1
|
Wei M, Yuan Y, Chen D, Pan L, Tong W, Lu W. A systematic review on electrochemical sensors for the detection of acetaminophen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6134-6155. [PMID: 39207184 DOI: 10.1039/d4ay01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Considerable progress has been made in the electrochemical determination of acetaminophen (AP) over the past few decades. Nanomaterials or enzymes as electrode modifiers greatly improve the performance of AP electrochemical sensors. This review focuses on the development potential, detection principles and techniques for the electrochemical analysis of AP. In particular, the design and construction of AP electrochemical sensors are discussed from the perspective of non-enzyme materials (such as nanomaterials, including precious metals, transition metals and non-metals) and enzyme substances (such as aryl acylamidase, polyphenol oxidase and horseradish peroxidase). Moreover, the influencing factors for AP electrochemical sensors and the simultaneous detection of AP and other targets are summarized, and the future prospective of AP electrochemical sensors is outlined. This review provides a reference and guidance for the development and application of electrochemical sensors for AP detection.
Collapse
Affiliation(s)
- Ming Wei
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Yikai Yuan
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Dongsheng Chen
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Lin Pan
- Department of Laboratory Medicine, Tianjin Peace District Obstetrics and Gynecology Hospital, Tianjin, 300020, China
| | - Wenting Tong
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
2
|
Ciobotaru IC, Oprea D, Ciobotaru CC, Enache TA. Low-Cost Plant-Based Metal and Metal Oxide Nanoparticle Synthesis and Their Use in Optical and Electrochemical (Bio)Sensors. BIOSENSORS 2023; 13:1031. [PMID: 38131791 PMCID: PMC10741781 DOI: 10.3390/bios13121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Technological progress has led to the development of analytical tools that promise a huge socio-economic impact on our daily lives and an improved quality of life for all. The use of plant extract synthesized nanoparticles in the development and fabrication of optical or electrochemical (bio)sensors presents major advantages. Besides their low-cost fabrication and scalability, these nanoparticles may have a dual role, serving as a transducer component and as a recognition element, the latter requiring their functionalization with specific components. Different approaches, such as surface modification techniques to facilitate precise biomolecule attachment, thereby augmenting recognition capabilities, or fine tuning functional groups on nanoparticle surfaces are preferred for ensuring stable biomolecule conjugation while preserving bioactivity. Size optimization, maximizing surface area, and tailored nanoparticle shapes increase the potential for robust interactions and enhance the transduction. This article specifically aims to illustrate the adaptability and effectiveness of these biosensing platforms in identifying precise biological targets along with their far-reaching implications across various domains, spanning healthcare diagnostics, environmental monitoring, and diverse bioanalytical fields. By exploring these applications, the article highlights the significance of prioritizing the use of natural resources for nanoparticle synthesis. This emphasis aligns with the worldwide goal of envisioning sustainable and customized biosensing solutions, emphasizing heightened sensitivity and selectivity.
Collapse
Affiliation(s)
- Iulia Corina Ciobotaru
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
| | - Daniela Oprea
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
- Faculty of Physics, University of Bucharest, 405 Atomistilor, 077125 Magurele, Romania
| | | | - Teodor Adrian Enache
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
| |
Collapse
|
3
|
Paul TK, Jalil MA, Repon MR, Alim MA, Islam T, Rahman ST, Paul A, Rhaman M. Mapping the Progress in Surface Plasmon Resonance Analysis of Phytogenic Silver Nanoparticles with Colorimetric Sensing Applications. Chem Biodivers 2023; 20:e202300510. [PMID: 37471642 DOI: 10.1002/cbdv.202300510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Nanotechnology is gaining enormous attention as the most dynamic research area in science and technology. It involves the synthesis and applications of nanomaterials in diverse fields including medical, agriculture, textiles, food technology, cosmetics, aerospace, electronics, etc. Silver nanoparticles (AgNPs) have been extensively used in such applications due to their excellent physicochemical, antibacterial, and biological properties. The use of plant extract as a biological reactor is one of the most promising solutions for the synthesis of AgNPs because this process overcomes the drawbacks of physical and chemical methods. This review article summarizes the plant-mediated synthesis process, the probable reaction mechanism, and the colorimetric sensing applications of AgNPs. Plant-mediated synthesis parameters largely affect the surface plasmon resonance (SPR) characteristic due to the changes in the size and shape of AgNPs. These changes in the size and shape of plant-mediated AgNPs are elaborately discussed here by analyzing the surface plasmon resonance characteristics. Furthermore, this article also highlights the promising applications of plant-mediated AgNPs in sensing applications regarding the detection of mercury, hydrogen peroxide, lead, and glucose. Finally, it describes the future perspective of plant-mediated AgNPs for the development of green chemistry.
Collapse
Affiliation(s)
- Tamal Krishna Paul
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
| | - Mohammad Abdul Jalil
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Reazuddin Repon
- Laboratory of Plant Physiology, Nature Research Center, Akademijos g. 2, 08412, Vilnius, Lithuania
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu 56, LT-51424, Kaunas, Lithuania
| | - Md Abdul Alim
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Sheikh Tamjidur Rahman
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Ayon Paul
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Mukitur Rhaman
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| |
Collapse
|
4
|
Baumgarten LG, Freitas AA, Santana ER, Winiarski JP, Dreyer JP, Vieira IC. Graphene and gold nanoparticle-based bionanocomposite for the voltammetric determination of bisphenol A in (micro)plastics. CHEMOSPHERE 2023; 334:139016. [PMID: 37224974 DOI: 10.1016/j.chemosphere.2023.139016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The monitoring of endocrine disruptors in the environment is one of the main strategies in the investigation of potential risks associated with exposure to these chemicals. Bisphenol A is one of the most prevalent endocrine-disrupting compounds and is prone to leaching out from polycarbonate plastic in both freshwater and marine environments. Additionally, microplastics also can leach out bisphenol A during their fragmentation in the water environment. In the quest for a highly sensitive sensor to determine bisphenol A in different matrices, an innovative bionanocomposite material has been achieved. This material is composed of gold nanoparticles and graphene, and was synthesized using a green approach that utilized guava (Psidium guajava) extract for reduction, stabilization, and dispersion purposes. Transmission electron microscopy images revealed well-spread gold nanoparticles with an average diameter of 31 nm on laminated graphene sheets in the composite material. An electrochemical sensor was developed by depositing the bionanocomposite onto a glassy carbon surface, which displayed remarkable responsiveness towards bisphenol A. Experimental conditions such as the amount of graphene, extract: water ratio of bionanocomposite and pH of the supporting electrolyte were optimized to improve the electrochemical performance. The modified electrode displayed a marked improvement in current responses for the oxidation of bisphenol A as compared to the uncovered glassy carbon electrode. A calibration plot was established for bisphenol A in 0.1 mol L-1 Britton-Robinson buffer (pH 4.0), and the detection limit was determined to equal to 15.0 nmol L-1. Recovery data from 92 to 109% were obtained in (micro)plastics samples using the electrochemical sensor and were compared with UV-vis spectrometry, demonstrating its successful application with accurate responses.
Collapse
Affiliation(s)
- Luan Gabriel Baumgarten
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Aline Alves Freitas
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Edson Roberto Santana
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil.
| | - João Paulo Winiarski
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Juliana Priscila Dreyer
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Iolanda Cruz Vieira
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
5
|
Ivanišević I. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:3692. [PMID: 37050752 PMCID: PMC10099384 DOI: 10.3390/s23073692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
With rapidly increasing environmental pollution, there is an urgent need for the development of fast, low-cost, and effective sensing devices for the detection of various organic and inorganic substances. Silver nanoparticles (AgNPs) are well known for their superior optoelectronic and physicochemical properties, and have, therefore, attracted a great deal of interest in the sensor arena. The introduction of AgNPs onto the surface of two-dimensional (2D) structures, incorporation into conductive polymers, or within three-dimensional (3D) nanohybrid architectures is a common strategy to fabricate novel platforms with improved chemical and physical properties for analyte sensing. In the first section of this review, the main wet chemical reduction approaches for the successful synthesis of functional AgNPs for electrochemical sensing applications are discussed. Then, a brief section on the sensing principles of voltammetric and amperometric sensors is given. The current utilization of silver nanoparticles and silver-based composite nanomaterials for the fabrication of voltammetric and amperometric sensors as novel platforms for the detection of environmental pollutants in water matrices is summarized. Finally, the current challenges and future directions for the nanosilver-based electrochemical sensing of environmental pollutants are outlined.
Collapse
Affiliation(s)
- Irena Ivanišević
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Popescu M, Ungureanu C. Biosensors in Food and Healthcare Industries: Bio-Coatings Based on Biogenic Nanoparticles and Biopolymers. COATINGS 2023; 13:486. [DOI: 10.3390/coatings13030486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Biosensors use biological materials, such as enzymes, antibodies, or DNA, to detect specific analytes. These devices have numerous applications in the health and food industries, such as disease diagnosis, food safety monitoring, and environmental monitoring. However, the production of biosensors can result in the generation of chemical waste, which is an environmental concern for the developed world. To address this issue, researchers have been exploring eco-friendly alternatives for immobilising biomolecules on biosensors. One solution uses bio-coatings derived from nanoparticles synthesised via green chemistry and biopolymers. These materials offer several advantages over traditional chemical coatings, such as improved sensitivity, stability, and biocompatibility. In conclusion, the use of bio-coatings derived from green-chemistry synthesised nanoparticles and biopolymers is a promising solution to the problem of chemical waste generated from the production of biosensors. This review provides an overview of these materials and their applications in the health and food industries, highlighting their potential to improve the performance and sustainability of biosensors.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|
7
|
Attri P, Garg S, Ratan JK, Giri AS. Silver nanoparticles from Tabernaemontana divaricate leaf extract: mechanism of action and bio-application for photo degradation of 4-aminopyridine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24856-24875. [PMID: 35013966 DOI: 10.1007/s11356-021-18269-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (Ag NPs) were synthesised by the reduction of Ag+ to Ag0 in the presence of enol form of flavonoids present in plant extract of Tabernaemontana divaricate (T. divaricate). Prepared Ag NPs were characterised using UV-Vis, XRD, HR-TEM with EDX and XPS techniques. XPS spectra exhibited peaks at 366 eV and 373 eV, which specified spin orbits for Ag 3d3/2, and Ag 3d5/2 that confirmed the formation of Ag NPs. Ag NPs were spherical in shape with an average size of 30 nm as revealed by HR-TEM and FE-SEM techniques. EDX studies verified the high purity of Ag NPs with silver 46.96%, carbon 16.35%, oxygen 16.22%, nitrogen 20.25% and sulphur 0.21%. LC-MS analysis of plant extract confirmed the qualitative presence of alkaloids, tannins, flavonoids, phenols, and carbohydrates. Prepared Ag NPs showed good photocatalytic activity towards degradation of 4-Amniopyridine with 61% degradation efficiency at optimum conditions in 2 h of reaction time under visible light. The ten intermediates were found within the mass number of 0-450. Ag NPs synthesised using bio-extract have also shown good inactivation against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) bacteria due to the availability of free radicals.
Collapse
Affiliation(s)
- Pratibha Attri
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Sangeeta Garg
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India.
| | - Jatinder Kumar Ratan
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Ardhendu Sekhar Giri
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
8
|
Thamilchelvan K, Ragavendran C, Kamalanathan D, Rajendiran R, Cherian T, Malafaia G. In vitro somatic embryo productions from Curculigo orchioides derived gold nanoparticles: Synthesis, characterization, its biomedical applications, and their eco-friendly approaches to degradation of methylene blue under solar light irradiations. ENVIRONMENTAL RESEARCH 2023; 216:114774. [PMID: 36403654 DOI: 10.1016/j.envres.2022.114774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Curculigo orchioides rhizome explants were employed to develop a rapid and effective strategy for increased plant regeneration using somatic embryogenesis. Direct somatic embryo development was shown on rhizome explants cultivated on Murashige and Skoog (MS) making with 2, 4-D (1.0-3.0 mg/L). Rhizome explants cultivated on MS media supplemented with 2.0 mg/L 2, 4-D yielded the highest frequency of embryogenesis (87.5%) and the maximum number of somatic embryos (1596.7/explant). Somatic embryo germination was accomplished using MS media with 2.0 mg/L 6-benzylaminopurine (BAP). With an 80% survival rate, the germination plantlets were acclimated in the greenhouse. The current study is the first evidence of the efficacy of in vitro-produced plants and C. orchioides somatic embryo callus cultures of stable gold nanoparticles. The UV-Vis spectrophotometric absorbance, at 510 nm, revealed the absorption spectra of the AuNPs. The FT-IR revealed functional groups and reaction processes in green AuNP formation. High-resolution transmission electron microscopy (HR-TEM) was used to assess the surface morphology and structure of the AuNPs after their elemental composition was determined using a dispersive energy X-ray (EDAX) spectrum. The average size of AuNPs was around 35 nm in diameter. The crystalline nature of the AuNPs was investigated by X-ray diffraction (XRD). The highest growth inhibition was found for C. orcthioides against Klebsiella pneumoniae (17.5 mm) and Serratia marcescens (16.5 mm). The AuNPs exhibited antioxidant activity against free radicals such as DPPH and ABTS. Furthermore, the cytotoxicity of AuNPs was assessed, and inhibitory concentration (IC50) was 20 μg/mL and 80 μg/mL for breast carcinoma (MDA-MB-231) and Vero cell lines. The degradation of methylene blue measures the photocatalytic activity of the manufactured AuNPs when subjected to visible sunlight (MB). Thus, the result showed a maximum degradation efficiency of MB (84%).
Collapse
Affiliation(s)
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India, 600077.
| | - Desingu Kamalanathan
- Department of Biotechnology, Sona College of Arts and Science, Salem, 636005, Tamil Nadu, India.
| | - Ramkumar Rajendiran
- Department of Biotechnology, Padmavani Arts and Science College for Women, Salem, 636011, Tamil Nadu, India.
| | - Tijo Cherian
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair Campus, Brookshabad, Port Blair, Andamans, 744112, India.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Hasan KF, Xiaoyi L, Shaoqin Z, Horváth PG, Bak M, Bejó L, Sipos G, Alpár T. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials. Heliyon 2022; 8:e12322. [PMID: 36590481 PMCID: PMC9800342 DOI: 10.1016/j.heliyon.2022.e12322] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The green and facile synthesis of metallic silver nanoparticles (AgNPs) is getting tremendous attention for exploring superior applications because of their small dimensions and shape. AgNPs are already proven materials for superior coloration, biocidal, thermal, UV-protection, and mechanical performance. Originally, some conventional chemical-based reducing agents were used to synthesize AgNPs, but these posed potential risks, especially for enhanced toxicity. This became a driving force to innovate plant-based sustainable and green metallic nanoparticles (NPs). Moreover, the synthesized NPs using plant-based derivatives could be tuned and regulated to achieve the required shape and size of the AgNPs. AgNPs synthesized from naturally derived materials are safe, economical, eco-friendly, facile, and convenient, which is also motivating researchers to find greener routes and viable options, utilizing various parts of plants like flowers, stems, heartwood, leaves and carbohydrates like chitosan to meet the demands. This article intends to provide a comprehensive review of all aspects of AgNP materials, including green synthesis methodology and mechanism, incorporation of advanced technologies, morphological and elemental study, functional properties (coloration, UV-protection, biocidal, thermal, and mechanical properties), marketing value, future prospects and application, especially for the last 20 years or more. The article also includes a SWOT (Strengths, weaknesses, opportunities, and threats) analysis regarding the use of AgNPs. This report would facilitate the industries and consumers associated with AgNP synthesis and application through fulfilling the demand for sustainable, feasible, and low-cost product manufacturing protocols and their future prospects.
Collapse
Affiliation(s)
- K.M. Faridul Hasan
- Fiber and Nanotechnology Program, University of Sopron, 9400, Sopron, Hungary
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - Liu Xiaoyi
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 550025, Guizhou, PR China
| | - Zhou Shaoqin
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 550025, Guizhou, PR China
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6525 GA Nijmegen, The Netherlands
| | - Péter György Horváth
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - Miklós Bak
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - László Bejó
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, University of Sopron, 9400, Sopron, Hungary
| | - Tibor Alpár
- Fiber and Nanotechnology Program, University of Sopron, 9400, Sopron, Hungary
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| |
Collapse
|
10
|
An overview of a sustainable approach to the biosynthesis of AgNPs for electrochemical sensors. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
11
|
Mendes Hacke AC, Lima D, Kuss S. Green synthesis of electroactive nanomaterials by using plant-derived natural products. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Metallic and Metal Oxides Nanoparticles for Sensing Food Pathogens—An Overview of Recent Findings and Future Prospects. MATERIALS 2022; 15:ma15155374. [PMID: 35955309 PMCID: PMC9370041 DOI: 10.3390/ma15155374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
Nowadays, special importance is given to quality control and food safety. Food quality currently creates significant problems for the industry and implicitly for consumers and society. The effects materialize in economic losses, alterations of the quality and organoleptic properties of the commercial products, and, last but not least, they constitute risk factors for the consumer’s health. In this context, the development of analytical systems for the rapid determination of the sanitary quality of food products by detecting possible pathogenic microorganisms (such as Escherichia coli or Salmonella due to the important digestive disorders that they can cause in many consumers) is of major importance. Using efficient and environmentally friendly detection systems for identification of various pathogens that modify food matrices and turn them into food waste faster will also improve agri-food quality throughout the food chain. This paper reviews the use of metal nanoparticles used to obtain bio nanosensors for the purpose mentioned above. Metallic nanoparticles (Au, Ag, etc.) and their oxides can be synthesized by several methods, such as chemical, physical, physico-chemical, and biological, each bringing advantages and disadvantages in their use for developing nanosensors. In the “green chemistry” approach, a particular importance is given to the metal nanoparticles obtained by phytosynthesis. This method can lead to the development of good quality nanoparticles, at the same time being able to use secondary metabolites from vegetal wastes, as such providing a circular economy character. Considering these aspects, the use of phytosynthesized nanoparticles in other biosensing applications is also presented as a glimpse of their potential, which should be further explored.
Collapse
|
13
|
Lalmalsawmi J, Sarikokba, Tiwari D, Kim DJ. Simultaneous detection of Cd2+ and Pb2+ by differential pulse anodic stripping voltammetry: Use of highly efficient novel Ag0(NPs) decorated silane grafted bentonite material. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
A new highly sensitive micro-sensor for the ultra-traces analysis of paracetamol directly in water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Liew RK, Nguyen DTC, Tran TV. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154160. [PMID: 35231528 DOI: 10.1016/j.scitotenv.2022.154160] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Green synthesis of nanoparticles using plant extracts minimizes the usage of toxic chemicals or energy. Here, we concentrate on the green synthesis of nanoparticles using natural compounds from plant extracts and their applications in catalysis, water treatment and agriculture. Polyphenols, flavonoid, rutin, quercetin, myricetin, kaempferol, coumarin, and gallic acid in the plant extracts engage in the reduction and stabilization of green nanoparticles. Ten types of nanoparticles involving Ag, Au, Cu, Pt, CuO, ZnO, MgO, TiO2, Fe3O4, and ZrO2 with emphasis on their formation mechanism are illuminated. We find that green nanoparticles serve as excellent, and recyclable catalysts for reduction of nitrophenols and synthesis of organic compounds with high yields of 83-100% and at least 5 recycles. Many emerging pollutants such as synthetic dyes, antibiotics, heavy metal and oils are effectively mitigated (90-100%) using green nanoparticles. In agriculture, green nanoparticles efficiently immobilize toxic compounds in soil. They are also sufficient nanopesticides to kill harmful larvae, and nanoinsecticides against dangerous vectors of pathogens. As potential nanofertilizers and nanoagrochemicals, green nanoparticles will open a revolution in green agriculture for sustainable development.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Rock Keey Liew
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; NV WESTERN PLT, No. 208B, Jalan Macalister, Georgetown 10400, Pulau Pinang, Malaysia
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
16
|
Cytotoxicity, antifungal, antioxidant, antibacterial and photodegradation potential of silver nanoparticles mediated via Medicago sativa extract. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
17
|
Gonçalves JPZ, Seraglio J, Macuvele DLP, Padoin N, Soares C, Riella HG. Green synthesis of manganese based nanoparticles mediated by Eucalyptus robusta and Corymbia citriodora for agricultural applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Noah NM, Ndangili PM. Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
19
|
Liu S, Yu Y, Ni K, Liu T, Gu M, Wu Y, Du G, Ran X. Construction of a novel electrochemical sensor based on biomass material nanocellulose and its detection of acetaminophen. RSC Adv 2022; 12:27736-27745. [PMID: 36320243 PMCID: PMC9516959 DOI: 10.1039/d2ra04125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, acidic sulfated cellulose nanocrystals (CNCs) were used as green carriers, and a novel composite material was synthesized and used to design sensors for paracetamol (AP) detection. There are negatively charged acidic sulfate groups on the surface of CNCs, which can enhance the electrostatic repulsion between nanoparticles, thereby increasing the stability and dispersibility of AgNPs in the system, making them less prone to agglomeration. Cationic pillar[5]arene (CP5) with a strong host–guest effect was used as a stable ligand for silver nanoparticles (AgNPs). AgNPs have good electrical conductivity and large specific surface area, which can significantly increase the peak current. In addition, CP5 has excellent supramolecular recognition performance, which can specifically recognize the guest molecule AP to form an inclusion complex, so that a large number of AP molecules are attached to the electrode surface, which is beneficial to the amplification of electrochemical signals. The prepared sensor is more attractive in terms of sensitivity and recognition performance; the host–guest binding constant was (3.37 ± 0.26) × 104 M−1, which can be obtained with good linearity (R2 = 0.996), low detection limit (90 nM, LOD = 3σ/k, S/N = 3) and a wide linear range (0.5–500 μM). The electrochemical sensor showed good performance in quantitative analysis, stability, selectivity, reproducibility, and actual sample detection, providing high feasibility for real-time monitoring of paracetamol; it also provides a new idea for a green sensor. In this work, acidic sulfated cellulose nanocrystals (CNCs) were used as green carriers, and a novel composite material was synthesized and used to design sensors for paracetamol (AP) detection.![]()
Collapse
Affiliation(s)
- Sichen Liu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Yanbo Yu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Kelu Ni
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Tongda Liu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Min Gu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Yingchen Wu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Guanben Du
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xin Ran
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
20
|
El-Ramady H, Abdalla N, Elbasiouny H, Elbehiry F, Elsakhawy T, Omara AED, Amer M, Bayoumi Y, Shalaby TA, Eid Y, Zia-Ur-Rehman M. Nano-biofortification of different crops to immune against COVID-19: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112500. [PMID: 34274837 PMCID: PMC8270734 DOI: 10.1016/j.ecoenv.2021.112500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 05/04/2023]
Abstract
Human health and its improvement are the main target of several studies related to medical, agricultural and industrial sciences. The human health is the primary conclusion of many studies. The improving of human health may include supplying the people with enough and safe nutrients against malnutrition to fight against multiple diseases like COVID-19. Biofortification is a process by which the edible plants can be enriched with essential nutrients for human health against malnutrition. After the great success of biofortification approach in the human struggle against malnutrition, a new biotechnological tool in enriching the crops with essential nutrients in the form of nanoparticles to supplement human diet with balanced diet is called nano-biofortification. Nano biofortification can be achieved by applying the nano particles of essential nutrients (e.g., Cu, Fe, Se and Zn) foliar or their nano-fertilizers in soils or waters. Not all essential nutrients for human nutrition can be biofortified in the nano-form using all edible plants but there are several obstacles prevent this approach. These stumbling blocks are increased due to COVID-19 and its problems including the global trade, global breakdown between countries, and global crisis of food production. The main target of this review was to evaluate the nano-biofortification process and its using against malnutrition as a new approach in the era of COVID-19. This review also opens many questions, which are needed to be answered like is nano-biofortification a promising solution against malnutrition? Is COVID-19 will increase the global crisis of malnutrition? What is the best method of applied nano-nutrients to achieve nano-biofortification? What are the challenges of nano-biofortification during and post of the COVID-19?
Collapse
Affiliation(s)
- Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Neama Abdalla
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Center, 12622 Cairo, Egypt.
| | - Heba Elbasiouny
- Department of Environmental and Biological Sciences, Home Economy faculty, Al-Azhar University, 31732 Tanta, Egypt.
| | - Fathy Elbehiry
- Central Laboratory of Environmental Studies, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Tamer Elsakhawy
- Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Alaa El-Dein Omara
- Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Megahed Amer
- Soils Improvement Department, Soils, Water and Environment Research Institute (SWERI), Sakha Station, Agricultural Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Yousry Bayoumi
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Tarek A Shalaby
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Yahya Eid
- Poultry Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
21
|
Hosny M, Fawzy M. Instantaneous phytosynthesis of gold nanoparticles via Persicaria salicifolia leaf extract, and their medical applications. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Waste Fruit Peel Mediated Synthesis of Silver Nanoparticles and Its Antibacterial Activity. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00861-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|