprinting method aided by chemometrics. To render more specificity to the chromatogram, a multidimensional fingerprint (absorbance × wavelength × retention time) was considered. This was achieved by selecting several wavelengths through a correlation analysis. The data were recorded using ultra-high-performance liquid chromatography (UHPLC) coupled with diode array detection (DAD). Chemometric modelling was performed by partial least squares-discriminant analysis (PLS-DA) through (a) binary modelling and (b) multiclass modelling. The correct classification rates (ccr%) by cross-validation, modelling, and external test set validation were satisfactory for both approaches, but upon further comparison, binary models were preferred. As a proof of concept, the models were applied to twelve samples for the detection of four regulated plants. Overall, it was revealed that the combination of multidimensional fingerprinting data with chemometrics was feasible for the identification of regulated plants in complex botanical matrices.
Collapse
Affiliation(s)
- Surbhi Ranjan
- Section of Medicines and Health Products, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
- Department of Pharmaceutical & Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Erwin Adams
- Department of Pharmaceutical & Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Eric Deconinck
- Section of Medicines and Health Products, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| |
Collapse
|
2
|
Deconinck E, Ranjan S. Chromatographic fingerprinting for the detection of herbal adulteration and herbal fraud in plant food supplements. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.04.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Eric Deconinck
- Scientific Direction Chemical and Physical Health Risks, Section Medicines and Health Products,Sciensano, Juliette Wytsmanstraat 14 1050 Brussels, Belgium
| | - Surbhi Ranjan
- KU Leuven, University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923, B-3000, Leuven, Belgium
| |
Collapse
|
3
|
Du H. Forensic Characterization of Tires by Attenuated Total Reflectance–Fourier Transform Infrared (ATR–FTIR) Spectroscopy and Machine Learning Algorithms. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2138422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Haojun Du
- Department of Traffic Management, Hunan Police College, Changsha, Hunan, China
| |
Collapse
|
4
|
Wang Y, Lei Z, Ye R, Zhou W, Zhou Y, Zou Z, Li J, Yi L, Dai Z. Effects of Cadmium on Physiochemistry and Bioactive Substances of Muskmelon ( Cucumis melo L.). Molecules 2022; 27:molecules27092913. [PMID: 35566265 PMCID: PMC9101123 DOI: 10.3390/molecules27092913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Muskmelon pedicel is the fruit stalk of muskmelon and one of the traditional Chinese medicines, which can be used to treat jaundice, diabetes and neuropathy. However, in recent years, agricultural soil heavy metal cadmium (Cd) pollution has become serious, coupled with the imperfect sales management of herbal medicine, increasing the potential health risk of contaminated herbal medicine in the human body. In this paper, the comprehensive quality of contaminated muskmelon was tested. The results showed that Cd stress significantly inhibited the growth of muskmelon plants, reduced the anthocyanin and chlorophyll contents, and increased the fruit size and sweetness of muskmelon. In addition, heavy metal Cd can also cause oxidative stress in plants, resulting in a series of changes in antioxidant enzyme activities. In the experimental group, the content of polyphenols and saponins increased by 27.02% and 23.92%, respectively, after high-concentration Cd treatment, which may be a mechanism of plant resistance to stress. This paper reveals that the content of bioactive substances in Chinese herbal medicine is high, but the harm in heavy metals cannot be underestimated, which should be paid attention to by relevant departments.
Collapse
Affiliation(s)
- Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Zhen Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Rongbin Ye
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Wei Zhou
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Ying Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Zhengkang Zou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
- Correspondence: (J.L.); (Z.D.)
| | - Licong Yi
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
- Correspondence: (J.L.); (Z.D.)
| |
Collapse
|
5
|
Durazzo A, Sorkin BC, Lucarini M, Gusev PA, Kuszak AJ, Crawford C, Boyd C, Deuster PA, Saldanha LG, Gurley BJ, Pehrsson PR, Harnly JM, Turrini A, Andrews KW, Lindsey AT, Heinrich M, Dwyer JT. Analytical Challenges and Metrological Approaches to Ensuring Dietary Supplement Quality: International Perspectives. Front Pharmacol 2022; 12:714434. [PMID: 35087401 PMCID: PMC8787362 DOI: 10.3389/fphar.2021.714434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022] Open
Abstract
The increased utilization of metrology resources and expanded application of its' approaches in the development of internationally agreed upon measurements can lay the basis for regulatory harmonization, support reproducible research, and advance scientific understanding, especially of dietary supplements and herbal medicines. Yet, metrology is often underappreciated and underutilized in dealing with the many challenges presented by these chemically complex preparations. This article discusses the utility of applying rigorous analytical techniques and adopting metrological principles more widely in studying dietary supplement products and ingredients, particularly medicinal plants and other botanicals. An assessment of current and emerging dietary supplement characterization methods is provided, including targeted and non-targeted techniques, as well as data analysis and evaluation approaches, with a focus on chemometrics, toxicity, dosage form performance, and data management. Quality assessment, statistical methods, and optimized methods for data management are also discussed. Case studies provide examples of applying metrological principles in thorough analytical characterization of supplement composition to clarify their health effects. A new frontier for metrology in dietary supplement science is described, including opportunities to improve methods for analysis and data management, development of relevant standards and good practices, and communication of these developments to researchers and analysts, as well as to regulatory and policy decision makers in the public and private sectors. The promotion of closer interactions between analytical, clinical, and pharmaceutical scientists who are involved in research and product development with metrologists who develop standards and methodological guidelines is critical to advance research on dietary supplement characterization and health effects.
Collapse
Affiliation(s)
| | - Barbara C Sorkin
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| | | | - Pavel A Gusev
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - Adam J Kuszak
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| | - Cindy Crawford
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Courtney Boyd
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Leila G Saldanha
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| | - Bill J Gurley
- National Center for Natural Products Research, University of Mississippi, Bethesda, MD, United States
| | - Pamela R Pehrsson
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - James M Harnly
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - Aida Turrini
- CREA - Research Centre for Food and Nutrition, Rome, Italy
| | - Karen W Andrews
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - Andrea T Lindsey
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Michael Heinrich
- UCL School of Pharmacy, Pharmacognosy and Phytotherapy, London, United Kingdom
| | - Johanna T Dwyer
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| |
Collapse
|
6
|
Abraham EJ, Kellogg JJ. Chemometric-Guided Approaches for Profiling and Authenticating Botanical Materials. Front Nutr 2021; 8:780228. [PMID: 34901127 PMCID: PMC8663772 DOI: 10.3389/fnut.2021.780228] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/31/2021] [Indexed: 01/08/2023] Open
Abstract
Botanical supplements with broad traditional and medicinal uses represent an area of growing importance for American health management; 25% of U.S. adults use dietary supplements daily and collectively spent over $9. 5 billion in 2019 in herbal and botanical supplements alone. To understand how natural products benefit human health and determine potential safety concerns, careful in vitro, in vivo, and clinical studies are required. However, botanicals are innately complex systems, with complicated compositions that defy many standard analytical approaches and fluctuate based upon a plethora of factors, including genetics, growth conditions, and harvesting/processing procedures. Robust studies rely upon accurate identification of the plant material, and botanicals' increasing economic and health importance demand reproducible sourcing, as well as assessment of contamination or adulteration. These quality control needs for botanical products remain a significant problem plaguing researchers in academia as well as the supplement industry, thus posing a risk to consumers and possibly rendering clinical data irreproducible and/or irrelevant. Chemometric approaches that analyze the small molecule composition of materials provide a reliable and high-throughput avenue for botanical authentication. This review emphasizes the need for consistent material and provides insight into the roles of various modern chemometric analyses in evaluating and authenticating botanicals, focusing on advanced methodologies, including targeted and untargeted metabolite analysis, as well as the role of multivariate statistical modeling and machine learning in phytochemical characterization. Furthermore, we will discuss how chemometric approaches can be integrated with orthogonal techniques to provide a more robust approach to authentication, and provide directions for future research.
Collapse
Affiliation(s)
- Evelyn J Abraham
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University (PSU), University Park, PA, United States
| | - Joshua J Kellogg
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University (PSU), University Park, PA, United States.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
7
|
Ichim MC, Booker A. Chemical Authentication of Botanical Ingredients: A Review of Commercial Herbal Products. Front Pharmacol 2021; 12:666850. [PMID: 33935790 PMCID: PMC8082499 DOI: 10.3389/fphar.2021.666850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Chemical methods are the most important and widely used traditional plant identification techniques recommended by national and international pharmacopoeias. We have reviewed the successful use of different chemical methods for the botanical authentication of 2,386 commercial herbal products, sold in 37 countries spread over six continents. The majority of the analyzed products were reported to be authentic (73%) but more than a quarter proved to be adulterated (27%). At a national level, the number of products and the adulteration proportions varied very widely. Yet, the adulteration reported for the four countries, from which more than 100 commercial products were purchased and their botanical ingredients chemically authenticated, was 37% (United Kingdom), 31% (Italy), 27% (United States), and 21% (China). Simple or hyphenated chemical analytical techniques have identified the total absence of labeled botanical ingredients, substitution with closely related or unrelated species, the use of biological filler material, and the hidden presence of regulated, forbidden or allergenic species. Additionally, affecting the safety and efficacy of the commercial herbal products, other low quality aspects were reported: considerable variability of the labeled metabolic profile and/or phytochemical content, significant product-to-product variation of botanical ingredients or even between batches by the same manufacturer, and misleading quality and quantity label claims. Choosing an appropriate chemical technique can be the only possibility for assessing the botanical authenticity of samples which have lost their diagnostic microscopic characteristics or were processed so that DNA cannot be adequately recovered.
Collapse
Affiliation(s)
- Mihael Cristin Ichim
- “Stejarul” Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania
| | - Anthony Booker
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
8
|
Li HY, Gan RY, Shang A, Mao QQ, Sun QC, Wu DT, Geng F, He XQ, Li HB. Plant-Based Foods and Their Bioactive Compounds on Fatty Liver Disease: Effects, Mechanisms, and Clinical Application. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6621644. [PMID: 33728021 PMCID: PMC7939748 DOI: 10.1155/2021/6621644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Fatty liver disease (FLD), including nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), is a serious chronic metabolic disease that affects a wide range of people. Lipid accumulation accompanied by oxidative stress and inflammation in the liver is the most important pathogenesis of FLD. The plant-based, high-fiber, and low-fat diet has been recommended to manage FLD for a long time. This review discusses the current state of the art into the effects, mechanisms, and clinical application of plant-based foods in NAFLD and AFLD, with highlighting related molecular mechanisms. Epidemiological evidence revealed that the consumption of several plant-based foods was beneficial to alleviating FLD. Further experimental studies found out that fruits, spices, teas, coffee, and other plants, as well as their bioactive compounds, such as resveratrol, anthocyanin, curcumin, and tea polyphenols, could alleviate FLD by ameliorating hepatic steatosis, oxidative stress, inflammation, gut dysbiosis, and apoptosis, as well as regulating autophagy and ethanol metabolism. More importantly, clinical trials confirmed the beneficial effects of plant-based foods on patients with fatty liver. However, several issues need to be further studied especially the safety and effective doses of plant-based foods and their bioactive compounds. Overall, certain plant-based foods are promising natural sources of bioactive compounds to prevent and alleviate fatty liver disease.
Collapse
Affiliation(s)
- Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Quan-Cai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiao-Qin He
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Turrini F, Donno D, Beccaro GL, Pittaluga A, Grilli M, Zunin P, Boggia R. Bud-Derivatives, a Novel Source of Polyphenols and How Different Extraction Processes Affect Their Composition. Foods 2020; 9:E1343. [PMID: 32977484 PMCID: PMC7598208 DOI: 10.3390/foods9101343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022] Open
Abstract
The use of herbal food supplements, as a concentrate form of vegetable extracts, increased so much over the past years to count them among the relevant sources of dietetic polyphenols. Bud-derivatives are a category of botanicals perceived as a "new entry" in this sector since they are still poorly studied. Due to the lack of a manufacturing process specification, very different products can be found on the market in terms of their polyphenolic profile depending on the experimental conditions of manufacturing. In this research two different manufacturing processes, using two different protocols, and eight species (Carpinus betulus L., Cornus mas L., Ficus carica L., Fraxinus excelsior L., Larix decidua Mill., Pinus montana Mill., Quercus petraea (Matt.) Liebl., Tilia tomentosa Moench), commonly used to produce bud-derivatives, have been considered as a case study. An untargeted spectroscopic fingerprint of the extracts, coupled to chemometrics, provide to be a useful tool to identify these botanicals. The targeted phytochemical fingerprint by HPLC provided a screening of the main bud-derivatives polyphenolic classes highlighting a high variability depending on both method and protocol used. Nevertheless, ultrasonic extraction proved to be less sensitive to the different extraction protocols than conventional maceration regarding the extract polyphenolic profile.
Collapse
Affiliation(s)
- Federica Turrini
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.P.); (M.G.); (P.Z.); (R.B.)
| | - Dario Donno
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy; (D.D.); (G.L.B.)
| | - Gabriele Loris Beccaro
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy; (D.D.); (G.L.B.)
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.P.); (M.G.); (P.Z.); (R.B.)
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.P.); (M.G.); (P.Z.); (R.B.)
| | - Paola Zunin
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.P.); (M.G.); (P.Z.); (R.B.)
| | - Raffaella Boggia
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.P.); (M.G.); (P.Z.); (R.B.)
| |
Collapse
|
10
|
Zhao J, Jin X, Yang C, Quinto M, Shang H, Li D. Gas purge micro solvent extraction: A rapid and powerful tool for essential oil chromatographic fingerprints. J Pharm Biomed Anal 2020; 187:113339. [DOI: 10.1016/j.jpba.2020.113339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
|
11
|
Chen Y, Pan G, Xu W, Sun Q, Wang B, Zhang Y, Yang T. Spectrum-effect relationship study between HPLC fingerprints and antioxidant activity of Sabia parviflora. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1140:121970. [DOI: 10.1016/j.jchromb.2020.121970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 01/14/2023]
|
12
|
Chemometrics: a complementary tool to guide the isolation of pharmacologically active natural products. Drug Discov Today 2019; 25:27-37. [PMID: 31600581 DOI: 10.1016/j.drudis.2019.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
Abstract
Chemometrics offers an important complementary tool to enhance the searching and isolation of bioactive natural products from natural sources.
Collapse
|