1
|
Combined agonists act synergistically to increase mucociliary clearance in a cystic fibrosis airway model. Sci Rep 2021; 11:18828. [PMID: 34552115 PMCID: PMC8458446 DOI: 10.1038/s41598-021-98122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Mucus clearance, a primary innate defense mechanism of airways, is defective in patients with cystic fibrosis (CF) and CF animals. In previous work, the combination of a low dose of the cholinergic agonist, carbachol with forskolin or a β adrenergic agonist, isoproterenol synergistically increased mucociliary clearance velocity (MCCV) in ferret tracheas. Importantly, the present study shows that synergistic MCCV can also be produced in CF ferrets, with increases ~ 55% of WT. Synergistic MCCV was also produced in pigs. The combined agonists increased MCCV by increasing surface fluid via multiple mechanisms: increased fluid secretion from submucosal glands, increased anion secretion across surface epithelia and decreased Na+ absorption. To avoid bronchoconstriction, the cAMP agonist was applied 30 min before carbachol. This approach to increasing mucus clearance warrants testing for safety and efficacy in humans as a potential therapeutic for muco-obstructive diseases.
Collapse
|
2
|
Ross BS, Lofgren LA, Ashare A, Stajich JE, Cramer RA. Aspergillus fumigatus In-Host HOG Pathway Mutation for Cystic Fibrosis Lung Microenvironment Persistence. mBio 2021; 12:e0215321. [PMID: 34465017 PMCID: PMC8406193 DOI: 10.1128/mbio.02153-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
The prevalence of Aspergillus fumigatus colonization in individuals with cystic fibrosis (CF) and subsequent fungal persistence in the lung is increasingly recognized. However, there is no consensus for clinical management of A. fumigatus in CF individuals, due largely to uncertainty surrounding A. fumigatus CF pathogenesis and virulence mechanisms. To address this gap in knowledge, a longitudinal series of A. fumigatus isolates from an individual with CF were collected over 4.5 years. Isolate genotypes were defined with whole-genome sequencing that revealed both transitory and persistent A. fumigatus in the lung. Persistent lineage isolates grew most readily in a low-oxygen culture environment, and conidia were more sensitive to oxidative stress-inducing conditions than those from nonpersistent isolates. Closely related persistent isolates harbored a unique allele of the high-osmolarity glycerol (HOG) pathway mitogen-activated protein kinase kinase, Pbs2 (pbs2C2). Data suggest this novel pbs2C2 allele arose in vivo and is necessary for the fungal response to osmotic stress in a low-oxygen environment through hyperactivation of the HOG (SakA) signaling pathway. Hyperactivation of the HOG pathway through pbs2C2 comes at the cost of decreased conidial stress resistance in the presence of atmospheric oxygen levels. These novel findings shed light on pathoadaptive mechanisms of A. fumigatus in CF, lay the foundation for identifying persistent A. fumigatus isolates that may require antifungal therapy, and highlight considerations for successful culture of persistent Aspergillus CF isolates. IMPORTANCE Aspergillus fumigatus infection causes a spectrum of clinical manifestations. For individuals with cystic fibrosis (CF), allergic bronchopulmonary aspergillosis (ABPA) is an established complication, but there is a growing appreciation for A. fumigatus airway persistence in CF disease progression. There currently is little consensus for clinical management of A. fumigatus long-term culture positivity in CF. A better understanding of A. fumigatus pathogenesis mechanisms in CF is expected to yield insights into when antifungal therapies are warranted. Here, a 4.5-year longitudinal collection of A. fumigatus isolates from a patient with CF identified a persistent lineage that harbors a unique allele of the Pbs2 mitogen-activated protein kinase kinase (MAPKK) necessary for unique CF-relevant stress phenotypes. Importantly for A. fumigatus CF patient diagnostics, this allele provides increased fitness under CF lung-like conditions at a cost of reduced in vitro growth under standard laboratory conditions. These data illustrate a molecular mechanism for A. fumigatus CF lung persistence with implications for diagnostics and antifungal therapy.
Collapse
Affiliation(s)
- Brandon S. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Pittman JE, Noah H, Calloway HE, Davis SD, Leigh MW, Drumm M, Sagel SD, Accurso FJ, Knowles MR, Sontag MK. Early childhood lung function is a stronger predictor of adolescent lung function in cystic fibrosis than early Pseudomonas aeruginosa infection. PLoS One 2017; 12:e0177215. [PMID: 28505188 PMCID: PMC5432103 DOI: 10.1371/journal.pone.0177215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/24/2017] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Pseudomonas aeruginosa has been suggested as a major determinant of poor pulmonary outcomes in cystic fibrosis (CF), although other factors play a role. Our objective was to investigate the association of early childhood Pseudomonas infection on differences in lung function in adolescence with CF. METHODS Two populations of subjects with CF were studied: from the Gene Modifier Study (GMS), 346 F508del homozygotes with severe vs. mild adolescent lung disease, and from the Colorado Newborn Screen Study (NBS) 172 subjects diagnosed with CF by newborn screening. Associations of Pseudomonas infection and lung function in early childhood with lung function in adolescence were investigated using multivariate linear regression analyses. RESULTS Among GMS subjects, those with severe adolescent lung disease had worse lung function in childhood (FEV1 25 percentage points lower) compared to subjects with mild adolescent lung disease, regardless of early childhood Pseudomonas status. Among NBS subjects, those with lowest adolescent lung function had significantly lower early childhood lung function and faster rate of decline in FEV1 than subjects with highest adolescent lung function; early Pseudomonas infection was not associated with rate of FEV1 decline. The strongest predictor of adolescent lung function was early childhood lung function. Subjects with a higher percentage of cultures positive for Pseudomonas before age 6 or a lower BMI at 2-4 years old also had lower adolescent lung function, though these associations were not as strong as with early childhood lung function. CONCLUSIONS In separate analyses of two distinct populations of subjects with CF, we found a strong correlation between lower lung function in early childhood and adolescence, regardless of early childhood Pseudomonas status. Factors in addition to early Pseudomonas infection have a strong impact on lung function in early childhood in CF. Further exploration may identify novel underlying genetic or environmental factors that predispose children with CF to early loss of lung function.
Collapse
Affiliation(s)
- Jessica E. Pittman
- Washington University School of Medicine, Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, St. Louis, MO, United States of America
| | - Hannah Noah
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States of America
| | - Hollin E. Calloway
- Stanford University School of Medicine, Department of Otolaryngology Head & Neck Surgery, Palo Alto, CA, United States of America
| | - Stephanie D. Davis
- Indiana University School of Medicine/Riley Hospital for Children, Section of Pediatric Pulmonology, Allergy, and Sleep Medicine, Indianapolis, IN, United States of America
| | - Margaret W. Leigh
- University of North Carolina at Chapel Hill, Department of Pediatrics, Chapel Hill, NC, United States of America
- University of North Carolina at Chapel Hill, Marisco Lung Institute, Chapel Hill, NC, United States of America
| | - Mitchell Drumm
- Departments of Pediatrics and Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Scott D. Sagel
- Department of Pediatrics, Children’s Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Frank J. Accurso
- Department of Pediatrics, Children’s Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Michael R. Knowles
- University of North Carolina at Chapel Hill, Marisco Lung Institute, Chapel Hill, NC, United States of America
| | - Marci K. Sontag
- Department of Pediatrics, Children’s Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
4
|
Aerodynamic properties, solubility and in vitro antibacterial efficacy of dry powders prepared by spray drying: Clarithromycin versus its hydrochloride salt. Eur J Pharm Biopharm 2016; 104:1-6. [DOI: 10.1016/j.ejpb.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 12/14/2022]
|
5
|
Du J, Bandara HMHN, Du P, Huang H, Hoang K, Nguyen D, Mogarala SV, Smyth HDC. Improved Biofilm Antimicrobial Activity of Polyethylene Glycol Conjugated Tobramycin Compared to Tobramycin in Pseudomonas aeruginosa Biofilms. Mol Pharm 2015; 12:1544-53. [DOI: 10.1021/mp500846u] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ju Du
- Division
of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - H. M. H. N. Bandara
- Division
of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ping Du
- Division
of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hui Huang
- Division
of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Khang Hoang
- College
of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dang Nguyen
- Division
of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sri Vasudha Mogarala
- Division
of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hugh D. C. Smyth
- Division
of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Center
for Infectious Disease, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Rieber N, Brand A, Hector A, Graepler-Mainka U, Ost M, Schäfer I, Wecker I, Neri D, Wirth A, Mays L, Zundel S, Fuchs J, Handgretinger R, Stern M, Hogardt M, Döring G, Riethmüller J, Kormann M, Hartl D. Flagellin Induces Myeloid-Derived Suppressor Cells: Implications forPseudomonas aeruginosaInfection in Cystic Fibrosis Lung Disease. THE JOURNAL OF IMMUNOLOGY 2012; 190:1276-84. [DOI: 10.4049/jimmunol.1202144] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Abstract
PURPOSE OF REVIEW The chronic infection and inflammation of cystic fibrosis (CF) lung disease causes a progressive decline of lung function resulting in daily symptoms such as cough and sputum production. There are intermittent episodes of acute worsening of symptoms, more commonly referred to as pulmonary exacerbations. Despite this being a common event, there is still no standardized definition of an exacerbation. A recent set of guidelines from the CF Foundation Pulmonary Therapies Committee on the treatment of exacerbations noted the paucity of data supporting commonly used therapies. This review describes our current understanding of pulmonary exacerbations and the therapies used to treat them. RECENT FINDINGS The treatment of an exacerbation is intended to resolve the worsened symptoms and to restore the lung function that is commonly lost in the acute presentation. A most striking finding is the observation that for many patients there is no restoration of lung function, suggesting we either need better therapies to prevent exacerbations or better treatment of exacerbations. SUMMARY We have established recommendations on specific treatment of a pulmonary exacerbation and have outlined the areas where we need better information on appropriate therapies. Once we have a standardized definition of an exacerbation, we can proceed with clinical trials of therapies specific for its treatment.
Collapse
|
8
|
Cornfield DN. Society for Pediatric Research 2010 Presidential Address: Academic pediatrics and the narrative of discovery. Pediatr Res 2011; 70:320-4. [PMID: 21822098 DOI: 10.1203/pdr.0b013e31822bafec] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David N Cornfield
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|