1
|
Anitha A, Rajamohan R, Murugan M, Seo JH. Inclusion Complexation of Remdesivir with Cyclodextrins: A Comprehensive Review on Combating Coronavirus Resistance-Current State and Future Perspectives. Molecules 2024; 29:4782. [PMID: 39407710 PMCID: PMC11477750 DOI: 10.3390/molecules29194782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Cyclodextrin (CD) derivatives have gained significant attention in biomedical applications due to their remarkable biocompatibility, unique inclusion capabilities, and potential for functionalization. This review focuses on recent advancements in CD-based assemblies, specifically their role in improving drug delivery, emphasizing remdesivir (RMD). The review introduces CD materials and their versatile applications in self-assembly and supramolecular assembly. CD materials offer immense potential for designing drug delivery systems with enhanced activity. Their inherent inclusion capabilities enable the encapsulation of diverse therapeutic agents, including RMD, resulting in improved solubility, stability, and bioavailability. The recent advances in CD-based assemblies, focusing on their integration with RMD have been concentrated here. Various strategies for constructing these assemblies are discussed, including physical encapsulation, covalent conjugation, and surface functionalization techniques. Furthermore, exploring future directions in these fields has also been provided. Ongoing research efforts are directed toward developing novel CD derivatives with enhanced properties, such as increased encapsulation efficiency and improved release kinetics. Moreover, the integration of CD-based assemblies with advanced technologies such as nanomedicine and gene therapy holds tremendous promise for personalized medicine and precision therapeutics.
Collapse
Affiliation(s)
- Arumugam Anitha
- PG and Research Department of Chemistry, Government Arts College, Chidambaram 608 102, Tamil Nadu, India;
| | - Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Moorthiraman Murugan
- Department of Chemistry, IFET College of Engineering, Villupuram 605 108, Tamil Nadu, India;
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Wang X, Huang J, Yang D, Huang T, Yang Y, Tu J, Zou J, Sun H, Zhao X, Yang R. Different Effects of Strong-Bonded Water with Different Degrees of Substitution of Sodium Sulfobutylether-β-cyclodextrin on Encapsulation. Pharmaceutics 2024; 16:919. [PMID: 39065615 PMCID: PMC11279665 DOI: 10.3390/pharmaceutics16070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The encapsulation of sodium sulfobutylether-β-cyclodextrin (SBE-β-CD) is influenced not only by the degree of substitution (DS) but also by the presence of strong-bonded water (SBW). Guests compete with SBW for positions within the cavity of SBE-β-CD. However, the correlation between DS and SBW was not clear. This study revealed a positive correlation between DS and SBW utilizing Karl Fischer titration. The mechanism may be attributed to molecular polarizability. To explore the impact of SBW inside SBE-β-CD with different DS on encapsulation, density functional theory was employed. Throughout the release process, an increase in enthalpy is unfavorable, while an increase in entropy favors spontaneous reaction occurrence. For SBE-β-CD (DS = 2, 3), enthalpy increase is the primary factor, leading to the retention of SBW within the cavities and consequently hindering guest entry. In contrast, for SBE-β-CD (DS = 4, 7), the situation differs. For SBE10-β-CD, the influence of SBW is minimal. This study aims to elucidate the relationship between DS and SBW, as well as the effect of SBW inside SBE-β-CD with different DS on encapsulation. It is crucial for a comprehensive understanding of the factors affecting the encapsulation of SBE-β-CD, thereby promoting quality control and functional development of SBE-β-CD.
Collapse
Affiliation(s)
- Xiaofeng Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jiaqi Huang
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dengchen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Huang
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Yang
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiasheng Tu
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Zou
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Huimin Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xia Zhao
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Rui Yang
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
3
|
Huang J, Wang X, Huang T, Yang Y, Tu J, Zou J, Yang H, Yang R. Application of sodium sulfobutylether-β-cyclodextrin based on encapsulation. Carbohydr Polym 2024; 333:121985. [PMID: 38494236 DOI: 10.1016/j.carbpol.2024.121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Sodium Sulfobutylether-β-cyclodextrin (SBE-β-CD) is a derivative of β-cyclodextrin, characterized by its stereo structure, which closely resembles a truncated cone with a hydrophobic internal cavity. The solubility of insoluble substances within the hydrophobic cavity is significantly enhanced, reducing contact between the guest and the environment. Consequently, SBE-β-CD is frequently employed as a co-solvent and stabilizer. As the research progresses, it has been observed that the inclusion of SBE-β-CD is reversible and competitive. Besides, some inclusion complexes undergo distinct physicochemical property alterations compared to the guests. Additionally, certain guests exhibit varying inclusions with SBE-β-CD at different concentrations. These features have contributed to the expanding applications. SBE-β-CD finds widespread application in pharmaceutics as a protective agent and pKa regulator, in pharmaceutical analysis as a chiral substance separator, and in biomedical engineering for encapsulating dyes and modifying sensors. The article will elaborate in detail on the physicochemical properties of SBE-β-CD, encapsulation principles, and factors influencing the formation of inclusion complexes. Furthermore, the review focuses on the application of SBE-β-CD through encapsulation in pharmaceutics, pharmaceutical analysis, and biomedical engineering. Finally, the prospects and potential applications of SBE-β-CD are discussed.
Collapse
Affiliation(s)
- Jiaqi Huang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Xiaofeng Wang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Ting Huang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Yang Yang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Jiasheng Tu
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Zou
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Huiying Yang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China.
| | - Rui Yang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China.
| |
Collapse
|
4
|
Saffarionpour S, Diosady LL. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv Transl Res 2024:10.1007/s13346-024-01586-x. [PMID: 38671315 DOI: 10.1007/s13346-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Cyclodextrins (CDs) have been investigated as potential biopolymeric carriers that can form inclusion complexes with numerous bioactive ingredients. The inclusion of micronutrients (e.g. vitamins or minerals) into cyclodextrins can enhance their solubility and provide oxidative or thermal stability. It also enables the formulation of products with extended shelf-life. The designed delivery systems with CDs and their inclusion complexes including electrospun nanofibers, emulsions, liposomes, and hydrogels, show potential in enhancing the solubility and oxidative stability of micronutrients while enabling their controlled and sustained release in applications including food packaging, fortified foods and dietary supplements. Nano or micrometer-sized delivery systems capable of controlling burst release and permeation, or moderating skin hydration have been reported, which can facilitate the formulation of several personal and skin care products for topical or transdermal delivery of micronutrients. This review highlights recent developments in the application of CDs for the delivery of micronutrients, i.e. vitamins, iron, and iodine, which play key roles in the human body, emphasizing their existing and potential applications in the food, pharmaceuticals, and cosmeceuticals industries.
Collapse
Affiliation(s)
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Dohárszky A, Kalydi E, Völgyi G, Béni S, Fejős I. Cyclodextrin-Enabled Enantioselective Complexation Study of Cathinone Analogs. Molecules 2024; 29:876. [PMID: 38398627 PMCID: PMC10893103 DOI: 10.3390/molecules29040876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The characteristic alkaloid component of the leaves of the catnip shrub (Catha edulis) is cathinone, and its synthetic analogs form a major group of recreational drugs. Cathinone derivatives are chiral compounds. In the literature, several chiral methods using cyclodextrins (CDs) have been achieved so far for diverse sets of analogs; however, a comprehensive investigation of the stability of their CD complexes has not been performed yet. To characterize the enantioselective complex formation, a systematic experimental design was developed in which a total number of 40 neutral, positively, and negatively charged CD derivatives were screened by affinity capillary electrophoresis and compared according to their cavity size, substituent type, and location. The functional groups responsible for the favorable interactions were identified in the case of para-substituted cathinone analog mephedrone, flephedrone, and 4-methylethcathinone (4-MEC) and in the case of 3,4-methylendioxy derivative butylone and methylenedioxypyrovalerone (MDPV). The succinylated-β-CD and subetadex exhibited the highest complex stabilities among the studied drugs. The complex stoichiometry was determined using the Job's plot method, and the complex structures were further studied using ROESY NMR measurements. The results of our enantioselective complex formation study can facilitate chiral method development and may lead to evaluate potential CD-based antidotes for cathinone analogs.
Collapse
Affiliation(s)
- András Dohárszky
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (A.D.); (E.K.)
| | - Eszter Kalydi
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (A.D.); (E.K.)
- Department of Organic Chemistry, Semmelweis University, Hőgyes Endre utca 7, H-1092 Budapest, Hungary
| | - Gergely Völgyi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre utca 7, H-1092 Budapest, Hungary;
| | - Szabolcs Béni
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (A.D.); (E.K.)
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Ida Fejős
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (A.D.); (E.K.)
| |
Collapse
|
6
|
Tsunoda C, Hasegawa K, Hiroshige R, Kasai T, Yokoyama H, Goto S. Effect of Cyclodextrin Complex Formation on Solubility Changes of Each Drug Due to Intermolecular Interactions between Acidic NSAIDs and Basic H2 Blockers. Mol Pharm 2023; 20:5032-5042. [PMID: 37688787 PMCID: PMC10548472 DOI: 10.1021/acs.molpharmaceut.3c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
One of the solubilization of poorly water-soluble drugs is the use of cyclodextrin (CD)-based inclusion complexes. On the other hand, few studies have investigated how CD functions on the solubility of drugs in the presence of multiple drugs that interact with each other. In this study, we used indomethacin (IND) and diclofenac (DIC) as acidic drugs, famotidine (FAM) and cimetidine (CIM) as basic drugs, and imidazole (IMZ), histidine (HIS), and arginine (ARG) as compounds structurally similar to basic drugs. We attempted to clarify the effect of β-CD on the solubility change of each drug in the presence of multiple drugs. IND and DIC formed a eutectic mixture in the presence of CIM, IMZ, and ARG, which greatly increased the intrinsic solubility of the drugs as well as their affinity for β-CD. Furthermore, the addition of high concentrations of β-CD to the DIC-FAM combination, which causes a decrease in solubility due to the interaction, improved the solubility of FAM, which was decreased in the presence of DIC. These results indicate that β-CD synergistically improves the solubility of drugs in drug-drug combinations, where the solubility is improved, whereas it effectively improves the dissolution rate of drugs in situations where the solubility is reduced by drug-drug interactions, such as FAM-DIC. This indicates that β-CD can be used to improve the physicochemical properties of drugs, even when they are administered in combination with drugs that interact with each other.
Collapse
Affiliation(s)
- Chihiro Tsunoda
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kanji Hasegawa
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryosuke Hiroshige
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takahiro Kasai
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideshi Yokoyama
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Satoru Goto
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
7
|
Solid-state ion-selective electrodes for the first potentiometric determination of the anti-COVID 19 drug Remdesivir in human plasma; A comparative study. Microchem J 2023; 190:108658. [PMID: 36970552 PMCID: PMC10028218 DOI: 10.1016/j.microc.2023.108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
Establishing sensitive and targeted analytical methodologies for drug identification in biological fluids as well as screening of treatments that can counteract the most severe COVID-19 infection-related side effects are of utmost importance. Here, first attempts have been made for determination of the anti-COVID drug Remdesivir (RDS) in human plasma using four potentiometric sensors. Calixarene-8 (CX8) was used as an ionophore applied to the first electrode (Sensor I). The second had a layer of dispersed graphene nanocomposite coating (Sensor II). (Sensor III) was fabricated using nanoparticles of polyaniline (PANI) as ion-to–electron transducer. A reverse-phase polymerization using polyvinylpyrrolidone (PVP) was employed to create a graphene-polyaniline (G/PANI) nanocomposite electrode (Sensor IV). Surface morphology was confirmed by Scanning Electron Microscope (SEM). UV absorption spectra and Fourier Transform Ion Spectrophotometry (FTIR) also supported their structural characterization. The impact of graphene and polyaniline integration on the functionality and durability of the manufactured sensors was examined using the water layer test and signal drift. In the ranges of concentration of 10−7 to 10−2 mol/L and 10−7 to 10−3, sensors II & IV exhibited linear responses; respectively while sensors I & III displayed linearity within 10−6 to 10−2 mol/L. The target drug was easily detectable using LOD down to 100 nmol/L. The developed sensors satisfactorily offered sensitive, stable, selective and accurate estimate of Remdesivir (RDS) in its pharmaceutical formulation as well as spiked human plasma with recoveries ranging from 91.02 to 95.76 % with average standard deviations less than 1.85. The suggested procedure was approved in accordance with ICH recommendations.
Collapse
|
8
|
Loo CY, Lee WH, Zhou QT. Recent Advances in Inhaled Nanoformulations of Vaccines and Therapeutics Targeting Respiratory Viral Infections. Pharm Res 2023; 40:1015-1036. [PMID: 37186073 PMCID: PMC10129308 DOI: 10.1007/s11095-023-03520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
With the rapid outbreak of respiratory viral infections, various biological (e.g. vaccines, peptides, recombinant proteins, antibodies and genes) and antiviral agents (e.g. ribavirin, palivizumab and valaciclovir) have been successfully developed for the treatment of respiratory virus infections such as influenza, respiratory syncytial virus and SARS-CoV-2 infections. These therapeutics are conventionally delivered via oral, intramuscular or injection route and are associated with several adverse events due to systemic toxicity. The inherent in vivo instability of biological therapeutics may hinder them from being administered without proper formulations. Therefore, we have witnessed a boom in nanotechnology coupled with a needle-free administration approach such as the inhalation route for the delivery of complex therapeutics to treat respiratory infections. This review discussed the recent advances in the inhalation strategies of nanoformulations that target virus respiratory infections.
Collapse
Affiliation(s)
- Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), 30450, Perak, Malaysia.
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), 30450, Perak, Malaysia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
Almeida B, Domingues C, Mascarenhas-Melo F, Silva I, Jarak I, Veiga F, Figueiras A. The Role of Cyclodextrins in COVID-19 Therapy-A Literature Review. Int J Mol Sci 2023; 24:2974. [PMID: 36769299 PMCID: PMC9918006 DOI: 10.3390/ijms24032974] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) emerged in December 2019 and quickly spread, giving rise to a pandemic crisis. Therefore, it triggered tireless efforts to identify the mechanisms of the disease, how to prevent and treat it, and to limit and hamper its global dissemination. Considering the above, the search for prophylactic approaches has led to a revolution in the reglementary pharmaceutical pipeline, with the approval of vaccines against COVID-19 in an unprecedented way. Moreover, a drug repurposing scheme using regulatory-approved antiretroviral agents is also being pursued. However, their physicochemical characteristics or reported adverse events have sometimes limited their use. Hence, nanotechnology has been employed to potentially overcome some of these challenges, particularly cyclodextrins. Cyclodextrins are cyclic oligosaccharides that present hydrophobic cavities suitable for complexing several drugs. This review, besides presenting studies on the inclusion of antiviral drugs in cyclodextrins, aims to summarize some currently available prophylactic and therapeutic schemes against COVID-19, highlighting those that already make use of cyclodextrins for their complexation. In addition, some new therapeutic approaches are underscored, and the potential application of cyclodextrins to increase their promising application against COVID-19 will be addressed. This review describes the instances in which the use of cyclodextrins promotes increased bioavailability, antiviral action, and the solubility of the drugs under analysis. The potential use of cyclodextrins as an active ingredient is also covered. Finally, toxicity and regulatory issues as well as future perspectives regarding the use of cyclodextrins in COVID-19 therapy will be provided.
Collapse
Affiliation(s)
- Beatriz Almeida
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Silva
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
10
|
Fully Symmetric Cyclodextrin Polycarboxylates: How to Determine Reliable Protonation Constants from NMR Titration Data. Int J Mol Sci 2022; 23:ijms232214448. [PMID: 36430926 PMCID: PMC9696085 DOI: 10.3390/ijms232214448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Acid-base properties of cyclodextrins (CDs), persubstituted at C-6 by 3-mercaptopropionic acid, sualphadex (Suα-CD), subetadex (Suβ-CD) and sugammadex (Suγ-CD, the antidote of neuromuscular blocking steroids) were studied by 1H NMR-pH titrations. For each CD, the severe overlap in protonation steps prevented the calculation of macroscopic pKa values using the standard data fitting model. Considering the full symmetry of polycarboxylate structures, we reduced the number of unknown NMR parameters in the "Q-fitting" or the novel "equidistant macroscopic" evaluation approaches. These models already provided pKa values, but some of them proved to be physically unrealistic, deceptively suggesting cooperativity in carboxylate protonations. The latter problem could be circumvented by adapting the microscopic site-binding (cluster expansion) model by Borkovec, which applies pairwise interactivity parameters to quantify the mutual basicity-decreasing effect of carboxylate protonations. Surprisingly, only a single averaged interactivity parameter could be calculated reliably besides the carboxylate 'core' microconstant for each CD derivative. The speciation of protonation isomers hence could not be resolved, but the optimized microscopic basicity parameters could be converted to the following sets of macroscopic pKa values: 3.84, 4.35, 4.81, 5.31, 5.78, 6.28 for Suα-CD; 3.82, 4.31, 4.73, 5.18, 5.64, 6.06, 6.54 for Suβ-CD and 3.83, 4.28, 4.65, 5.03, 5.43, 5.81, 6.18, 6.64 for Suγ-CD. The pH-dependent charge of these compounds can now be accurately calculated, in support of designing new analytical methods to exploit their charge-dependent molecular recognition such as in cyclodextrin-aided chiral capillary electrophoresis.
Collapse
|
11
|
The New Strategy for Studying Drug-Delivery Systems with Prolonged Release: Seven-Day In Vitro Antibacterial Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228026. [PMID: 36432127 PMCID: PMC9695913 DOI: 10.3390/molecules27228026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
The new method of antibacterial-drug-activity investigation in vitro is proposed as a powerful strategy for understanding how carriers affect drug action during long periods (7 days). In this paper, we observed fluoroquinolone moxifloxacin (MF) antibacterial-efficiency in non-covalent complexes, with the sulfobutyl ether derivative of β-cyclodextrin (SCD) and its polymer (SCDpol). We conducted in vitro studies on two Escherichia coli strains that differed in surface morphology. It was found that MF loses its antibacterial action after 3-4 days in liquid media, whereas the inclusion of the drug in SCD led to the increase of MF antibacterial activity by up to 1.4 times within 1-5 days of the experiment. In the case of MF-SCDpol, we observed a 12-fold increase in the MF action, and a tendency to prolonged antibacterial activity. We visualized this phenomenon (the state of bacteria, cell membrane, and surface morphology) during MF and MF-carrier exposure by TEM. SCD and SCDpol did not change the drug's mechanism of action. Particle adsorption on cells was the crucial factor for determining the observed effects. The proteinaceous fimbriae on the bacteria surface gave a 2-fold increase of the drug carrier adsorption, hence the strains with fimbriae are more preferable for the proposed treatment. Furthermore, the approach to visualize the CD polymer adsorption on bacteria via TEM is suggested. We hope that the proposed comprehensive method will be useful for the studies of drug-delivery systems to uncover long-term antibacterial action.
Collapse
|
12
|
Ruiz HK, Serrano DR, Calvo L, Cabañas A. Current Treatments for COVID-19: Application of Supercritical Fluids in the Manufacturing of Oral and Pulmonary Formulations. Pharmaceutics 2022; 14:2380. [PMID: 36365198 PMCID: PMC9697571 DOI: 10.3390/pharmaceutics14112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 10/06/2024] Open
Abstract
Even though more than two years have passed since the emergence of COVID-19, the research for novel or repositioned medicines from a natural source or chemically synthesized is still an unmet clinical need. In this review, the application of supercritical fluids to the development of novel or repurposed medicines for COVID-19 and their secondary bacterial complications will be discussed. We envision three main applications of the supercritical fluids in this field: (i) drug micronization, (ii) supercritical fluid extraction of bioactives and (iii) sterilization. The supercritical fluids micronization techniques can help to improve the aqueous solubility and oral bioavailability of drugs, and consequently, the need for lower doses to elicit the same pharmacological effects can result in the reduction in the dose administered and adverse effects. In addition, micronization between 1 and 5 µm can aid in the manufacturing of pulmonary formulations to target the drug directly to the lung. Supercritical fluids also have enormous potential in the extraction of natural bioactive compounds, which have shown remarkable efficacy against COVID-19. Finally, the successful application of supercritical fluids in the inactivation of viruses opens up an opportunity for their application in drug sterilization and in the healthcare field.
Collapse
Affiliation(s)
- Helga K. Ruiz
- Department of Physical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Dolores R. Serrano
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lourdes Calvo
- Department of Chemical Engineering, Complutense University of Madrid, 28040 Madrid, Spain
| | - Albertina Cabañas
- Department of Physical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
13
|
Szente L, Renkecz T, Sirok D, Stáhl J, Hirka G, Puskás I, Sohajda T, Fenyvesi É. Comparative bioavailability study following a single dose intravenous and buccal administration of remdesivir in rabbits. Int J Pharm 2022; 620:121739. [PMID: 35421532 PMCID: PMC8996499 DOI: 10.1016/j.ijpharm.2022.121739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022]
Abstract
As remdesivir, the first FDA-approved drug for SARS-CoV-2 infection, can be used only for hospitalized patients due to intravenous administration, there is an urgent need of effective oral antiviral formulations to be used at early stage of infection in an outpatient setting. The present paper reports on the comparative pharmacokinetics of the electrospun nanofiber remdesivir/sulfobutyl ether beta-cyclodextrin formulation after intravenous and buccal administration. It was postulated that oral transmucosal administration avoids remdesivir from metabolic transformation and intact remdesivir can be detected in plasma, but only the active metabolite GS-441524 could be experimentally detected at a significantly lower plasma level, than that provided by the intravenous route. In buccally treated animals, the metabolite GS-441524 appeared only at 1 h after treatment, while in intravenously treated animals, GS-441524 was possible to quantify even at the first time-point of blood collection. Further optimization of formulation is required to improve pharmacokinetics of remdesivir-sulfobutyl ether beta-cyclodextrin formulation upon buccal administration.
Collapse
Affiliation(s)
- Lajos Szente
- CycloLab Cyclodextrin R&D Laboratory Ltd, H-1097 Budapest, Illatos út 7, Hungary
| | - Tibor Renkecz
- "Toxi-Coop" Toxicological Research Center, H-1122 Budapest, Magyar Jakobinusok tere 4/B, Hungary
| | - Dávid Sirok
- "Toxi-Coop" Toxicological Research Center, H-1122 Budapest, Magyar Jakobinusok tere 4/B, Hungary
| | - János Stáhl
- "Toxi-Coop" Toxicological Research Center, H-1122 Budapest, Magyar Jakobinusok tere 4/B, Hungary
| | - Gábor Hirka
- "Toxi-Coop" Toxicological Research Center, H-1122 Budapest, Magyar Jakobinusok tere 4/B, Hungary
| | - István Puskás
- CycloLab Cyclodextrin R&D Laboratory Ltd, H-1097 Budapest, Illatos út 7, Hungary
| | - Tamás Sohajda
- CycloLab Cyclodextrin R&D Laboratory Ltd, H-1097 Budapest, Illatos út 7, Hungary
| | - Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd, H-1097 Budapest, Illatos út 7, Hungary.
| |
Collapse
|
14
|
Agnes M, Pancani E, Malanga M, Fenyvesi E, Manet I. Implementation of Water-Soluble Cyclodextrin-Based Polymers in Biomedical Applications: How Far are we? Macromol Biosci 2022; 22:e2200090. [PMID: 35452159 DOI: 10.1002/mabi.202200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Cyclodextrin-based polymers can be prepared starting from the naturally occurring monomers following green and low-cost procedures. They can be selectively derivatized pre- or post-polymerization allowing to fine-tune functionalities of ad hoc customized polymers. Preparation nowadays has reached the 100 g scale thanks also to the interest of industries in these extremely versatile compounds. During the last 15 years these macromolecules have been the object of intense investigations in view of possible biomedical applications as the ultimate goal and large amounts of scientific data are now available. Compared to their monomeric models, already used in the formulation of various therapeutic agents, they display superior behavior in terms of their solubility in water and solubilizing power towards drugs incompatible with biological fluids. Moreover, they allow the combination of more than one type of therapeutic agent in the polymeric system. In this review we provide a complete state-of-the-art on the knowledge and potentialities of water-soluble cyclodextrin-based polymers as therapeutic agents as well as carrier systems for different types of therapeutics to implement combination therapy. Finally, we give a perspective on their assets for innovation in disease treatment as well as their limits that still need to be addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marco Agnes
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna, 40129, Italy
| | - Elisabetta Pancani
- Advanced Accelerator Applications, A Novartis Company, via Ribes 5, Ivrea, 10010, Italy
| | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd., Budapest, H1097, Hungary
| | - Eva Fenyvesi
- CycloLab, Cyclodextrin R&D Ltd., Budapest, H1097, Hungary
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna, 40129, Italy
| |
Collapse
|
15
|
Sulfobutylation of Beta-Cyclodextrin Enhances the Complex Formation with Mitragynine: An NMR and Chiroptical Study. Int J Mol Sci 2022; 23:ijms23073844. [PMID: 35409208 PMCID: PMC8998676 DOI: 10.3390/ijms23073844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Mitragynine (MTR), the main indole alkaloid of the well-known plant kratom (Mitragyna speciosa), is one of the most studied natural products nowadays, due to its remarkable biological effects. It is a partial agonist on the opioid receptors, and as such relieves pain without the well-known side-effects of the opioids applied in the clinical practice. MTR and its derivatives therefore became novel candidates for drug development. The poor aqueous solubility and low bioavailability of drugs are often improved by cyclodextrins (CyDs) as excipients through host-guest type complex formation. Among the wide variety of CyDs, sulfobutylether-beta-cyclodextrin (SBEβCyD) is frequently used and official in the European and U.S. Pharmacopoeia. Herein, the host-guest complexation of MTR with βCyD and SBEβCyD was studied using chiroptical and NMR spectroscopy. It was found by NMR measurements that MTR forms a rather weak (logβ11 = 0.8) 1:1 host-guest complex with βCyD, while the co-existence of the 2MTR∙SBEβCyD and MTR∙SBEβCyD species was deducted from 1H NMR titrations in the millimolar MTR concentration range. Sulfobutylation of βCyD significantly enhanced the affinity towards MTR. The structure of the formed inclusion complex was extensively studied by circular dichroism spectroscopy and 2D ROESY NMR. The insertion of the indole moiety was confirmed by both techniques.
Collapse
|