1
|
Lin N, Dai Q, Zhang Y, Xu L. Chinese classical decoction Wuwei Xiaodu Drink alleviates gout arthritis by suppressing NLRP3-Mediated inflammation. Front Pharmacol 2024; 15:1388753. [PMID: 39130631 PMCID: PMC11310048 DOI: 10.3389/fphar.2024.1388753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/27/2024] [Indexed: 08/13/2024] Open
Abstract
Background: Wuwei Xiaodu Drink (WWXDD), a classical decoction of traditional Chinese medicine, has been clinically used for the treatment of gout in China for many years. This study aimed to demonstrate the efficacy of WWXDD in treating gout flares and elucidate its underlying therapeutic mechanism. Methods: A randomized control trial was conducted to compare the effectiveness of WWXDD with low-dose colchicine in gout arthritis. The primary outcome was the clinical response rate on the 7th day, and joint syndrome score and serological tests were secondary outcome measures and were compared in the two groups on the 1st and 7th day. Then we used a network pharmacology approach to investigate the possible mechanism of WWXDD in treating gout, and the effects of WWXDD on the MSU-induced rat model were observed. Results: In the clinical trial, a total of 78 participants completed the study, and the results demonstrated comparable clinical complete response rates, joint symptom scores, and serological test outcomes between the two groups on the 7th day. Network pharmacology analysis identified 51 core genes that target gout and WWXDD interactions. Notably, strong significant correlations were observed with inflammation cytokine genes and metabolism-related genes. Furthermore, it was found that WWXDD reduced gene expression levels of inflammation cytokines including IL-1β, TNF, and IL-18 in an MSU-induced rat model while increasing IL-10 expression. Additionally, WWXDD decreased insulin gene expression in this model. Moreover, WWXDD exhibited a reduction in both gene and protein expressions associated with the NLRP3-mediated inflammatory pathway in inflamed joints of rats. Conclusion: The results of the present study suggested the anti-inflammatory effects of WWXDD in the treatment of gouty arthritis, partially through inhibiting NLRP3 inflammasome activation. Clinical Trial Registration: ClinicalTrials.gov, identifier ChiCTR2100047807.
Collapse
Affiliation(s)
| | | | | | - Liping Xu
- Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Wang Z, Zhang Y, Fu Z, Jin T, Zhao C, Zhao M. A comprehensive strategy for quality evaluation of Changan powder by fingerprinting combined with rapid qualitative and quantitative multi-ingredients profiling. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:840-859. [PMID: 38332540 DOI: 10.1002/pca.3332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Changan powder (CAP) is mainly used to treat various intestinal diseases. Few studies on CAP have been reported; therefore, it is necessary to clarify the material basis of CAP to lay the foundation for further elucidating its functional mechanism and support the rational use of drugs. OBJECTIVES In the present study, we aimed to propose a methodology for the quality control of CAP based on qualitative and quantitative analysis of its components. METHODS An ultra-performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry (UPLC-FT-ICR-MS) method was developed to identify chemical components in CAP. In addition, fingerprints of 10 different batches of CAP were established, and quantitative analysis based on UPLC was performed to analyze the quality of CAP. RESULTS A total of 58 compounds were preliminarily characterized. The similarity of 10 batches of CAP was greater than 0.995, and 23 common peaks were calibrated. Investigation of the quantitative analytical methodology showed that the four components had good linear relationships within their respective concentration ranges (r2 ≥ 0.9992), and the relative standard deviation (RSD) of precision and stability was less than 2%. The RSD of sample recovery ranged from 0.78% to 1.52%. CONCLUSION The established method can quickly and effectively identify the chemical components of CAP and accurately quantify the known components in CAP. The established fingerprinting and content determination method is stable, reliable, and easy to operate and can be applied in quality control and in vivo research on CAP.
Collapse
Affiliation(s)
- Zheyong Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Zixuan Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Tong Jin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Yalkun I, Wan H, Ye L, Yu L, He Y, Li C, Wan H. Qualitative and Quantitative Analysis of Chemical Components in Yinhua Pinggan Granule with High-Performance Liquid Chromatography Coupled with Q-Exactive Mass Spectrometry. Molecules 2024; 29:2300. [PMID: 38792164 PMCID: PMC11124461 DOI: 10.3390/molecules29102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Yinhua Pinggan Granule (YPG) is an approved compounded traditional Chinese medicine (TCM) prescription for the treatment of cold, cough, viral pneumonia, and related diseases. Due to its complicated chemical composition, the material basis of YPG has not been systematically investigated. In this study, an analytical method based on high-performance liquid chromatography (HPLC) coupled with Q-Exactive mass spectrometry was established. Together with the help of a self-built compound database and Compound Discoverer software 3.1, the chemical components in YPG were tentatively identified. Subsequently, six main components in YPG were quantitatively characterized with a high-performance liquid chromatography-diode array detector (HPLC-DAD) method. As a result, 380 components were annotated, including 19 alkaloids, 8 organic acids, 36 phenolic acids, 27 other phenols, 114 flavonoids, 75 flavonoid glycoside, 72 terpenes, 11 anthraquinones, and 18 other compounds. Six main components, namely, chlorogenic acid, puerarin, 3'-methoxypuerarin, polydatin, glycyrrhizic acid, and emodin, were quantified simultaneously. The calibration curves of all six analytes showed good linearity (R2 > 0.9990) within the test ranges. The precision, repeatability, stability, and recovery values were all in acceptable ranges. In addition, the total phenol content and DPPH scavenging activity of YPG were also determined. The systematic elucidation of the chemical components in YPG in this study may provide clear chemical information for the quality control and pharmacological research of YPG and related TCM compounded prescriptions.
Collapse
Affiliation(s)
| | | | | | | | | | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
4
|
Liu Y, Li Q, Shao C, She Y, Zhou H, Guo Y, An H, Wang T, Yang J, Wan H. Exploring the Potential Mechanisms of Guanxinshutong Capsules in Treating Pathological Cardiac Hypertrophy based on Network Pharmacology, Computer-Aided Drug Design, and Animal Experiments. ACS OMEGA 2024; 9:18083-18098. [PMID: 38680308 PMCID: PMC11044149 DOI: 10.1021/acsomega.3c10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Cardiovascular diseases (CVDs) are significant causes of morbidity and mortality worldwide, and pathological cardiac hypertrophy (PCH) is an essential predictor of many heart diseases. Guanxinshutong capsule (GXST) is a Chinese patent medicine widely used in the clinical treatment of CVD, In our previous research, we identified 111 compounds of GXST. In order to reveal the potential molecular mechanisms by which GXST treats PCH, this study employed network pharmacology methods to screen for the active ingredients of GXST in treating PCH and predicted the potential targets. The results identified 26 active ingredients of GXST and 110 potential targets for PCH. Through a protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we confirmed AKT1, MAPK1, and MAPK3 as the core proteins in GXST treatment of PCH, thus establishing the PI3K/AKT and MAPK signaling pathways as the significant mechanisms of GXST in treating PCH. The results of molecular docking (MD) demonstrate that flavonoid naringenin and diterpenoid tanshinone iia have the highest binding affinity with the core protein. Before performing molecular dynamics simulations (MDSs), the geometric structure of naringenin and tanshinone iia was optimized using density functional theory (DFT) at the B97-3c level, and RESP2 atomic charge calculations were carried out at the B3LYP-D3(BJ)/def2-TZVP level. Further MDS results demonstrated that in the human body environment, the complex of naringenin and tanshinone iii with core proteins exhibited high stability, flexibility, and low binding free energy. Additionally, naringenin and tanshinone iia showed favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics and passed the drug similarity (DS) assessment. Ultrasound cardiograms and cardiac morphometric measurements in animal experiments demonstrate that GXST can improve the PCH induced by isoproterenol (ISO). Protein immunoblotting results indicate that GXST increases the expression of P-eNOS and eNOS by activating the PI3K/AKT signaling pathway and the MAPK signaling pathway, further elucidating the mechanism of action of GXST in treating PCH. This study contributes to the elucidation of the key ingredients and molecular mechanisms of GXST in treating PCH.
Collapse
Affiliation(s)
- Yuanfeng Liu
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Qixiang Li
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Chongyu Shao
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Yong She
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Huifen Zhou
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Yan Guo
- Hangzhou
TCM Hospital Affiliated to Zhejiang Chinese Medical University Hangzhou, Zhejiang 310053, China
| | - Huiyan An
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Ting Wang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiehong Yang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
5
|
Fan Z, Guan J, Li L, Cui Y, Tang X, Lin X, Shen G, Feng B, Zhu H. Characterization of chemical constituents in Huangqi Guizhi Wuwu decoction using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci 2023; 46:e2300337. [PMID: 37654058 DOI: 10.1002/jssc.202300337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Huangqi Guizhi Wuwu decoction (HGWWD) is a classic traditional Chinese medicine prescription for the treatment of ischemic stroke, etc. However, the material basis of its efficacy remains unclear, seriously affecting drug development and clinical applications. In the present study, an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry method was developed to separate and identify the chemical components of HGWWD. A total of 81 compounds were identified and tentatively characterized. Eight compounds were accurately identified by comparing the retention time and mass spectrometry data with those of reference substances, the remaining compounds were characterized by comparing the mass spectrometry data and reference information. Based on the results of compound attribution, 35 compounds were from Astragali Radix, six compounds were from Cinnamomi Ramulus, 23 compounds were from Paeoniae Radix Alba, eight compounds were from Zingiberis Rhizoma Recens and nine compounds were from Jujubae Fructus. The results showed that monoterpenoids, flavonoids, organic acids, triterpenes, amino acids, gingerols, alkaloids, and glycosides were the main chemical components of HGWWD. This analytical method is suitable for characterizing the chemical constituents of HGWWD, and the results provide important information for elucidating its pharmacodynamic material basis and mechanism of action.
Collapse
Affiliation(s)
- Zhuoyu Fan
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
- School of Pharmacy, Yanbian University, Yanji, P. R. China
| | - Jiao Guan
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| | - Lele Li
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| | - Yue Cui
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| | - Xinmiao Tang
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
- School of Pharmacy, Yanbian University, Yanji, P. R. China
| | - Xiaoying Lin
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| | - Guanghai Shen
- School of Pharmacy, Yanbian University, Yanji, P. R. China
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| |
Collapse
|
6
|
Hou J, Yao C, Li Y, Yang L, Chen X, Nie M, Qu H, Ji S, Guo DA. A MS-feature-based medicinal plant database-driven strategy for ingredient identification of Chinese medicine prescriptions. J Pharm Biomed Anal 2023; 234:115482. [PMID: 37290179 DOI: 10.1016/j.jpba.2023.115482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Identification of the individual herbs that constitute the Chinese medicine prescription (CMP) is a key step to control the quality and ensure the efficacy of traditional Chinese medicine (TCM), but also a challenging task for analysts from all over the world. In this study, a MS-feature-based medicinal plant database-driven strategy was proposed for quick and automatic interpretation of CMP ingredients. The single herb database consisting of stable ions of sixty-one common TCM medicinal herbs was first constructed. And then, the data of CMP was imported into a self-built searching program to achieve quick and automatic identification with four steps including level 1 candidate herb screening based on stable ions (step 1), level 2 candidate herb screening based on unique ions (step 2), difficult-to-distinguish herb differentiation (step 3) and results integration (step 4). The identification model was optimized and validated with homemade Shaoyaogancao Decoction, Mahuang Decoction, Banxiaxiexin Decoction, and their related negative prescriptions and homemade fakes. Another nine batches of homemade and commercial CMPs were applied to this new approach and most of composed herbs in the corresponding CMPs were correctly identified. This work provided a promising and universal strategy for the clarification of CMP ingredients.
Collapse
Affiliation(s)
- Jianru Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuebing Chen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Min Nie
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Qu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|