1
|
Turki A, Stockler S, Sirrs S, Duddy K, Ho G, Elango R. Impact of hematopoietic stem cell transplantation in glycogen storage disease type Ib: A single-subject research design using 13C-glucose breath test. Mol Genet Metab Rep 2023; 34:100955. [PMID: 36632325 PMCID: PMC9826966 DOI: 10.1016/j.ymgmr.2023.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023] Open
Abstract
Background Glycogen storage disease type Ib (GSD Ib) is an autosomal recessively inherited deficiency of the glucose-6-phosphate translocase (G6PT). Clinical features include a combination of a metabolic phenotype (fasting hypoglycemia, lactic acidosis, hepatomegaly) and a hematologic phenotype with neutropenia and neutrophil dysfunction. Dietary treatment involves provision of starches such as uncooked cornstarch (UCCS) and Glycosade® to provide prolonged enteral supply of glucose. Granulocyte colony-stimulating factor (G-CSF) is the treatment of choice for neutropenia. Because long-term stimulation of hematopoiesis with G-CSF causes serious complications such as splenomegaly, hypersplenism, and osteopenia; hematopoietic stem cell transplantation (HSCT) has been considered in some patients with GSD Ib to correct neutropenia and avoid G-CSF related adverse effects. Whether HSCT also has an effect on the metabolic phenotype and utilization of carbohydrate sources has not been determined. Objective Our objective was to measure the utilization of starch in a patient with GSD Ib before and after HSCT using the minimally invasive 13C-glucose breath test (13C-GBT). Design A case of GSD Ib (18y; female) underwent 13C-GBT four times: UCCS (pre-HSCT), UCCS (3, 5 months post-HSCT) and Glycosade® (6 months post-HSCT) with a dose of 80 g administered via nasogastric tube after a 4 h fast according to our patient's fasting tolerance. Breath samples were collected at baseline and every 30 min for 240 min. Rate of CO2 production was measured at 120 min using indirect calorimetry. Finger-prick blood glucose was measured using a glucometer hourly to test hypoglycemia (glucose <4 mmol/L). Biochemical and clinical data were obtained from the medical records as a post-hoc chart review. Results UCCS utilization was significantly higher in GSD Ib pre-HSCT, which reduced and stabilized 5 months post-HSCT. UCCS and Glycosade® utilizations were low and not different at 5 and 6 months post-HSCT. Blood glucose concentrations were not significantly different at any time point. Conclusions Findings show that HSCT stabilized UCCS utilization, as reflected by lower and stable glucose oxidation. The results also illustrate the application of 13C-GBT to examine glucose metabolism in response to various carbohydrate sources after other treatment modalities like HSCT in GSD Ib.
Collapse
Key Words
- 13C-GBT, 13C-glucose breath test
- 13C-glucose
- ALT, alanine aminotransferase
- AML, acute myeloid leukemia
- ANOVA, analysis of variance
- AST, aspartate aminotransferase
- AUC, area under the curve
- BIA, bioelectrical impedance analysis
- BMI, body mass index
- Breath test
- CF-IRMS, continuous flow isotope ratio mass spectrometer
- CGM, continuous glucose monitor
- CRP, C-reactive protein
- Cmax, maximum peak enrichment in 13CO2 oxidation
- ER, endoplasmic reticulum
- FFM, fat free mass
- FM, fat mass
- G-CSF, granulocyte colony-stimulating factor
- G6P, glucose-6-phosphate
- G6PT, glucose-6-phosphate translocase
- G6Pase-ß, glucose-6-phosphatase-β
- G6Pase-α, glucose-6-phosphatase-α
- GGT, gamma glutamyltransferase
- GSD I, glycogen storage disease type I
- GSD III, glycogen storage disease type III
- GSD Ia, glycogen storage disease type Ia
- GSD Ib, glycogen storage disease type Ib
- Glycogen storage disease type Ib
- Glycosade®
- HSCT/BMT, hematopoietic stem cell transplantation / bone marrow transplantation
- Hematopoietic stem cell transplantation
- IBD, inflammatory bowel disease
- IM, intramuscular
- NG, nasogastric
- TBW, total body water
- UCCS, uncooked cornstarch
- Uncooked cornstarch
- VCO2, rate of carbon dioxide production.
- tmax, time to reach maximum 13CO2 oxidation
Collapse
Affiliation(s)
- Abrar Turki
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sylvia Stockler
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Biochemical Genetics, BC Children's Hospital, Vancouver, British Columbia, Canada
- Correspondence author to: Sylvia Stockler, Division of Biochemical Genetics, 4500 Oak St, BC Children's Hospital, Vancouver, BC V6H 3N1, Canada.
| | - Sandra Sirrs
- Department of Medicine, Division of Endocrinology, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Costal Health, Adult Metabolic Diseases Clinic, Vancouver, British Columbia, Canada
| | - Kathleen Duddy
- Division of Biochemical Genetics, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Gloria Ho
- Division of Biochemical Genetics, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Rajavel Elango
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Correspondence author to: Rajavel Elango, Rm170A, 950 West 28th Avenue, BC Children's Hospital Research Institute, Vancouver BC V5Z 4H4, Canada.
| |
Collapse
|
2
|
Shimizu S, Sakamoto S, Yamada M, Fukuda A, Yanagi Y, Uchida H, Mimori K, Shoji K, Funaki T, Miyairi I, Nakano N, Haga C, Yoshioka T, Imadome KI, Horikawa R, Kasahara M. Immunological features and complications in patients with glycogen storage disease 1b after living donor liver transplantation. Pediatr Transplant 2021; 25:e14104. [PMID: 34339091 DOI: 10.1111/petr.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND LT is an elective treatment choice for children diagnosed with GSD1b that can improve their quality of life and stabilize their glucose intolerance. However, careful attention should be paid to immunosuppression after LT due to the susceptibility to infection because of neutropenia and neutrophil dysfunction in GSD1b patients. This study revealed the immunological features and complications in the early post-LT period. METHODS We compared findings between 11 (1.9%) children with GSD1b and 273 children with BA. Analyses using the PSM were performed to overcome selection bias. RESULTS Despite persistent low tacrolimus trough levels in GSD1b patients, none of these children developed TCMR within 1 month after LDLT (GSD1b: 0/11 [0%] vs. BA: 86/273 [31.5%], p = .038). This result was also confirmed in PSM. The incidence of bloodstream infections was higher in GSD1b patients than in BA patients in the early phase of the post-transplant period (GSD1b: 4/11 [36.4%] vs. BA: 33/273 [12.1%], p = .041), but not reach statistical significance in PSM. In a phenotypic analysis, the ratio of CD8+ T cells in GSD1b recipients' peripheral blood mononuclear cell samples was lower than in recipients with BA through the first month after LDLT. CONCLUSIONS We found that GSD1b recipients were more likely to develop postoperative bloodstream infection than recipients with BA but did not experience TCMR despite low tacrolimus levels in the early post-LDLT period. A tailored immunosuppression protocol should be prepared for GSD1b recipients after LDLT.
Collapse
Affiliation(s)
- Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masaki Yamada
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Yanagi
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kotaro Mimori
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kensuke Shoji
- Division of Infectious Diseases, National Center for Child Health and Development, Tokyo, Japan
| | - Takanori Funaki
- Division of Infectious Diseases, National Center for Child Health and Development, Tokyo, Japan
| | - Isao Miyairi
- Division of Infectious Diseases, National Center for Child Health and Development, Tokyo, Japan
| | - Noriyuki Nakano
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Chizuko Haga
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Ken-Ichi Imadome
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Horikawa
- Department of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
3
|
Halligan R, White FJ, Schwahn B, Stepien KM, Kamarus Jaman N, McSweeney M, Kitchen S, Gribben J, Dawson C, Lewis K, Cregeen D, Mundy H, Santra S. The natural history of glycogen storage disease type Ib in England: A multisite survey. JIMD Rep 2021; 59:52-59. [PMID: 33977030 PMCID: PMC8100392 DOI: 10.1002/jmd2.12200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Abstract
Glycogen storage disease type Ib (GSDIb) is characterized by hepatomegaly and fasting hypoglycaemia as well as neutropaenia and recurrent infections. We conducted a retrospective observational study on a cohort of patients with GSDIb across England. A total of 35 patients, with a median age of 9.1 years (range 1-39 years), were included in the study. We examined the genotype and phenotype of all patients and reported 14 novel alleles. The phenotype of GSDIb in England involves a short fasting tolerance that extends into adulthood and a high prevalence of gastrointestinal symptoms. Growth is difficult to manage and neutropaenia and recurrent infections persist throughout life. Liver transplantation was performed in nine patients, which normalized fasting tolerance but did not correct neutropaenia. This is the first natural history study on the cohort of GSDIb patients in England.
Collapse
Affiliation(s)
- Rebecca Halligan
- Inherited Metabolic DisordersBirmingham Children's HospitalBirminghamUK
- Inherited Metabolic DiseasesEvelina London Children's HospitalLondonUK
| | | | - Bernd Schwahn
- Willink UnitManchester Childen's HospitalManchesterUK
| | - Karolina M. Stepien
- Adult Inherited Metabolic MedicineSalford Royal Hospital NHS Foundation TrustSalfordUK
| | | | - Mel McSweeney
- Metabolic Medicine DepartmentGreat Ormond Street HospitalLondonUK
| | - Steve Kitchen
- Inherited Metabolic DisordersBirmingham Children's HospitalBirminghamUK
| | - Joanna Gribben
- Inherited Metabolic DiseasesEvelina London Children's HospitalLondonUK
| | - Charlotte Dawson
- Inherited Metabolic DiseasesQueen Elizabeth HospitalBirminghamUK
| | - Katherine Lewis
- Inherited Metabolic DiseasesGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - David Cregeen
- Inherited Metabolic DiseasesEvelina London Children's HospitalLondonUK
| | - Helen Mundy
- Inherited Metabolic DiseasesEvelina London Children's HospitalLondonUK
| | - Saikat Santra
- Inherited Metabolic DisordersBirmingham Children's HospitalBirminghamUK
| |
Collapse
|
4
|
Du C, Li Z, Wei H, Zhang M, Hu M, Zhang C, Luo X, Liang Y. Clinical analysis and long-term treatment monitoring of 3 patients with glycogen storage disease type Ib. BMC Med Genomics 2021; 14:81. [PMID: 33731098 PMCID: PMC7972195 DOI: 10.1186/s12920-021-00936-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND To investigate the clinical and genetic characteristics of patients with glycogen storage disease type Ib (GSD Ib). CASE PRESENTATION This report retrospectively analyzed the clinical data of 3 patients with GSD Ib admitted into our hospital, and summarized their onset characteristics, clinical manifestations, related examinations and treatment as well as mutational spectrum. After gene sequencing, the diagnosis of GSD Ib was confirmed in all 3 patients. Five variants of SLC37A4 gene were detected, of which c. 572C > T was the common variant and c. 680G > A was a novel variant. The 3 cases of GSD Ib were mainly affected by liver enlargement, growth retardation, etc., and all had a history of repeated infections. At the onset, patients mainly manifested as mildly elevated alanine-aminotransferase (ALT), accompanied by decreased absolute neutrophil count (ANC), hypertriglyceridemia, and metabolic disorders (hypoglycemia, hyperlactic acidemia, metabolic acidosis, etc.). After long-term treatment by oral uncooked cornstarch, the abnormal liver enzymes gradually returned to normal, and metabolic abnormalities were basically controlled most of the time. With increasing age, ANC of 2 patients decreased progressively, whereas the times of infections was reduced. CONCLUSIONS We reported 3 cases with GSD Ib and a novel SLC37A4 variant. The possibility of GSD type Ib should be kept on alert when a patient suffers recurrent infections, accompanied by hepatomegaly, elevated liver enzymes, hypoglycemia, dyslipidemia, and metabolic disorders.
Collapse
Affiliation(s)
- Caiqi Du
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuoguang Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Wei
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minghui Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Mohtashami M, Razavi A, Abolhassani H, Aghamohammadi A, Yazdani R. Primary Immunodeficiency and Thrombocytopenia. Int Rev Immunol 2021; 41:135-159. [PMID: 33464134 DOI: 10.1080/08830185.2020.1868454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Primary immunodeficiency (PID) or Inborn errors of immunity (IEI) refers to a heterogeneous group of disorders characterized by immune system impairment. Although patients with IEI manifest highly variable symptoms, the most common clinical manifestations are recurrent infections, autoimmunity and malignancies. Some patients present hematological abnormality including thrombocytopenia due to different pathogenic mechanisms. This review focuses on primary and secondary thrombocytopenia as a complication, which can occur in IEI. Based on the International Union of Immunological Societies phenotypic classification for IEI, the several innate and adaptive immunodeficiency disorders can lead to thrombocytopenia. This review, for the first time, describes manifestation, mechanism and therapeutic modalities for thrombocytopenia in different classes of IEI.
Collapse
Affiliation(s)
- Maryam Mohtashami
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biology Sciences, University of Kharazmi, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Shimizu S, Sakamoto S, Horikawa R, Fukuda A, Uchida H, Takeda M, Yanagi Y, Irie R, Yoshioka T, Kasahara M. Longterm Outcomes of Living Donor Liver Transplantation for Glycogen Storage Disease Type 1b. Liver Transpl 2020; 26:57-67. [PMID: 31587472 DOI: 10.1002/lt.25649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Glycogen storage disease (GSD) type 1b (Online Mendelian Inheritance in Man [OMIM] 232220) is an autosomal recessive inborn error of carbohydrate metabolism caused by defects in glucose-6-phosphate translocase. GSD1b patients have severe hypoglycemia with several clinical manifestations of hepatomegaly, obesity, a doll-like face, and neutropenia. Liver transplantation (LT) has been indicated for severe glucose intolerance, poor metabolic control (PMC), and poor growth (PG). We retrospectively reviewed 11 children with GSD1b who underwent living donor liver transplantation (LDLT) at the National Center for Child Health and Development in Tokyo, Japan. Between November 2005 and December 2018, 495 children underwent LDLT with an overall 10-year patient and graft survival of 90.6% and 88.9%, respectively. Of these, LT was indicated for 11 patients with GSD1b. All patients are doing well with the stabilization of glucose intolerance and decreased hospitalization for infectious complications. Demand for granulocyte colony-stimulating factor significantly decreased. However, although LT stabilized the blood glucose level, the platelet function was not improved. The posttransplant developmental quotient (DQ) remained similar to the pretransplant DQ without deterioration. LDLT is a feasible procedure for GSD1b patients with regard to the longterm prognosis. LT should be considered for patients with severe glucose intolerance to protect the cognitive function against hypoglycemic encephalopathy and to ameliorate PMC and PG.
Collapse
Affiliation(s)
- Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Horikawa
- Department of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masahiro Takeda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Yanagi
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Rie Irie
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
7
|
Sim SW, Weinstein DA, Lee YM, Jun HS. Glycogen storage disease type Ib: role of glucose‐6‐phosphate transporter in cell metabolism and function. FEBS Lett 2019; 594:3-18. [DOI: 10.1002/1873-3468.13666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Sang Wan Sim
- Department of Biotechnology and Bioinformatics College of Science and Technology Korea University Sejong Korea
| | - David A. Weinstein
- Glycogen Storage Disease Program University of Connecticut School of Medicine Farmington CT USA
| | - Young Mok Lee
- Glycogen Storage Disease Program University of Connecticut School of Medicine Farmington CT USA
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics College of Science and Technology Korea University Sejong Korea
| |
Collapse
|
8
|
Christensen RD. Medicinal Uses of Hematopoietic Growth Factors in Neonatal Medicine. Handb Exp Pharmacol 2019; 261:257-283. [PMID: 31451971 DOI: 10.1007/164_2019_261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
This review focuses on certain hematopoietic growth factors that are used as medications in clinical neonatology. It is important to note at the chapter onset that although all of the pharmacological agents mentioned in this review have been approved by the US Food and Drug administration for use in humans, none have been granted a specific FDA indication for neonates. Thus, in a sense, all of the agents mentioned in this chapter could be considered experimental, when used in neonates. However, a great many of the pharmacological agents utilized routinely in neonatology practice do not have a specific FDA indication for this population of patients. Consequently, many of the agents reviewed in this chapter are considered by some practitioners to be nonexperimental and are used when they judge such use to be "best practice" for the disorders under treatment.The medicinal uses of the agents in this chapter vary considerably, between geographic locations, and sometimes even within an institutions. "Consistent approaches" aimed at using these agents in uniform ways in the practice of neonatology are encouraged. Indeed some healthcare systems, and some individual NICUs, have developed written guidelines for using these agents within the practice group. Some such guidelines are provided in this review. It should be noted that these guidelines, or "consistent approaches," must be viewed as dynamic and changing, requiring adjustment and refinement as additional evidence accrues.
Collapse
Affiliation(s)
- Robert D Christensen
- Divisions of Neonatology and Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA. .,Intermountain Healthcare, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Bakhtiar S, Shadur B, Stepensky P. The Evidence for Allogeneic Hematopoietic Stem Cell Transplantation for Congenital Neutrophil Disorders: A Comprehensive Review by the Inborn Errors Working Party Group of the EBMT. Front Pediatr 2019; 7:436. [PMID: 31709206 PMCID: PMC6821686 DOI: 10.3389/fped.2019.00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
Congenital disorders of the immune system affecting maturation and/or function of phagocytic leucocytes can result in severe infectious and inflammatory complications with high mortality and morbidity. Further complications include progression to MDS/AML in some cases. Allogeneic stem cell transplantation is the only curative treatment for most patients with these diseases. In this review, we provide a detailed update on indications and outcomes of alloHSCT for congenital neutrophil disorders, based on data from the available literature.
Collapse
Affiliation(s)
- Shahrzad Bakhtiar
- Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Bella Shadur
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel.,Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Graduate Research School, University of New South Wales, Kensington, NSW, Australia
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Cappello AR, Curcio R, Lappano R, Maggiolini M, Dolce V. The Physiopathological Role of the Exchangers Belonging to the SLC37 Family. Front Chem 2018; 6:122. [PMID: 29719821 PMCID: PMC5913288 DOI: 10.3389/fchem.2018.00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022] Open
Abstract
The human SLC37 gene family includes four proteins SLC37A1-4, localized in the endoplasmic reticulum (ER) membrane. They have been grouped into the SLC37 family due to their sequence homology to the bacterial organophosphate/phosphate (Pi) antiporter. SLC37A1-3 are the less characterized isoforms. SLC37A1 and SLC37A2 are Pi-linked glucose-6-phosphate (G6P) antiporters, catalyzing both homologous (Pi/Pi) and heterologous (G6P/Pi) exchanges, whereas SLC37A3 transport properties remain to be clarified. Furthermore, SLC37A1 is highly homologous to the bacterial glycerol 3-phosphate permeases, so it is supposed to transport also glycerol-3-phosphate. The physiological role of SLC37A1-3 is yet to be further investigated. SLC37A1 seems to be required for lipid biosynthesis in cancer cell lines, SLC37A2 has been proposed as a vitamin D and a phospho-progesterone receptor target gene, while mutations in the SLC37A3 gene appear to be associated with congenital hyperinsulinism of infancy. SLC37A4, also known as glucose-6-phosphate translocase (G6PT), transports G6P from the cytoplasm into the ER lumen, working in complex with either glucose-6-phosphatase-α (G6Pase-α) or G6Pase-β to hydrolyze intraluminal G6P to Pi and glucose. G6PT and G6Pase-β are ubiquitously expressed, whereas G6Pase-α is specifically expressed in the liver, kidney and intestine. G6PT/G6Pase-α complex activity regulates fasting blood glucose levels, whereas G6PT/G6Pase-β is required for neutrophil functions. G6PT deficiency is responsible for glycogen storage disease type Ib (GSD-Ib), an autosomal recessive disorder associated with both defective metabolic and myeloid phenotypes. Several kinds of mutations have been identified in the SLC37A4 gene, affecting G6PT function. An increased autoimmunity risk for GSD-Ib patients has also been reported, moreover, SLC37A4 seems to be involved in autophagy.
Collapse
Affiliation(s)
- Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
11
|
Matched unrelated donor transplantation in glycogen storage disease type 1b patient corrects severe neutropenia and recurrent infections. Bone Marrow Transplant 2018. [DOI: 10.1038/s41409-018-0147-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Li AM, Thyagu S, Maze D, Schreiber R, Sirrs S, Stockler-Ipsiroglu S, Sutherland H, Vercauteren S, Schultz KR. Prolonged granulocyte colony stimulating factor use in glycogen storage disease type 1b associated with acute myeloid leukemia and with shortened telomere length. Pediatr Hematol Oncol 2018; 35:45-51. [PMID: 29652549 DOI: 10.1080/08880018.2018.1440675] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycogen storage disease (GSD) type 1 is a rare autosomal recessive inherited condition. The 1b subtype comprises the minority of cases, with an estimated prevalence of 1 in 500,000 children. Patients with glycogen storage disease type 1b are often treated with granulocyte colony stimulating factor (G-CSF) for prolonged periods to improve symptoms of inflammatory bowel disease (IBD) and in the face of severe neutropenia to decrease risk of infection. Long-term G-CSF treatment may result in an increased risk of myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) possibly due to increased marrow stress resulting in telomere shortening. To our knowledge, there have been two published cases of AML in GSD type 1b patients following long-term G-CSF exposure. Here, we report two further cases of AML/MDS-related changes in patients GSD type 1b treated with G-CSF. One patient developed AML with complex karyotype after 20 years of G-CSF treatment. The second patient was found to have short telomeres after 10 years of G-CSF exposure, but no evidence of acute leukemia at present. The third patient developed AML/MDS after 25 years of G-CSF use, with short telomeres prior to bone marrow transplant. Together these cases suggest that GSD type 1b patients with prolonged G-CSF exposure may be at an increased risk of MDS/AML states associated with G-CSF-induced shortened telomeres. We recommend that any GSD1b patients with prolonged G-CSF should have routine telomere assessments with monitoring for MDS if telomere shortening is observed, and with particular attention warranted if there is unexplained loss of G-CSF responsiveness.
Collapse
Affiliation(s)
- Amanda M Li
- a Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Santhosh Thyagu
- b Division of Medical Oncology and Hematology , Princess Margaret Cancer Centre , Toronto , ON , Canada
| | - Dawn Maze
- b Division of Medical Oncology and Hematology , Princess Margaret Cancer Centre , Toronto , ON , Canada
| | - Richard Schreiber
- c Department of Pediatrics , University of British Columbia, BC Children's Hospital , Vancouver , BC . Canada
| | - Sandra Sirrs
- d Department of Medicine , University of British Columbia, Vancouver General Hospital , Vancouver , BC , Canada
| | - Sylvia Stockler-Ipsiroglu
- c Department of Pediatrics , University of British Columbia, BC Children's Hospital , Vancouver , BC . Canada
| | - Heather Sutherland
- d Department of Medicine , University of British Columbia, Vancouver General Hospital , Vancouver , BC , Canada
| | - Suzanne Vercauteren
- e Department of Pathology and Laboratory Medicine , University of British Columbia, BC Children's Hospital , Vancouver , BC , Canada
| | - Kirk R Schultz
- c Department of Pediatrics , University of British Columbia, BC Children's Hospital , Vancouver , BC . Canada
| |
Collapse
|
13
|
Lee KJ, Choi SJ, Kim WS, Park SS, Moon JS, Ko JS. Esophageal Stricture Secondary to Candidiasis in a Child with Glycogen Storage Disease 1b. Pediatr Gastroenterol Hepatol Nutr 2016; 19:71-5. [PMID: 27066451 PMCID: PMC4821985 DOI: 10.5223/pghn.2016.19.1.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022] Open
Abstract
Esophageal candidiasis is commonly seen in immunocompromised patients; however, candida esophagitis induced stricture is a very rare complication. We report the first case of esophageal stricture secondary to candidiasis in a glycogen storage disease (GSD) 1b child. The patient was diagnosed with GSD type 1b by liver biopsy. No mutation was found in the G6PC gene, but SLC37A4 gene sequencing revealed a compound heterozygous mutation (p.R28H and p.W107X, which was a novel mutation). The patient's absolute neutrophil count was continuously under 1,000/µL when he was over 6 years of age. He was admitted frequently for recurrent fever and infection, and frequently received intravenous antibiotics, antifungal agents. He complained of persistent dysphagia beginning at age 7 years. Esophageal stricture and multiple whitish patches were observed by endoscopy and endoscopic biopsy revealed numerous fungal hyphae consistent with candida esophagitis. He received esophageal balloon dilatation four times, and his symptoms improved.
Collapse
Affiliation(s)
- Kyung Jae Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Shin Jie Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Sun Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Sup Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Chou JY, Jun HS, Mansfield BC. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase/glucose-6-phosphate transporter complexes. J Inherit Metab Dis 2015; 38:511-9. [PMID: 25288127 DOI: 10.1007/s10545-014-9772-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/12/2014] [Accepted: 09/12/2014] [Indexed: 12/15/2022]
Abstract
Disorders of the glucose-6-phosphatase (G6Pase)/glucose-6-phosphate transporter (G6PT) complexes consist of three subtypes: glycogen storage disease type Ia (GSD-Ia), deficient in the liver/kidney/intestine-restricted G6Pase-α (or G6PC); GSD-Ib, deficient in a ubiquitously expressed G6PT (or SLC37A4); and G6Pase-β deficiency or severe congenital neutropenia syndrome type 4 (SCN4), deficient in the ubiquitously expressed G6Pase-β (or G6PC3). G6Pase-α and G6Pase-β are glucose-6-phosphate (G6P) hydrolases with active sites lying inside the endoplasmic reticulum (ER) lumen and as such are dependent upon the G6PT to translocate G6P from the cytoplasm into the lumen. The tissue expression profiles of the G6Pase enzymes dictate the disease's phenotype. A functional G6Pase-α/G6PT complex maintains interprandial glucose homeostasis, while a functional G6Pase-β/G6PT complex maintains neutrophil/macrophage energy homeostasis and functionality. G6Pase-β deficiency is not a glycogen storage disease but biochemically it is a GSD-I related syndrome (GSD-Irs). GSD-Ia and GSD-Ib patients manifest a common metabolic phenotype of impaired blood glucose homeostasis not shared by GSD-Irs. GSD-Ib and GSD-Irs patients manifest a common myeloid phenotype of neutropenia and neutrophil/macrophage dysfunction not shared by GSD-Ia. While a disruption of the activity of the G6Pase-α/G6PT complex readily explains why GSD-Ia and GSD-Ib patients exhibit impaired glucose homeostasis, the basis for neutropenia and myeloid dysfunction in GSD-Ib and GSD-Irs are only now starting to be understood. Animal models of all three disorders are now available and are being exploited to both delineate the disease more precisely and develop new treatment approaches, including gene therapy.
Collapse
Affiliation(s)
- Janice Y Chou
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA,
| | | | | |
Collapse
|
15
|
Parvaneh N, Quartier P, Rostami P, Casanova JL, de Lonlay P. Inborn errors of metabolism underlying primary immunodeficiencies. J Clin Immunol 2014; 34:753-71. [PMID: 25081841 DOI: 10.1007/s10875-014-0076-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/02/2014] [Indexed: 01/19/2023]
Abstract
A number of inborn errors of metabolism (IEM) have been shown to result in predominantly immunologic phenotypes, manifesting in part as inborn errors of immunity. These phenotypes are mostly caused by defects that affect the (i) quality or quantity of essential structural building blocks (e.g., nucleic acids, and amino acids), (ii) cellular energy economy (e.g., glucose metabolism), (iii) post-translational protein modification (e.g., glycosylation) or (iv) mitochondrial function. Presenting as multisystemic defects, they also affect innate or adaptive immunity, or both, and display various types of immune dysregulation. Specific and potentially curative therapies are available for some of these diseases, whereas targeted treatments capable of inducing clinical remission are available for others. We will herein review the pathogenesis, diagnosis, and treatment of primary immunodeficiencies (PIDs) due to underlying metabolic disorders.
Collapse
Affiliation(s)
- Nima Parvaneh
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran,
| | | | | | | | | |
Collapse
|
16
|
Chou JY, Sik Jun H, Mansfield BC. The SLC37 family of phosphate-linked sugar phosphate antiporters. Mol Aspects Med 2013; 34:601-11. [PMID: 23506893 DOI: 10.1016/j.mam.2012.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/08/2012] [Indexed: 12/28/2022]
Abstract
The SLC37 family consists of four sugar-phosphate exchangers, A1, A2, A3, and A4, which are anchored in the endoplasmic reticulum (ER) membrane. The best characterized family member is SLC37A4, better known as the glucose-6-phosphate (G6P) transporter (G6PT). SLC37A1, SLC37A2, and G6PT function as phosphate (Pi)-linked G6P antiporters catalyzing G6P:Pi and Pi:Pi exchanges. The activity of SLC37A3 is unknown. G6PT translocates G6P from the cytoplasm into the lumen of the ER where it couples with either glucose-6-phosphatase-α (G6Pase-α) or G6Pase-β to hydrolyze intraluminal G6P to glucose and Pi. The functional coupling of G6PT with G6Pase-α maintains interprandial glucose homeostasis and the functional coupling of G6PT with G6Pase-β maintains neutrophil energy homeostasis and functionality. A deficiency in G6PT causes glycogen storage disease type Ib, an autosomal recessive disorder characterized by impaired glucose homeostasis, neutropenia, and neutrophil dysfunction. Neither SLC37A1 nor SLC37A2 can functionally couple with G6Pase-α or G6Pase-β, and there are no known disease associations for them or SLC37A3. Since only G6PT matches the characteristics of the physiological ER G6P transporter involved in blood glucose homeostasis and neutrophil energy metabolism, the biological roles for the other SLC37 proteins remain to be determined.
Collapse
Affiliation(s)
- Janice Y Chou
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Neutropenia is a feature of several primary immunodeficiency diseases (PIDDs). Because of the diverse pathophysiologies of the PIDDs and the rarity of each disorder, data are often lacking, leading to the necessity of empiric treatment. Recent developments in the understanding of neutropenia in several of the PIDDs make a review of the data timely. RECENT FINDINGS The category of severe congenital neutropenia continues to expand. Mutations in G6PC3 have been identified as the cause of neutropenia in a minority of previously molecularly undefined cases. Recent advances have broadened our understanding of the pathophysiology and the clinical expression of this disorder. A possible function of the C16orf57 gene has been hypothesized that may explain the clinical overlap between Clerucuzio-type poikiloderma with neutropenia and other marrow diseases. Plerixafor has been shown to be a potentially useful treatment in the warts, hypogammaglobulinemia, infection, and myelokathexis syndrome. Investigations of patients with adenosine deaminase deficient severe combined immunodeficiency have identified neutropenia, and particularly susceptibility to myelotoxins, as a feature of this disorder. Granulocyte-colony stimulating factor is the treatment of choice for neutropenia in PIDD, whereas hematopoietic cell transplantation is the only curative option. SUMMARY The number of PIDDs associated with neutropenia has increased, as has our understanding of the range of phenotypes. Additional data and hypotheses have been generated helping to explain the diversity of presentations of neutropenia in PIDDs.
Collapse
Affiliation(s)
- Robert Sokolic
- Disorders of Immunity Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-1611, USA.
| |
Collapse
|
18
|
Abstract
INTRODUCTION Glycogen storage disease (GSD) type Ia and Ib are disorders of impaired glucose homeostasis affecting the liver and kidney. GSD-Ib also affects neutrophils. Current dietary therapies cannot prevent long-term complications. In animal studies, recombinant adeno-associated virus (rAAV) vector-mediated gene therapy can correct or minimize multiple aspects of the disorders, offering hope for human gene therapy. AREAS COVERED A summary of recent progress in rAAV-mediated gene therapy for GSD-I; strategies to improve rAAV-mediated gene delivery, transduction efficiency and immune avoidance; and vector refinements that improve expression. EXPERT OPINION rAAV-mediated gene delivery to the liver can restore glucose homeostasis in preclinical models of GSD-I, but some long-term complications of the liver and kidney remain. Gene therapy for GSD-Ib is less advanced than for GSD-Ia and only transient correction of myeloid dysfunction has been achieved. A question remains as to whether a single rAAV vector can meet the expression efficiency and tropism required to treat all aspects of GSD-I, or if a multi-pronged approach is needed. An understanding of the strengths and weaknesses of rAAV vectors in the context of strategies to achieve efficient transduction of the liver, kidney and hematopoietic stem cells is required for treating GSD-I.
Collapse
Affiliation(s)
- Janice Y Chou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Bethesda, MD 20892 1830, USA.
| | | |
Collapse
|
19
|
Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P. Glucose-6-phosphatase deficiency. Orphanet J Rare Dis 2011; 6:27. [PMID: 21599942 PMCID: PMC3118311 DOI: 10.1186/1750-1172-6-27] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 05/20/2011] [Indexed: 01/01/2023] Open
Abstract
Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed by G6PC (GSDIa) or SLC37A4 (GSDIb) gene analysis, and the indications of liver biopsy to measure G6P activity are getting rarer and rarer. Differential diagnoses include the other GSDs, in particular type III (see this term). However, in GSDIII, glycemia and lactacidemia are high after a meal and low after a fast period (often with a later occurrence than that of type I). Primary liver tumors and Pepper syndrome (hepatic metastases of neuroblastoma) may be evoked but are easily ruled out through clinical and ultrasound data. Antenatal diagnosis is possible through molecular analysis of amniocytes or chorionic villous cells. Pre-implantatory genetic diagnosis may also be discussed. Genetic counseling should be offered to patients and their families. The dietary treatment aims at avoiding hypoglycemia (frequent meals, nocturnal enteral feeding through a nasogastric tube, and later oral addition of uncooked starch) and acidosis (restricted fructose and galactose intake). Liver transplantation, performed on the basis of poor metabolic control and/or hepatocarcinoma, corrects hypoglycemia, but renal involvement may continue to progress and neutropenia is not always corrected in type Ib. Kidney transplantation can be performed in case of severe renal insufficiency. Combined liver-kidney grafts have been performed in a few cases. Prognosis is usually good: late hepatic and renal complications may occur, however, with adapted management, patients have almost normal life span. DISEASE NAME AND SYNONYMS: Glucose-6-phosphatase deficiency or G6P deficiency or glycogen storage disease type I or GSDI or type I glycogenosis or Von Gierke disease or Hepatorenal glycogenosis.
Collapse
Affiliation(s)
- Roseline Froissart
- Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Service de Pédiatrie, APHP, Clamart cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Glycogen storage disease type I (GSD-I) consists of two subtypes: GSD-Ia, a deficiency in glucose-6-phosphatase-α (G6Pase-α) and GSD-Ib, which is characterized by an absence of a glucose-6-phosphate (G6P) transporter (G6PT). A third disorder, G6Pase-β deficiency, shares similarities with this group of diseases. G6Pase-α and G6Pase-β are G6P hydrolases in the membrane of the endoplasmic reticulum, which depend on G6PT to transport G6P from the cytoplasm into the lumen. A functional complex of G6PT and G6Pase-α maintains interprandial glucose homeostasis, whereas G6PT and G6Pase-β act in conjunction to maintain neutrophil function and homeostasis. Patients with GSD-Ia and those with GSD-Ib exhibit a common metabolic phenotype of disturbed glucose homeostasis that is not evident in patients with G6Pase-β deficiency. Patients with a deficiency in G6PT and those lacking G6Pase-β display a common myeloid phenotype that is not shared by patients with GSD-Ia. Previous studies have shown that neutrophils express the complex of G6PT and G6Pase-β to produce endogenous glucose. Inactivation of either G6PT or G6Pase-β increases neutrophil apoptosis, which underlies, at least in part, neutrophil loss (neutropenia) and dysfunction in GSD-Ib and G6Pase-β deficiency. Dietary and/or granulocyte colony-stimulating factor therapies are available; however, many aspects of the diseases are still poorly understood. This Review will address the etiology of GSD-Ia, GSD-Ib and G6Pase-β deficiency and highlight advances in diagnosis and new treatment approaches, including gene therapy.
Collapse
Affiliation(s)
- Janice Y Chou
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Building 10, Room 9D42, 10 Center Drive, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA.
| | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Glycogen storage disease type Ib, characterized by disturbed glucose homeostasis, neutropenia, and neutrophil dysfunction, is caused by a deficiency in a ubiquitously expressed glucose-6-phosphate transporter (G6PT). G6PT translocates glucose-6-phosphate (G6P) from the cytoplasm into the lumen of the endoplasmic reticulum, in which it is hydrolyzed to glucose either by a liver/kidney/intestine-restricted glucose-6-phosphatase-alpha (G6Pase-alpha) or by a ubiquitously expressed G6Pase-beta. The role of the G6PT/G6Pase-alpha complex is well established and readily explains why G6PT disruptions disturb interprandial blood glucose homeostasis. However, the basis for neutropenia and neutrophil dysfunction in glycogen storage disease type Ib is poorly understood. Recent studies that are now starting to unveil the mechanisms are presented in this review. RECENT FINDINGS Characterization of G6Pase-beta and generation of mice lacking either G6PT or G6Pase-beta have shown that neutrophils express the G6PT/G6Pase-beta complex capable of producing endogenous glucose. Loss of G6PT activity leads to enhanced endoplasmic reticulum stress, oxidative stress, and apoptosis that underlie neutropenia and neutrophil dysfunction in glycogen storage disease type Ib. SUMMARY Neutrophil function is intimately linked to the regulation of glucose and G6P metabolism by the G6PT/G6Pase-beta complex. Understanding the molecular mechanisms that govern energy homeostasis in neutrophils has revealed a previously unrecognized pathway of intracellular G6P metabolism in neutrophils.
Collapse
Affiliation(s)
- Janice Y Chou
- aProgram on Developmental Endocrinology and Genetics, Section on Cellular Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1830, USA.
| | | | | |
Collapse
|
22
|
Koeberl DD, Kishnani PS, Bali D, Chen YT. Emerging therapies for glycogen storage disease type I. Trends Endocrinol Metab 2009; 20:252-8. [PMID: 19541498 DOI: 10.1016/j.tem.2009.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 10/20/2022]
Abstract
Glycogen storage disease type I (GSD I) is caused by deficiency of the glucose-6-phosphatase catalytic subunit in type Ia or of glucose-6-phosphate transporter in type Ib. The cellular bases for disruptions of homeostasis have been increasingly understood in GSD I, including those for anemia, renal failure and neutropenia. Advances in the understanding of cellular abnormalities in GSD I have provided rationales for new therapy, and recent developments in gene therapy have led to potential curative treatments for GSD I. These advances will benefit patients with GSD I in the future, improving both quality of life and survival, as well as illuminating the molecular effects of altered metabolism upon multiple organ systems.
Collapse
Affiliation(s)
- D D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|