1
|
Qian J, Su J, Zeng W, Wang Y, Hu Y, Kai G. Comparison of Salvianolic Acid A Adsorption by Phenylboronic-Acid-Functionalized Montmorillonites with Different Intercalators. Molecules 2023; 28:5244. [PMID: 37446905 DOI: 10.3390/molecules28135244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Due to its success in treating cardio-cerebrovascular illnesses, salvianolic acid A (SAA) from Salvia miltiorrhiza is of major importance for effective acquisition. For the adsorption of salvianolic acid, cationic polyelectrolytes, and amino-terminated silane intercalated with phenylboronic-acid-functionalized montmorillonites, known as phenylboronic-acid-functionalized montmorillonites with PEI (PMP) and phenylboronic-acid-functionalized montmorillonites with KH550 (PMK), respectively, were produced. In this paper, detailed comparisons of the SAA adsorption performance and morphology of two adsorbents were performed. PMP showed a higher adsorption efficiency (>88%) over a wide pH range. PMK showed less pH-dependent SAA adsorption with a faster adsorption kinetic fitting in a pseudo-second-order model. For both PMP and PMK, the SAA adsorption processes were endothermic. Additionally, it was clearer how temperature affected PMP adsorption. PMK has a higher adsorption selectivity. This study demonstrates how the type of intercalator can be seen to have an impact on adsorption behavior through various structural variations and offers an alternative suggestion for establishing a dependable method for the synthesis of functional montmorillonite from the intercalator's perspective.
Collapse
Affiliation(s)
- Jun Qian
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jiajia Su
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Weihuan Zeng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yue Wang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yingyuan Hu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China
| |
Collapse
|
2
|
Zhou Q, Yu C, Meng L, Ji W, Liu S, Pan C, Lan T, Wang L, Qu B. Research progress of applications for nano-materials in improved QuEChERS method. Crit Rev Food Sci Nutr 2023; 64:10517-10536. [PMID: 37345873 DOI: 10.1080/10408398.2023.2225613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach is widely used in sample pretreatment in agricultural products, food, environment, etc. And nano-materials are widely used in QuEChERS method due to its small size and large specific surface area. In this review, we examine the typical applications of several commonly used nano-materials in improved QuEChERS method. These materials include multi-walled carbon nanotubes (MWCNTs) and their derivatives, magnetic nanoparticles (MNPs), metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), lipid and protein adsorbent (LPAS), cucurbituril (CBs), and carbon nano-cages (CNCs), and so on. The strengths and weaknesses of each nano-material are presented, as well as the challenging aspects that need to be addressed in future research. By comparing the applications and the current technology development, this review suggests utilizing artificial intelligence (AI) to screen suitable combinations of purification agents and performing virtual simulation experiments to verify the reliability of this methodology. By doing so, we aim to accelerate the development of new products and decrease the cost of innovation. It also recommends designing smarter pretreatment instruments to enhance the convenience and automation of the sample pretreatment process and reduce the margin for human error.
Collapse
Affiliation(s)
- Qi Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, China
- China National Institute of Standardization, Beijing, PR China
| | - Congcong Yu
- China National Institute of Standardization, Beijing, PR China
| | - Lingling Meng
- China National Institute of Standardization, Beijing, PR China
| | - Wenhua Ji
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Songnan Liu
- Beijing Tea Quality Supervision and Inspection Station, Beijing, China
| | - Canping Pan
- College of Science, China Agricultural University, Beijing, China
| | - Tao Lan
- China National Institute of Standardization, Beijing, PR China
| | - Lihong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Bin Qu
- Beijing Knorth Co. Ltd, Beijing, China
| |
Collapse
|
3
|
Tran DT, Do CVT, Dinh CT, Dang MT, Le Ho KH, Le TG, Dao VH. Recovery of tetrodotoxin from pufferfish viscera extract by amine-functionalized magnetic nanocomposites. RSC Adv 2023; 13:18108-18121. [PMID: 37323433 PMCID: PMC10267608 DOI: 10.1039/d3ra02166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Tetrodotoxin (TTX) has been widely used in pharmacology, food poisoning analysis, therapeutic use, and neurobiology. In the last decades, the isolation and purification of TTX from natural sources (e.g., pufferfish) were mostly based on column chromatography. Recently, functional magnetic nanomaterials have been recognized as promising solid phases for the isolation and purification of bioactive compounds from aqueous matrices due to their effective adsorptive properties. Thus far, no studies have been reported on the utilization of magnetic nanomaterials for the purification of TTX from biological matrices. In this work, an effort has been made to synthesize Fe3O4@SiO2 and Fe3O4@SiO2-NH2 nanocomposites for the adsorption and recovery of TTX derivatives from a crude pufferfish viscera extract. The experimental data showed that Fe3O4@SiO2-NH2 displayed a higher affinity toward TTX derivatives than Fe3O4@SiO2, achieving maximal adsorption yields for 4epi-TTX, TTX, and Anh-TTX of 97.9, 99.6, and 93.8%, respectively, under the optimal conditions of contact time of 50 min, pH of 2, adsorbent dosage of 4 g L-1, initial adsorbate concentration of 1.92 mg L-1 4epi-TTX, 3.36 mg L-1 TTX and 1.44 mg L-1 Anh-TTX and temperature of 40 °C. Interestingly, desorption of 4epi-TTX, TTX, and Anh-TTX from Fe3O4@SiO2-NH2-TTX investigated at 50 °C was recorded to achieve the highest recovery yields of 96.5, 98.2, and 92.7% using 1% AA/ACN for 30 min reaction, respectively. Remarkably, Fe3O4@SiO2-NH2 can be regenerated up to three cycles with adsorptive performance remaining at nearly 90%, demonstrating a promising adsorbent for purifying TTX derivatives from pufferfish viscera extract and a potential replacement for resins used in column chromatography-based techniques.
Collapse
Affiliation(s)
- Dang Thuan Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| | - Cam Van T Do
- HaUI Institute of Technology, Hanoi University of Industry (HaUI) 298 Cau Dien, Bac Tu Liem Hanoi Vietnam
| | - Cuc T Dinh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| | - Mai T Dang
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| | - Khanh Hy Le Ho
- Institute of Oceanography, Vietnam Academy of Science and Technology (VAST) 01 Cau Da St. Nha Trang City 650000 Vietnam
| | - Truong Giang Le
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| | - Viet Ha Dao
- Institute of Oceanography, Vietnam Academy of Science and Technology (VAST) 01 Cau Da St. Nha Trang City 650000 Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| |
Collapse
|
4
|
Li Y, Zhang J, Zhang C, Dang W, Xue L, Liu H, Cheng H, Yan X. Facile and selective separation of anthraquinones by alizarin-modified iron oxide magnetic nanoparticles. J Chromatogr A 2023; 1702:464088. [PMID: 37230053 DOI: 10.1016/j.chroma.2023.464088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Anthraquinones are widely distributed in higher plants and possess broad biological activities. The conventional separation procedures for isolating anthraquinones from the plant crude extracts require multiple extraction, concentration, and column chromatography steps. In this study, we synthesized three alizarin (AZ)-modified Fe3O4 nanoparticles (Fe3O4@AZ, Fe3O4@SiO2-AZ, and Fe3O4@SiO2-PEI-AZ) by thermal solubilization method. Fe3O4@SiO2-PEI-AZ showed strong magnetic responsiveness, high methanol/water dispersion, good recyclability, and high loading capacity for anthraquinones. To evaluate the feasibility of using Fe3O4@SiO2-PEI-AZ for separating various aromatic compounds, we employed molecular dynamics simulations to predict the adsorption/desorption effects of PEI-AZ for various aromatic compounds in different methanol concentrations. The results showed that the anthraquinones could be efficiently separated from the monocyclic and bicyclic aromatic compounds by adjusting the methanol/water ratio. The Fe3O4@SiO2-PEI-AZ nanoparticles were then used to separate the anthraquinones from the rhubarb extract. At 5% methanol, all the anthraquinones were adsorbed by the nanoparticles, thus allowing their separation from other components in the crude extract. Compared with the conventional separation methods, this adsorption method has the advantages of high adsorption specificity, simple operation, and solvent saving. This method sheds light on the future application of functionalized Fe3O4 magnetic nanoparticles to selectively separate desired components from complex plant and microbial crude extracts.
Collapse
Affiliation(s)
- Yuexuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chengyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weifan Dang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lu Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongliang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huiying Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Liu Q, Pei Y, Wan H, Wang M, Liu L, Li W, Jin J, Liu X. Chemical profiling and identification of Radix Cudramiae and their metabolites in rats using an ultra-high-performance liquid chromatography method coupled with time-of-flight tandem mass spectrometry. J Sep Sci 2023; 46:e2200767. [PMID: 36538732 DOI: 10.1002/jssc.202200767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Radix Cudramiae, known as "Chuan-Po-Shi" in China, is a herbal medicine widely used in the southwest of the country, especially applied by the Miao and Zhuang nationalities for the treatment of liver diseases, such as acute liver injury and liver fibrosis. As a kind of ethnomedicine, the report on its chemical analysis was still blank, which restricted its clinical application. Therefore, this paper aimed to illustrate the chemical characteristics of Radix Cudramiae. A rapid analytical strategy based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed to profile the natural small-molecular compounds in Radix Cudramiae, as well as the related prototypes and their metabolites in rats after drug administration. As a result, a total of 74 compounds were detected in the aqueous exact of Radix Cudramiae. In vivo, 45 chemicals including 16 prototypes and 29 metabolites in rat serum, along with 35 chemicals including 17 prototypes and 18 metabolites in rat liver, were screened out and identified. For the first time, the chemical constituents of Radix Cudramiae and their metabolic characteristics were discovered. It was hoped that this work would be beneficial for the safe and effective application of Radix Cudramiae in a clinic.
Collapse
Affiliation(s)
- Qing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Haoting Wan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Mengqing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Luyao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Junjie Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Department of TCM Quality, Nanjing Haichang Chinese Medicine Group Corporation, Nanjing, P. R. China
| | - Xiao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
6
|
Effective Adsorption of Salvianolic Acids with Phenylboronic Acid Functionalized Polyethyleneimine-Intercalated Montmorillonite. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Portable Wireless Intelligent Electrochemical Sensor for the Ultrasensitive Detection of Rutin Using Functionalized Black Phosphorene Nanocomposite. Molecules 2022; 27:molecules27196603. [PMID: 36235140 PMCID: PMC9571638 DOI: 10.3390/molecules27196603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022] Open
Abstract
To build a portable and sensitive method for monitoring the concentration of the flavonoid rutin, a new electrochemical sensing procedure was established. By using nitrogen-doped carbonized polymer dots (N-CPDs) anchoring few-layer black phosphorene (N-CPDs@FLBP) 0D-2D heterostructure and gold nanoparticles (AuNPs) as the modifiers, a carbon ionic liquid electrode and a screen-printed electrode (SPE) were used as the substrate electrodes to construct a conventional electrochemical sensor and a portable wireless intelligent electrochemical sensor, respectively. The electrochemical behavior of rutin on the fabricated electrochemical sensors was explored in detail, with the analytical performances investigated. Due to the electroactive groups of rutin, and the specific π-π stacking and cation-π interaction between the nanocomposite with rutin, the electrochemical responses of rutin were greatly enhanced on the AuNPs/N-CPDs@FLBP-modified electrodes. Under the optimal conditions, ultra-sensitive detection of rutin could be realized on AuNPs/N-CPDs@FLBP/SPE with the detection range of 1.0 nmol L-1 to 220.0 μmol L-1 and the detection limit of 0.33 nmol L-1 (S/N = 3). Finally, two kinds of sensors were applied to test the real samples with satisfactory results.
Collapse
|
8
|
Liu Q, Li L, Cheng H, Yao L, Wu J, Huang H, Ning W, Kai G. The basic helix-loop-helix transcription factor TabHLH1 increases chlorogenic acid and luteolin biosynthesis in Taraxacum antungense Kitag. HORTICULTURE RESEARCH 2021; 8:195. [PMID: 34465735 PMCID: PMC8408231 DOI: 10.1038/s41438-021-00630-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
Polyphenols are the main active components of the anti-inflammatory compounds in dandelion, and chlorogenic acid (CGA) is one of the primary polyphenols. However, the molecular mechanism underlying the transcriptional regulation of CGA biosynthesis remains unclear. Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT2) is the last rate-limiting enzyme in chlorogenic acid biosynthesis in Taraxacum antungense. Therefore, using the TaHQT2 gene promoter as a probe, a yeast one-hybrid library was performed, and a basic helix-loop-helix (bHLH) transcription factor, TabHLH1, was identified that shared substantial homology with Gynura bicolor DC bHLH1. The TabHLH1 transcript was highly induced by salt stress, and the TabHLH1 protein was localized in the nucleus. CGA and luteolin concentrations in TabHLH1-overexpression transgenic lines were significantly higher than those in the wild type, while CGA and luteolin concentrations in TabHLH1-RNA interference (RNAi) transgenic lines were significantly lower. Quantitative real-time polymerase chain reaction demonstrated that overexpression and RNAi of TabHLH1 in T. antungense significantly affected CGA and luteolin concentrations by upregulating or downregulating CGA and luteolin biosynthesis pathway genes, especially TaHQT2, 4-coumarate-CoA ligase (Ta4CL), chalcone isomerase (TaCHI), and flavonoid-3'-hydroxylase (TaF3'H). Dual-luciferase, yeast one-hybrid, and electrophoretic mobility shift assays indicated that TabHLH1 directly bound to the bHLH-binding motifs of proTaHQT2 and proTa4CL. This study suggests that TabHLH1 participates in the regulatory network of CGA and luteolin biosynthesis in T. antungense and might be useful for metabolic engineering to promote plant polyphenol biosynthesis.
Collapse
Affiliation(s)
- Qun Liu
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem.Sun Yat-Sen), Nanjing, 210014, China
| | - Li Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haitao Cheng
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lixiang Yao
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, PR China
| | - Jie Wu
- College of Life Sciences and Engineering, Shenyang University, Shenyang, 110044, PR China
| | - Hui Huang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Wei Ning
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| |
Collapse
|