1
|
Ramos-Torres K, Sun Y, Takahashi K, Zhou YP, Brugarolas P. Common anesthetic used in preclinical PET imaging inhibits metabolism of the PET tracer [ 18F]3F4AP. J Neurochem 2024; 168:2577-2586. [PMID: 38690718 PMCID: PMC11482445 DOI: 10.1111/jnc.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
Positron emission tomography (PET) imaging studies in laboratory animals are almost always performed under isoflurane anesthesia to ensure that the subject stays still during the image acquisition. Isoflurane is effective, safe, and easy to use, and it is generally assumed to not have an impact on the imaging results. Motivated by marked differences observed in the brain uptake and metabolism of the PET tracer 3-[18F]fluoro-4-aminopyridine [(18F]3F4AP) between human and nonhuman primate studies, this study investigates the possible effect of isoflurane on this process. Mice received [18F]3F4AP injection while awake or under anesthesia and the tracer brain uptake and metabolism was compared between groups. A separate group of mice received the known cytochrome P450 2E1 inhibitor disulfiram prior to tracer administration. Isoflurane was found to largely abolish tracer metabolism in mice (74.8 ± 1.6 vs. 17.7 ± 1.7% plasma parent fraction, % PF) resulting in a 4.0-fold higher brain uptake in anesthetized mice at 35 min post-radiotracer administration. Similar to anesthetized mice, animals that received disulfiram showed reduced metabolism (50.0 ± 6.9% PF) and a 2.2-fold higher brain signal than control mice. The higher brain uptake and lower metabolism of [18F]3F4AP observed in anesthetized mice compared to awake mice are attributed to isoflurane's interference in the CYP2E1-mediated breakdown of the tracer, which was confirmed by reproducing the effect upon treatment with the known CYP2E1 inhibitor disulfiram. These findings underscore the critical need to examine the effect of isoflurane in PET imaging studies before translating tracers to humans that will be scanned without anesthesia.
Collapse
Affiliation(s)
- Karla Ramos-Torres
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yang Sun
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kazue Takahashi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yu-Peng Zhou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Barri T, Ramzi R, Idkaidek NM, Al-Hashimi NN, Al-Akayleh F, Ali Agha ASA. Hollow Fiber-in-Syringe Equilibrium Sampling Through Supported-Liquid Membrane for Evaluation of Drug-Plasma Binding. Bioanalysis 2024; 16:883-894. [PMID: 39115045 PMCID: PMC11457647 DOI: 10.1080/17576180.2024.2377908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 10/04/2024] Open
Abstract
Aim: The aim was to evaluate drug-plasma binding (DPB).by employing Hollow Fiber-in-Syringe Equilibrium Sampling Through Supported Liquid Membrane (HFiS ESTSLM) and RP-HPLC analysis.Materials & Methods: HFiS ESTSLM and RP-HPLC were used to evaluate DPB of three weak basic drugs (Metoprolol, Diphenhydramine, and Sildenafil) with differing hydrophilicity and binding ability to blood plasma.Results: The results exhibited an increasing drug-dependent magnitude of DPB for the three model drugs. This trend of DPB confirmed that HFiS ESTSLM has the required sensitivity for determining DPB of the drugs. The DPB was drug concentration-dependent within the tested drug concentration range, especially at high concentration.Conclusion: HFiS ESTSLM and RP-HPLC offered a simple, easy and cost-effective procedure to evaluate DPB of these basic drugs.
Collapse
Affiliation(s)
- Thaer Barri
- Department of Chemistry, Faculty of Arts & Sciences, University of Petra, P. O. Box 961343, Queen Alia Airport Street, Amman, 11196, Jordan
| | - Ruba Ramzi
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, University of Petra, P. O. Box 961343, Queen Alia Airport Street, Amman, 11196, Jordan
| | - Nasir M Idkaidek
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, University of Petra, P. O. Box 961343, Queen Alia Airport Street, Amman, 11196, Jordan
| | - Nabil N Al-Hashimi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, the Hashemite University, P.O. Box 330127, Al-Zarqa, 13133,Jordan
| | - Faisal Al-Akayleh
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, University of Petra, P. O. Box 961343, Queen Alia Airport Street, Amman, 11196, Jordan
| | - Ahmed S A Ali Agha
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, University of Petra, P. O. Box 961343, Queen Alia Airport Street, Amman, 11196, Jordan
| |
Collapse
|
3
|
Aarnio R, Kirjavainen A, Rajander J, Forsback S, Kalliokoski K, Nuutila P, Milicevic Z, Coskun T, Haupt A, Laitinen I, Haaparanta-Solin M. New improved radiometabolite analysis method for [ 18F]FTHA from human plasma: a test-retest study with postprandial and fasting state. EJNMMI Res 2024; 14:53. [PMID: 38869780 DOI: 10.1186/s13550-024-01114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Fatty acid uptake can be measured using PET and 14-(R,S)-[18F]fluoro-6-thia-heptadecanoic acid ([18F]FTHA). However, the relatively rapid rate of [18F]FTHA metabolism significantly affects kinetic modeling of tissue uptake. Thus, there is a need for accurate chromatographic methods to analyze the unmetabolized [18F]FTHA (parent fraction). Here we present a new radiometabolite analysis (RMA) method, with comparison to a previous method for parent fraction analysis, and its use in a test-retest clinical study under fasting and postprandial conditions. We developed a new thin-layer chromatography (TLC) RMA method for analysis of [18F]FTHA parent fraction and its radiometabolites from plasma, by testing stationary phases and eluent combinations. Next, we analyzed [18F]FTHA, its radiometabolites, and plasma radioactivity from subjects participating in a clinical study. A total of 17 obese or overweight participants were dosed with [18F]FTHA twice under fasting, and twice under postprandial conditions and plasma samples were obtained between 14 min (mean of first sample) and 72 min (mean of last sample) post-injection. Aliquots of 70 plasma samples were analyzed using both methods, enabling head-to-head comparisons. We performed test-retest and group comparisons of the parent fraction and plasma radioactivity. RESULTS The new TLC method separated seven [18F]FTHA radiometabolite peaks, while the previous method separated three. The new method revealed at least one radiometabolite that was not previously separable from [18F]FTHA. From the plasma samples, the mean parent fraction value was on average 7.2 percentage points lower with the new method, compared to the previous method. Repeated [18F]FTHA investigations on the same subject revealed reproducible plasma SUV and parent fractions, with different kinetics between the fasted and postprandial conditions. CONCLUSIONS The newly developed improved radio-TLC method for [18F]FTHA RMA enables accurate parent fraction correction, which is required to obtain quantitative data for modelling [18F]FTHA PET data. Our test-retest study of fasted and postprandial conditions showed robust reproducibility, and revealed clear differences in the [18F]FTHA metabolic rate under different study settings. TRIAL REGISTRATION EudraCT No: 2020-005211-48, 04Feb2021; and Clinical Trials registry NCT05132335, 29Oct2021, URL: https://classic. CLINICALTRIALS gov/ct2/show/NCT05132335 .
Collapse
Affiliation(s)
- Richard Aarnio
- MediCity Research Laboratory, University of Turku, Turku, Finland.
- Drug Research Doctoral Programme, University of Turku, Turku, Finland.
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland.
| | - Anna Kirjavainen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland
| | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Sarita Forsback
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland
| | - Kari Kalliokoski
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | | | | | - Axel Haupt
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Merja Haaparanta-Solin
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland
| |
Collapse
|
4
|
Alzghool OM, Aarnio R, Helin JS, Wahlroos S, Keller T, Matilainen M, Solis J, Danon JJ, Kassiou M, Snellman A, Solin O, Rinne JO, Haaparanta-Solin M. Glial reactivity in a mouse model of beta-amyloid deposition assessed by PET imaging of P2X7 receptor and TSPO using [ 11C]SMW139 and [ 18F]F-DPA. EJNMMI Res 2024; 14:25. [PMID: 38446249 PMCID: PMC10917722 DOI: 10.1186/s13550-024-01085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND P2X7 receptor has emerged as a potentially superior PET imaging marker to TSPO, the gold standard for imaging glial reactivity. [11C]SMW139 is the most recently developed radiotracer to image P2X7 receptor. The aim of this study was to image reactive glia in the APP/PS1-21 transgenic (TG) mouse model of Aβ deposition longitudinally using [11C]SMW139 targeting P2X7 receptor and to compare tracer uptake to that of [18F]F-DPA targeting TSPO at the final imaging time point. TG and wild type (WT) mice underwent longitudinal in vivo PET imaging using [11C]SMW139 at 5, 8, 11, and 14 months, followed by [18F]F-DPA PET scan only at 14 months. In vivo imaging results were verified by ex vivo brain autoradiography, immunohistochemical staining, and analysis of [11C]SMW139 unmetabolized fraction in TG and WT mice. RESULTS Longitudinal change in [11C]SMW139 standardized uptake values (SUVs) showed no statistically significant increase in the neocortex and hippocampus of TG or WT mice, which was consistent with findings from ex vivo brain autoradiography. Significantly higher [18F]F-DPA SUVs were observed in brain regions of TG compared to WT mice. Quantified P2X7-positive staining in the cortex and thalamus of TG mice showed a minor increase in receptor expression with ageing, while TSPO-positive staining in the same regions showed a more robust increase in expression in TG mice as they aged. [11C]SMW139 was rapidly metabolized in mice, with 33% of unmetabolized fraction in plasma and 29% in brain homogenates 30 min after injection. CONCLUSIONS [11C]SMW139, which has a lower affinity for the rodent P2X7 receptor than the human version of the receptor, was unable to image the low expression of P2X7 receptor in the APP/PS1-21 mouse model. Additionally, the rapid metabolism of [11C]SMW139 in mice and the presence of several brain-penetrating radiometabolites significantly impacted the analysis of in vivo PET signal of the tracer. Finally, [18F]F-DPA targeting TSPO was more suitable for imaging reactive glia and neuroinflammatory processes in the APP/PS1-21 mouse model, based on the findings presented in this study and previous studies with this mouse model.
Collapse
Affiliation(s)
- Obada M Alzghool
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland.
- Medicity Research Laboratory, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland.
- Drug Research Doctoral Programme, University of Turku, Turku, Finland.
- Turku University Hospital, Turku PET Centre, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
| | - Richard Aarnio
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
- Medicity Research Laboratory, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
- Drug Research Doctoral Programme, University of Turku, Turku, Finland
| | - Jatta S Helin
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
- Medicity Research Laboratory, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
| | - Saara Wahlroos
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Thomas Keller
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Markus Matilainen
- Turku University Hospital, Turku PET Centre, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Junel Solis
- Turku BioImaging, Åbo Akademi University and University of Turku, Turku, Finland
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Anniina Snellman
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Juha O Rinne
- Turku University Hospital, Turku PET Centre, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Department of Neurology, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Merja Haaparanta-Solin
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
- Medicity Research Laboratory, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
| |
Collapse
|
5
|
Brumberg J, Aarnio R, Forsberg A, Marjamäki P, Kerstens V, Moein MM, Nag S, Wahlroos S, Kassiou M, Windhorst AD, Halldin C, Haaparanta-Solin M, Fazio P, Oikonen V, Rinne JO, Varrone A. Quantification of the purinergic P2X 7 receptor with [ 11C]SMW139 improves through correction for brain-penetrating radiometabolites. J Cereb Blood Flow Metab 2023; 43:258-268. [PMID: 36163685 PMCID: PMC9903223 DOI: 10.1177/0271678x221126830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The membrane-based purinergic 7 receptor (P2X7R) is expressed on activated microglia and the target of the radioligand [11C]SMW139 for in vivo assessment of neuroinflammation. This study investigated the contribution of radiolabelled metabolites which potentially affect its quantification. Ex vivo high-performance liquid chromatography with a radio detector (radioHPLC) was used to evaluate the parent and radiometabolite fractions of [11C]SMW139 in the brain and plasma of eleven mice. Twelve healthy humans underwent 90-min [11C]SMW139 brain PET with arterial blood sampling and radiometabolite analysis. The volume of distribution was estimated by using one- and two- tissue compartment (TCM) modeling with single (VT) and dual (VTp) input functions. RadioHPLC showed three major groups of radiometabolite peaks with increasing concentrations in the plasma of all mice and humans. Two radiometabolite peaks were also visible in mice brain homogenates and therefore considered for dual input modeling in humans. 2TCM with single input function provided VT estimates with a wide range (0.10-10.74) and high coefficient of variation (COV: 159.9%), whereas dual input function model showed a narrow range of VTp estimates (0.04-0.24; COV: 33.3%). In conclusion, compartment modeling with correction for brain-penetrant radiometabolites improves the in vivo quantification of [11C]SMW139 binding to P2X7R in the human brain.
Collapse
Affiliation(s)
- Joachim Brumberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.,Department of Nuclear Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Richard Aarnio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Anton Forsberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Päivi Marjamäki
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Vera Kerstens
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Mohammad M Moein
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Sangram Nag
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Saara Wahlroos
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Christer Halldin
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | | | - Patrik Fazio
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Vesa Oikonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Andrea Varrone
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
6
|
Imaging Technologies for Cerebral Pharmacokinetic Studies: Progress and Perspectives. Biomedicines 2022; 10:biomedicines10102447. [PMID: 36289709 PMCID: PMC9598571 DOI: 10.3390/biomedicines10102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacokinetic assessment of drug disposition processes in vivo is critical in predicting pharmacodynamics and toxicology to reduce the risk of inappropriate drug development. The blood–brain barrier (BBB), a special physiological structure in brain tissue, hinders the entry of targeted drugs into the central nervous system (CNS), making the drug concentrations in target tissue correlate poorly with the blood drug concentrations. Additionally, once non-CNS drugs act directly on the fragile and important brain tissue, they may produce extra-therapeutic effects that may impair CNS function. Thus, an intracerebral pharmacokinetic study was developed to reflect the disposition and course of action of drugs following intracerebral absorption. Through an increasing understanding of the fine structure in the brain and the rapid development of analytical techniques, cerebral pharmacokinetic techniques have developed into non-invasive imaging techniques. Through non-invasive imaging techniques, molecules can be tracked and visualized in the entire BBB, visualizing how they enter the BBB, allowing quantitative tools to be combined with the imaging system to derive reliable pharmacokinetic profiles. The advent of imaging-based pharmacokinetic techniques in the brain has made the field of intracerebral pharmacokinetics more complete and reliable, paving the way for elucidating the dynamics of drug action in the brain and predicting its course. The paper reviews the development and application of imaging technologies for cerebral pharmacokinetic study, represented by optical imaging, radiographic autoradiography, radionuclide imaging and mass spectrometry imaging, and objectively evaluates the advantages and limitations of these methods for predicting the pharmacodynamic and toxic effects of drugs in brain tissues.
Collapse
|