1
|
Tiwari S, Acharya P, Solanki B, Sharma AK, Rawat S. A review on efforts for improvement in medicinally important chemical constituents in Aconitum through biotechnological interventions. 3 Biotech 2023; 13:190. [PMID: 37193333 PMCID: PMC10183062 DOI: 10.1007/s13205-023-03578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/21/2023] [Indexed: 05/18/2023] Open
Abstract
The genus Aconitum belongs to the family Ranunculaceae, is endowed with more than 350 species on the earth. Medicinally important aconitine type of diterpenoid alkaloids are the characteristic compounds in most of the Aconitum species. The present review endeavored the major research carried out in the field of genetic resource characterization, pharmacological properties, phytochemistry, major factors influencing quantity, biosynthetic pathways and processing methods for recovery of active ingredients, variety improvement, propagation methods, and important metabolite production through cell/organ culture of various Aconitum species. More than 450 derivatives of aconitine-type C19 and C20-diterpenoid alkaloids along with a few other non-alkaloidal compounds, such as phenylpropanoids, flavonoids, terpenoids, and fatty acids, have been identified in the genus. A few Aconitum species and their common diterpenoid alkaloid compounds are also well characterized for analgesic, inflammatory and cytotoxic properties. However, the different isolated compound needs to be validated for supporting other traditional therapeutical uses of the plant species. Aconitine alkaloids shared common biosynthesis pathway, but their diversification mechanism remains unexplored in the genus. Furthermore, the process needs to be developed on secondary metabolite recovery, mass-scale propagation methods, and agro-technologies for maintaining the quality of products. Many species are losing their existence in nature due to over-exploitation or anthropogenic factors; thus, temporal monitoring of the population status in its habitat, and suitable management programs for ascertaining conservation needs to be developed.
Collapse
Affiliation(s)
- Sekhar Tiwari
- Department of Biotechnology, School of Sciences, P. P. Savani University, Surat, Gujarat India
| | - Puja Acharya
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok, Sikkim India
| | - Bharat Solanki
- Department of Biochemistry, M. B. Patel Science College, Sardar Patel University, Anand, Gujarat India
| | - Anish Kumar Sharma
- Department of Biotechnology, School of Sciences, P. P. Savani University, Surat, Gujarat India
| | - Sandeep Rawat
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok, Sikkim India
| |
Collapse
|
2
|
Pu T, Liu J, Dong J, Qian J, Zhou Z, Xia C, Wei G, Duan B. Microbial community diversity and function analysis of Aconitum carmichaelii Debeaux in rhizosphere soil of farmlands in Southwest China. Front Microbiol 2022; 13:1055638. [PMID: 36590406 PMCID: PMC9797738 DOI: 10.3389/fmicb.2022.1055638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Understanding how microbial communities affect plant growth is crucial for sustainable productivity and ecological health. However, in contrast with the crop system, there is limited information on the microbial community associated with the medicinal plant. We observed that altitude was the most influential factor on the soil microbial community structures of Aconitum carmichaelii Debeaux. For community composition, bacterial reads were assigned to 48 phyla, with Proteobacteria, Acidobacteriota, and Actinobacteriota being the dominant phyla. The fungal reads were assigned to seven phyla, and Ascomycota was the predominant phylum detected in most groups. The four dominant phyla were categorized as keystone taxa in the co-occurrence networks, suggesting that they may be involved in soil disease suppression and nutrient mobility. Bacterial co-occurrence networks had fewer edges, lower average degree, and lower density at YL1, HQ1, HQ2, BC, and DL than fungal networks, creating less intricate rhizosphere network patterns. Furthermore, the bacterial and fungal communities showed strong distance decay of similarity across the sampling range. Overall, this study improves our understanding of regulating rhizosphere microbial communities in soil systems and also provides potential production strategies for planting A. carmichaelii.
Collapse
Affiliation(s)
- Tingting Pu
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jie Liu
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jingjing Dong
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jun Qian
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Zhongyu Zhou
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Guangfei Wei
- College of Pharmaceutical Science, Dali University, Dali, China,Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Guangfei Wei, ; Baozhong Duan,
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China,*Correspondence: Guangfei Wei, ; Baozhong Duan,
| |
Collapse
|
3
|
Li X, Liang C, Su R, Wang X, Yao Y, Ding H, Zhou G, Luo Z, Zhang H, Li Y. An integrated strategy combining metabolomics and machine learning for the evaluation of bioactive markers that differentiate various bile. Front Chem 2022; 10:1005843. [PMID: 36339047 PMCID: PMC9627196 DOI: 10.3389/fchem.2022.1005843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/07/2024] Open
Abstract
Animal bile is an important component of natural medicine and is widely used in clinical treatment. However, it is easy to cause mixed applications during processing, resulting in uneven quality, which seriously affects and harms the interests and health of consumers. Bile acids are the major bioactive constituents of bile and contain a variety of isomeric constituents. Although the components are structurally similar, they exhibit different pharmacological activities. Identifying the characteristics of each animal bile is particularly important for processing and reuse. It is necessary to establish an accurate analysis method to distinguish different types of animal bile. We evaluated the biological activity of key feature markers from various animal bile samples. In this study, a strategy combining metabolomics and machine learning was used to compare the bile of three different animals, and four key markers were screened. Quantitative analysis of the key markers showed that the levels of Glycochenodeoxycholic acid (GCDCA) and Taurodeoxycholic acid (TDCA) were highest in pig bile; Glycocholic acid (GCA) and Cholic acid (CA) were the most abundant in bovine and sheep bile, respectively. In addition, four key feature markers significantly inhibited the production of NO in LPS-stimulated RAW264.7 macrophage cells. These findings will contribute to the targeted development of bile in various animals and provide a basis for its rational application.
Collapse
Affiliation(s)
- Xinyue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - ChenRui Liang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Su
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiang Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoran Ding
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanru Zhou
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zhanglong Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Li L, Zhang L, Liao T, Zhang C, Chen K, Huang Q. Advances on pharmacology and toxicology of aconitine. Fundam Clin Pharmacol 2022; 36:601-611. [PMID: 35060168 DOI: 10.1111/fcp.12761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Aconitum alkaloids are considered to be the characteristic bioactive ingredients of Aconitum species, which are widely applied to the treatment of diverse diseases, and aconitine (AC) is found in most Aconitum plants. Research evidence shows that low-dose AC has a good therapeutic potential in heart failure, myocardial infarction, neuroinflammatory diseases, rheumatic diseases, and tumors, which has become one of the hotspots in global research in recent years. However, the cardiotoxicity and neurotoxicity of AC have also attracted extensive attention. Excessive use of AC always induces ventricular tachyarrhythmia and heart arrest, even can be potentially lethal. Therefore, AC cannot simply be regarded as a good medicine or a toxicant, but its underlying curative and toxic properties remained chaos. In order to dig the unique pharmacological value of AC while preventing its toxicity, the pharmacological activities and toxic effects of AC were summarized in this paper, providing new insight into the safe and effective use of AC in clinical practice.
Collapse
Affiliation(s)
- Liuying Li
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Zigong City, Zigong, China
| | - Limin Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keling Chen
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Zhang L, Miao X, Li Y, Hu F, Ma D, Zhang Z, Sun Q, Zhu Y, Zhu Q. Traditional processing, uses, phytochemistry, pharmacology and toxicology of Aconitum sinomontanum Nakai: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115317. [PMID: 35469829 DOI: 10.1016/j.jep.2022.115317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a folk medicine, Aconitum sinomontanum Nakai (Ranunculaceae) a perennial herbaceous flowering plant, is a widely used traditional Chinese medicine. Its rhizomes and roots are known as 'Gaowutou' in China, and it has been traditionally used for the treatment of rheumatoid arthritis, painful swelling of joints, bruises and injuries and has been known to grow well in regions of high altitude such as Gansu, Tibet etc. THE AIM OF THE REVIEW: This systematic review the comprehensive knowledge of the A. sinomontanum, including its traditional processing and uses, chemical constituents, pharmacological activities, toxicity assessment, pharmacokinetics and metabolism, and its use in clinical settings to emphasize the benefits of this species. We also discuss expectations for prospective research and implementation of this herb. This work lays a solid foundation for further development of A. sinomontanum. MATERIALS AND METHOD Information on the studies of A. sinomontanum was collected from scientific journals, books, and reports via library and electronic data search (PubMed, Elsevier, Scopus, Google Scholar, Springer, Science Direct, Wiley, ACS, EMBASE, Web of Science and CNKI). Meanwhile, it was also obtained from published works of material medica, folk records, ethnopharmacological literatures, Ph.D. and Masters dissertation. RESULTS As a member of the Ranunculaceae family, A. sinomontanum possesses its up-and-coming biological characteristics. It is widely reported for treating rheumatoid arthritis, painful swelling of joints, bruises and injuries. Currently, over 71 phytochemical ingredients have been obtained and identified from different parts of A. sinomontanum. Among them, alkaloids, flavonoids, steroids, glycosides are the major bioactive constituents. Activities such as antinociceptive, anti-inflammatory, antitumor, antiarrhythmic, local anesthetic, antipyretic, antimicrobial, insecticidal and others have been corroborated in vivo and in vitro. These properties are attributed to different alkaloids. In addition, many of the active ingredients, such as lappaconitine, ranaconitine and total alkaloids have been used as quality markers. CONCLUSION This work contributes to update the ethnopharmacological uses, chemical constituents, pharmacological activities, toxicity assessment, pharmacokinetics and metabolism, and clinical settings information for A. sinomontanum, which provide basic information to help better understand the pharmacological and toxicological activities of A. sinomontanum in human. However, further in-depth studies are needed to determine the medical uses of this herb and its chemical constituents, pharmacological activities, clinical applications and toxicology.
Collapse
Affiliation(s)
- Lijun Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China.
| | - Yun Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China
| | - Dongni Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Pharmacy Department, Dunhuang Hospital of Gansu Province, Dunhuang, 736200, PR China
| | - Zhuanping Zhang
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Quanming Sun
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Yuanfeng Zhu
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Qingli Zhu
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| |
Collapse
|
6
|
Yang NJ, Liu YR, Tang ZS, Duan JA, Yan YF, Song ZX, Wang MG, Zhang YR, Chang BJ, Zhao ML, Zhao YT. Poria cum Radix Pini Rescues Barium Chloride-Induced Arrhythmia by Regulating the cGMP-PKG Signalling Pathway Involving ADORA1 in Zebrafish. Front Pharmacol 2021; 12:688746. [PMID: 34393777 PMCID: PMC8360851 DOI: 10.3389/fphar.2021.688746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022] Open
Abstract
The traditional Chinese medicine Poria cum Radix Pini (PRP) is a fungal medicinal material that has been proven to play an important role in the treatment of arrhythmia. However, the mechanism of its effect on arrhythmia is still unclear. In this study, network pharmacology and metabolomics correlation analysis methods were used to determine the key targets, metabolites and potential pathways involved in the effects of PRP on arrhythmia. The results showed that PRP can significantly improve cardiac congestion, shorten the SV-BA interval and reduce the apoptosis of myocardial cells induced by barium chloride in zebrafish. By upregulating the expression of the ADORA1 protein and the levels of adenosine and cGMP metabolites in the cGMP-PKG signalling pathway, PRP can participate in ameliorating arrhythmia. Therefore, we believe that PRP shows great potential for the treatment of arrhythmia.
Collapse
Affiliation(s)
- Ning-Juan Yang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan-Ru Liu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhi-Shu Tang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jin-Ao Duan
- Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ya-Feng Yan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhong-Xing Song
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | | | - Yu-Ru Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bai-Jin Chang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China.,Changchun University of Chinese Medicine, Changchun, China
| | - Meng-Li Zhao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan-Ting Zhao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
7
|
Zhou W, Liu H, Qiu LZ, Yue LX, Zhang GJ, Deng HF, Ni YH, Gao Y. Cardiac efficacy and toxicity of aconitine: A new frontier for the ancient poison. Med Res Rev 2021; 41:1798-1811. [PMID: 33512023 DOI: 10.1002/med.21777] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022]
Abstract
Aconitine (AC) is well-known as the main toxic ingredient and active compound of Aconitum species, of which several aconites are essential herbal medicines of Traditional Chinese Medicine (TCM) and widely applied to treat diverse diseases for their excellent anti-inflammatory, analgesic, and cardiotonic effects. However, the cardiotoxicity and neurotoxicity of AC attracted a lot of attention and made it a favorite botanic poison in history. Nowadays, the narrow therapeutic window of AC limits the clinical application of AC-containing herbal medicines; overdosing on AC always induces ventricular tachyarrhythmia and heart arrest, both of which are potentially lethal. But the underlying cardiotoxic mechanisms remained chaos. Recently, beyond its cardiotoxic effects, emerging evidence shows that low doses of AC or its metabolites could generate cardioprotective effects and are necessary to aconite's clinical efficacy. Consistent with TCM's theory that even toxic substances are powerful medicines, AC thus could not be simply identified as a toxicant or a drug. To prevent cardiotoxicity while digging the unique value of AC in cardiac pharmacology, there exists a huge urge to better know the characteristic of AC being a cardiotoxic agent or a potential heart drug. Here, this article reviews the advances of AC metabolism and focuses on the latest mechanistic findings of cardiac efficacy and toxicity of this aconite alkaloid or its metabolites. We also discuss how to prevent AC-related cardiotoxicity, as well as the issues before the development of AC-based medicines that should be solved, to provide new insight into the paradoxical nature of this ancient poison.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hong Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Zhen Qiu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan-Xin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guang-Jie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui-Fang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Hao Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Chen LL, Lai CJS, Mao LY, Yin BW, Tian M, Jin BL, Wei XY, Chen JL, Ge H, Zhao X, Li WY, Guo J, Cui GH, Huang LQ. Chemical constituents in different parts of seven species of Aconitum based on UHPLC-Q-TOF/MS. J Pharm Biomed Anal 2020; 193:113713. [PMID: 33160222 DOI: 10.1016/j.jpba.2020.113713] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/02/2023]
Abstract
Aconitum L., the main source of Aconitum medicinal materials, is rich in diterpenoid alkaloids. Several drugs derived from diterpenoid alkaloids are widely used to the current clinical treatment of pain, inflammation, and other symptoms. This paper aims to clarify the main metabolites and distribution of diterpenoid alkaloids in different parts of Aconitum plants. To that end, 7 species of Aconitum from three subgenera were analyzed by UHPLC-Q-TOF-MS under identical conditions. The fragmentation regularity of various types of diterpene alkaloids were determined and a total of 126 metabolites were identified by comparing the reference material and secondary mass spectrometry, with the literature. 67, 49, 17, 41, 14, 17 and 21 metabolites were identified from Aconitum carmichaeli, Aconitum stylosum, Aconitum sinomontanum, Aconitum vilmorinianum, Aconitum pendulum, Aconitum tanguticum and Aconitum gymnandrum, respectively. Meanwhile, the structure type of A. carmichaeli, A. stylosum, A. vilmorinianum, A. pendulum, A. gymnandrum were identified as C19 type, A. sinomontanum was C18 type, while A. tanguticum was C20 type. A high similarity of metabolites was found between A. stylosum and A. vilmorinianum. The quantitative analysis of 19 compounds and the relative peak area of all metabolites which obtained through internal standard berberine, highlighted compounds like karakoline, talatisamine and atisine as references for future study of metabolic pathways. Furthermore, results from metabolites distribution and relative peak area analysis suggest that the leaf of A. carmichaeli, the leaf and stem of A. stylosum and A. vilmorinianum, and the flower of A. pendulum have potential as medicinal resources and are worth further development. These results establish a foundation for the comprehensive utilization of Aconitum resources.
Collapse
Affiliation(s)
- Ling-Li Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chang-Jiang-Sheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liu-Ying Mao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bi-Wei Yin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University,Guangzhou 510006, China
| | - Mei Tian
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bao-Long Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xu-Ya Wei
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jin-Long Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hui Ge
- Gansu University of Traditional Chinese Medicine, Gansu 730000, China
| | - Xin Zhao
- Gansu University of Traditional Chinese Medicine, Gansu 730000, China
| | - Wen-Yuan Li
- Medical College of Qinghai University, Tibetan Medicine Research Center,Xining,810001,China
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang-Hong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|