1
|
Bryshten I, Paprotny Ł, Olszowy-Tomczyk M, Wianowska D. Quantitative Study of Vitamin K in Plants by Pressurized Liquid Extraction and LC-MS/MS. Molecules 2024; 29:4420. [PMID: 39339415 PMCID: PMC11434174 DOI: 10.3390/molecules29184420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The health-promoting properties of vitamin K stimulate the growing interest in this compound, which translates into the development of new analytical methodologies for its determination. New, more efficient methods of its isolation are sought, paying increasingly more attention to the methods within currently available extraction techniques that, owing to the optimization of the process, not only increase the extraction efficiency but are also economical and environmentally friendly. This article proposes a procedure for the extraction and analysis of one of the vitamin K vitamers, i.e., vitamin K1, using PLE and LC-MS/MS. It has been shown that the PLE technique can be optimized with a mathematical model-accelerating and reducing the costs of the extraction process-which, together with process automation, bodes well for industrial applications. The optimized process was used to extract vitamin K1 from various vegetables, showing very different contents of the test compound ranging from 1.22 to 114.30 µg/g dry weight for avocado and spinach, respectively. In addition, by showing the effect of water within the material subjected to extraction on the variable yield of vitamin K1, attention was drawn to the need to standardize the analytical methods used in assessing the quality of food products.
Collapse
Affiliation(s)
- Iryna Bryshten
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland; (I.B.); (M.O.-T.)
| | - Łukasz Paprotny
- Research and Development Centre, ALAB Laboratories, ul. Ceramiczna 1, 20-150 Lublin, Poland;
| | - Małgorzata Olszowy-Tomczyk
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland; (I.B.); (M.O.-T.)
| | - Dorota Wianowska
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland; (I.B.); (M.O.-T.)
| |
Collapse
|
2
|
Mrštná K, Matoušová K, Krčmová LK, Carazo A, Pourová J, Mladěnka P, Matysová L, Švec F. Analysis of vitamin K 1 and major K 2 variants in rat/human serum and lipoprotein fractions by a rapid, simple, and sensitive UHPLC-MS/MS method. J Chromatogr A 2024; 1714:464548. [PMID: 38043166 DOI: 10.1016/j.chroma.2023.464548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Determination of the various forms of vitamin K, which are involved in coagulation and other physiological processes in humans, is challenging and no standardized method is yet available. Therefore, a reliable and practical method was developed to quantify vitamin K levels in serum and additionally in lipoprotein fractions to clarify its distribution. The LC-MS/MS method for the determination of vitamin K1 and the three main isoforms of vitamin K2 (MK-4, MK-7, MK-9) was combined with a gradient ultracentrifugation technique to allow the separation of lipoprotein fractions. The chromatographic separation was carried out on a Kinetex™ C18 column using a mobile phase consisting mainly of methanol. The target analytes were detected by electrospray ionization mass spectrometry. The separation of all four substances was achieved after a simple sample preparation technique based on miniaturized liquid-liquid extraction. Our method of only 8.5 min revealed the levels of the major forms of vitamin K in 59 human and 12 rat sera and confirmed our hypothesis that vitamin K is primarily (about 50 %) found in the high-density lipoprotein fraction. The median concentrations of vitamin K1, MK-4, MK-7, and MK-9 were found to be 1.19, 2.98, 0.43, and < 0.71 nmol/L in human serum and 1.74, 6.75, less than 0.2, and less than 0.5 nmol/L in rat serum, respectively.
Collapse
Affiliation(s)
- Kristýna Mrštná
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - Alejandro Carazo
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| | - Jana Pourová
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| | - Ludmila Matysová
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| | - František Švec
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Du F, Yan M, Duan L, Xie G, Yao X, Hu W, Liu Y, Meng M, Chen J, Shao D. The study of bioavailability and endogenous circadian rhythm of menaquinone-7, a form of vitamin K 2, in healthy subjects. Br J Nutr 2023; 130:1885-1897. [PMID: 37132123 DOI: 10.1017/s0007114523001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Menaquinone-7 (MK-7), a multipotent vitamin K2, possesses a wide range of biological activities, a precise curative effect and excellent safety. A simple and rapid LC-APCI-MS/MS method for the determination of MK-7 in human plasma with single liquid-liquid extraction (LLE) extraction and 4·5-min analysis time has been developed and validated. Four per cent bovine serum albumin (BSA) was used as surrogate matrix for standard curves and endogenous baseline subtraction. This method was reproducible and reliable and was used to analyse of MK-7 in human plasma. The endogenous circadian rhythm and bioavailability of MK-7 were investigated in two randomised single-dose, open, one-way clinical trials (Study I and Study II). A total of five healthy male subjects were enrolled in Study I and 12 healthy male subjects in Study II. Single-dose (1 mg) of MK-7 was given to each subject under fasting condition, and all eligible subjects were given a restricting VK2 diet for 4 d prior to drug administration and during the trial. The experiment results of Study I demonstrated that endogenous MK-7 has no circadian rhythm in individuals. Both studies showed MK-7 are absorbed with peak plasma concentrations at about 6 h after intake and has a very long half-life time.
Collapse
Affiliation(s)
- Fan Du
- Chonggang General Hospital, Chongqing, People's Republic of China
| | - Min Yan
- Chongqing Denali Medpharma, Co., Ltd, Chongqing, People's Republic of China
| | - Lili Duan
- Guangdong Sungen Biotech, Co., Ltd, Shantou, People's Republic of China
| | - Guolong Xie
- Chonggang General Hospital, Chongqing, People's Republic of China
| | - Xiuhua Yao
- Chonggang General Hospital, Chongqing, People's Republic of China
| | - Wenjing Hu
- Chonggang General Hospital, Chongqing, People's Republic of China
| | - Yu Liu
- Chongqing Denali Medpharma, Co., Ltd, Chongqing, People's Republic of China
| | - Min Meng
- Chongqing Denali Medpharma, Co., Ltd, Chongqing, People's Republic of China
| | - Jiepeng Chen
- Guangdong Sungen Biotech, Co., Ltd, Shantou, People's Republic of China
| | - Di Shao
- Chonggang General Hospital, Chongqing, People's Republic of China
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, People's Republic of China
| |
Collapse
|
4
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Maus U. [Exercise therapy and basic treatment for osteoporosis]. ORTHOPADIE (HEIDELBERG, GERMANY) 2023; 52:793-798. [PMID: 37658239 DOI: 10.1007/s00132-023-04432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/03/2023]
Abstract
Physical training is an important component in the prophylaxis of osteoporosis and the prevention of fractures. Physical training not only has a direct effect on muscle strength and muscular performance, but also on the risk of falling and the fear of falling. Therefore, physical training is also an integral part of the basic treatment for osteoporosis. The recommendations for basic treatment are an adequate intake of nutrients, including protein in particular. The intake of calcium and vitamin D in sufficient quantities is also important and, in the case of specific drug therapy, also to avoid side effects and to ensure the therapeutic effect. This article summarizes the recommendations of the updated S3 guideline on the diagnosis and treatment of osteoporosis and explains the background for the recommendations included.
Collapse
Affiliation(s)
- Uwe Maus
- Klinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| |
Collapse
|
6
|
Ruditser R, Fu X, Booth SL, Liu M, Shen X, Shea MK. Lack of Consensus Between Measurements of Plasma Phylloquinone by Enzyme-Linked Immunosorbent assays and a Well-Validated High-Performance Liquid Chromatographic Method. Curr Dev Nutr 2023; 7:101959. [PMID: 37408980 PMCID: PMC10319223 DOI: 10.1016/j.cdnut.2023.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Enzyme-linked i2mmunosorbent assays (ELISAs) that measure circulating phylloquinone have become commercially available, but their validity is uncertain. The objective of this study was to compare plasma phylloquinone concentrations measured using two commercially available ELISAs with concentrations measured using a validated high-performance liquid chromatography (HPLC) assay in 108 samples obtained from participants in a depletion (∼10 mcg phylloquinone/d)-supplementation (∼500 mcg phylloquinone/d) study. The geometric mean of plasma phylloquinone measured with ELISA A was 0.70 nmol/L, 37% lower than that measured with HPLC. The mean of the ELISA B measures was 12.4 nmol/L, >700% higher than the HPLC measures. Plasma phylloquinone measured using HPLC was significantly lower during phylloquinone depletion than supplementation (0.4 ± 0.1 compared with 1.2 ± 0.2 nmol/L; P < 0.001). Neither of the two ELISAs detected any significant difference in plasma phylloquinone concentrations between depletion and supplementation (ELISA A, P = 0.76; ELISA B, P = 0.29). These findings reinforce the need to validate plasma phylloquinone assays as they become available. Curr Dev Nutr 2023;x:xx.
Collapse
|
7
|
杜 长, 李 娜. [Serum vitamin K 2 level and its association with bone metabolism markers in 1 732 children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1130-1135. [PMID: 36305114 PMCID: PMC9628004 DOI: 10.7499/j.issn.1008-8830.2205090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To study the level of serum vitamin K2 (VitK2) and its association with bone metabolism markers osteocalcin (OC), type I procollagen amino-terminal peptide (PINP), and type I collagen carboxy-terminal peptide (CTX) in children. METHODS A prospective analysis was performed on 1 732 children who underwent routine physical examination from October 2020 to October 2021. The serum levels of VitK2 and 25-hydroxy vitamin D [25(OH)D] were measured. According to age, they were divided into four groups: <1 year, 1-3 years group, >3-6 years group, and >6-14 years. A total of 309 children with 25(OH)D≥50 nmol/L were screened out, and serum levels of OC, PINP, and CTX were measured to investigate the correlation of the serum levels of OC, PINP, and CTX with serum VitK2 levels in different age groups. RESULTS The prevalence rate of serum VitK2 deficiency was 52.31% (906/1 732). The VitK2 deficiency group had higher prevalence rates of overweight/obesity and growth pain (≥3 years of age) than the normal VitK2 group (P<0.05). There were differences in the prevalence rate of serum VitK2 deficiency (P<0.0083) and the serum level of VitK2 (P<0.05) between the 1-3 years group and the >6-14 years group. The <1 year group had a higher serum level of CTX and a lower serum level of PINP than the >3-6 years group and the >6-14 years group (P<0.05). The <1 year group had a lower serum level of OC than the >6-14 years group (P<0.05). Serum VitK2 level was positively correlated with OC level (rs=0.347, P<0.01), and CTX level was negatively correlated with PINP level (rs=-0.317, P<0.01). CONCLUSIONS Serum VitK2 deficiency may be associated with overweight/obesity. Serum VitK2 may affect the level of OC and even bone health.
Collapse
|
8
|
Wianowska D, Bryshten I. New Insights into Vitamin K-From Its Natural Sources through Biological Properties and Chemical Methods of Quantitative Determination. Crit Rev Anal Chem 2022; 54:1502-1524. [PMID: 36083712 DOI: 10.1080/10408347.2022.2121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Vitamin K is one of the many health-promoting substances whose impact on the human body has been underestimated until recently. However, recently published research results have changed this situation, prompting some researchers to consider it a new panacea for diseases of old age. The result is a significant increase in interest in the accurate analysis of vitamin K in various types of samples, ranging from food, through dietary supplements, to biological matrices and clinical trials, both observational and interventional. This review summarizes the current state of knowledge about the proven and speculated biological activity of vitamin K and its importance for the world's aging societies, including the methods used for its isolation and analysis in various matrices types. Of all the analytical methods, the currently preferred methods of choice for the direct analysis of vitamin K are chromatographic methods, in particular liquid chromatography-tandem mass spectrometry. This technique, despite its sensitivity and selectivity, requires an appropriate stage of sample preparation. As there is still room for improvement in the efficiency of these methods, especially at the sample preparation stage, this review shows the directions that need to be taken to make these methods faster, more efficient and more environmentally friendly.
Collapse
Affiliation(s)
- Dorota Wianowska
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - Iryna Bryshten
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| |
Collapse
|
9
|
Palmer CR, Koch H, Shinde S, Blekkenhorst LC, Lewis JR, Croft KD, Hodgson JM, Sim M. Development of a Vitamin K Database for Commercially Available Food in Australia. Front Nutr 2021; 8:753059. [PMID: 34957176 PMCID: PMC8698136 DOI: 10.3389/fnut.2021.753059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Vitamin K content of foods is known to vary substantially by geographical location. In Australia, no Vitamin K database of food exists, thereby creating ambiguity when trying to develop national dietary intake guidelines. This investigation aimed to develop a Vitamin K database for commonly consumed foods that are commercially available in Australian supermarkets. The Vitamin K1 (phylloquinone; PK) and K2 (menaquinone; MK4, MK7) content of 60 foods known to contain Vitamin K were assessed (e.g., vegetables fruits, oils, animal products, dairy and fermented foods). A liquid chromatography with tandem mass spectrometry (LCMS/MS) method was developed and used to measure PK and MKs in different foods with an improved chromatographic separation and detection of Vitamin K's and their analogs. The LOD and LOQ for PK and MK4 was 0.1, 0.5 ng/ml and 0.5, 1.0 ng/ml, respectively. The majority foods contained detectable PK (53/60), about half contained MK4 (31/60), and few contained MK7 (3/60). PK was highest in green leafy vegetables, with moderate amounts in oils. Highest MK4 content was in chicken eggs and meat products such as ham and chicken. This database enables nutritional epidemiologist to estimate dietary Vitamin K intake, especially in Australian cohorts, for a range of health outcomes.
Collapse
Affiliation(s)
- Claire R. Palmer
- Institute for Nutrition Research, School of Health and Medical Sciences, Edith Cowan University, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Henrietta Koch
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Sujata Shinde
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Lauren C. Blekkenhorst
- Institute for Nutrition Research, School of Health and Medical Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Joshua R. Lewis
- Institute for Nutrition Research, School of Health and Medical Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Kevin D. Croft
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jonathan M. Hodgson
- Institute for Nutrition Research, School of Health and Medical Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Marc Sim
- Institute for Nutrition Research, School of Health and Medical Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Doherty A, Wall A, Khaldi N, Kussmann M. Artificial Intelligence in Functional Food Ingredient Discovery and Characterisation: A Focus on Bioactive Plant and Food Peptides. Front Genet 2021; 12:768979. [PMID: 34868255 PMCID: PMC8640466 DOI: 10.3389/fgene.2021.768979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Scientific research consistently demonstrates that diseases may be delayed, treated, or even prevented and, thereby, health may be maintained with health-promoting functional food ingredients (FFIs). Consumers are increasingly demanding sound information about food, nutrition, nutrients, and their associated health benefits. Consequently, a nutrition industry is being formed around natural foods and FFIs, the economic growth of which is increasingly driven by consumer decisions. Information technology, in particular artificial intelligence (AI), is primed to vastly expand the pool of characterised and annotated FFIs available to consumers, by systematically discovering and characterising natural, efficacious, and safe bioactive ingredients (bioactives) that address specific health needs. However, FFI-producing companies are lagging in adopting AI technology for their ingredient development pipelines for several reasons, resulting in a lack of efficient means for large-scale and high-throughput molecular and functional ingredient characterisation. The arrival of the AI-led technological revolution allows for the comprehensive characterisation and understanding of the universe of FFI molecules, enabling the mining of the food and natural product space in an unprecedented manner. In turn, this expansion of bioactives dramatically increases the repertoire of FFIs available to the consumer, ultimately resulting in bioactives being specifically developed to target unmet health needs.
Collapse
|
11
|
Mladěnka P, Macáková K, Kujovská Krčmová L, Javorská L, Mrštná K, Carazo A, Protti M, Remião F, Nováková L. Vitamin K - sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev 2021; 80:677-698. [PMID: 34472618 PMCID: PMC8907489 DOI: 10.1093/nutrit/nuab061] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vitamin K is traditionally connected with blood coagulation, since it is needed for the posttranslational modification of 7 proteins involved in this cascade. However, it is also involved in the maturation of another 11 or 12 proteins that play different roles, encompassing in particular the modulation of the calcification of connective tissues. Since this process is physiologically needed in bones, but is pathological in arteries, a great deal of research has been devoted to finding a possible link between vitamin K and the prevention of osteoporosis and cardiovascular diseases. Unfortunately, the current knowledge does not allow us to make a decisive conclusion about such a link. One possible explanation for this is the diversity of the biological activity of vitamin K, which is not a single compound but a general term covering natural plant and animal forms of vitamin K (K1 and K2) as well as their synthetic congeners (K3 and K4). Vitamin K1 (phylloquinone) is found in several vegetables. Menaquinones (MK4–MK13, a series of compounds known as vitamin K2) are mostly of a bacterial origin and are introduced into the human diet mainly through fermented cheeses. Current knowledge about the kinetics of different forms of vitamin K, their detection, and their toxicity are discussed in this review.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Kateřina Macáková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Kristýna Mrštná
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Michele Protti
- M. Protti is with the Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fernando Remião
- F. Remião is with the UCIBIO-REQUIMTE, Laboratory of Toxicology, The Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, Porto, Portugal
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | |
Collapse
|
12
|
Indyk HE, Gill BD, Wei S, Harvey L, Woollard DC. Quantitation of Vitamin K in Milk Products by Pre-column Reduction HPLC–Fluorescence. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01922-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Palmer CR, Blekkenhorst LC, Lewis JR, Ward NC, Schultz CJ, Hodgson JM, Croft KD, Sim M. Quantifying dietary vitamin K and its link to cardiovascular health: a narrative review. Food Funct 2021; 11:2826-2837. [PMID: 32211680 DOI: 10.1039/c9fo02321f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease is the leading cause of death and disability worldwide. Recent work suggests a link between vitamin K insufficiency and deficiency with vascular calcification, a marker of advanced atherosclerosis. Vitamin K refers to a group of fat-soluble vitamins important for blood coagulation, reducing inflammation, regulating blood calcium metabolism, as well as bone metabolism, all of which may play a role in promoting cardiovascular health. Presently, there is a lack of a comprehensive vitamin K database on individual foods, which are required to accurately calculate vitamin K1 and K2 intake for examination in epidemiological studies. This has likely contributed to ambiguity regarding the recommended daily intake of vitamin K, including whether vitamin K1 and K2 may have separate, partly overlapping functions. This review will discuss the presence of: (i) vitamin K1 and K2 in the diet; (ii) the methods of quantitating vitamin K compounds in foods; and (iii) provide an overview of the evidence for the cardiovascular health benefits of vitamin K in observational and clinical trials.
Collapse
Affiliation(s)
- Claire R Palmer
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia and School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia.
| | - Lauren C Blekkenhorst
- School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia. and School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Joshua R Lewis
- School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia. and School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia and Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie C Ward
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia and School of Public Health & Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Carl J Schultz
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia and Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia. and School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marc Sim
- School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia. and School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Electrochemical vitamin sensors: A critical review. Talanta 2021; 222:121645. [DOI: 10.1016/j.talanta.2020.121645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
|
15
|
Quantification of fat-soluble vitamins and their metabolites in biological matrices: an updated review. Bioanalysis 2020; 12:625-640. [DOI: 10.4155/bio-2020-0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fat-soluble vitamins (FSVs) are micronutrients essential in maintaining normal physiological function, metabolism and human growth. Ongoing increased awareness regarding FSV concentrations and their impact on human growth along with disease progression warrant the need of developing selective and sensitive analytical methods. LC–MS/MS is currently the method of choice for accurate quantitation of FSVs. However, there are multiple approaches for extraction, separation and calibration of FSVs in biological matrices. This review discusses recent LC–MS/MS methods for the simultaneous quantification of FSVs in biological matrices and summarizes sample pretreatment procedures, chromatographic conditions and calibration approaches. Current challenges and clinical applications in various disease states are also highlighted.
Collapse
|
16
|
Fiori J, Turroni S, Candela M, Gotti R. Assessment of gut microbiota fecal metabolites by chromatographic targeted approaches. J Pharm Biomed Anal 2019; 177:112867. [PMID: 31614303 DOI: 10.1016/j.jpba.2019.112867] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
Abstract
Gut microbiota, the specific microbial community of the gastrointestinal tract, by means of the production of microbial metabolites provides the host with several functions affecting metabolic and immunological homeostasis. Insights into the intricate relationships between gut microbiota and the host require not only the understanding of its structure and function but also the measurement of effector molecules acting along the gut microbiota axis. This article reviews the literature on targeted chromatographic approaches in analysis of gut microbiota specific metabolites in feces as the most accessible biological matrix which can directly probe the connection between intestinal bacteria and the (patho)physiology of the holobiont. Together with a discussion on sample collection and preparation, the chromatographic methods targeted to determination of some classes of microbiota-derived metabolites (e.g., short-chain fatty acids, bile acids, low molecular masses amines and polyamines, vitamins, neurotransmitters and related compounds) are discussed and their main characteristics, summarized in Tables.
Collapse
Affiliation(s)
- Jessica Fiori
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|