1
|
Rotz SJ, Bhatt NS, Hamilton BK, Duncan C, Aljurf M, Atsuta Y, Beebe K, Buchbinder D, Burkhard P, Carpenter PA, Chaudhri N, Elemary M, Elsawy M, Guilcher GMT, Hamad N, Karduss A, Peric Z, Purtill D, Rizzo D, Rodrigues M, Ostriz MBR, Salooja N, Schoemans H, Seber A, Sharma A, Srivastava A, Stewart SK, Baker KS, Majhail NS, Phelan R. International recommendations for screening and preventative practices for long-term survivors of transplantation and cellular therapy: a 2023 update. Bone Marrow Transplant 2024; 59:717-741. [PMID: 38413823 PMCID: PMC11809468 DOI: 10.1038/s41409-023-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/29/2024]
Abstract
As hematopoietic cell transplantation (HCT) and cellular therapy expand to new indications and international access improves, the volume of HCT performed annually continues to rise. Parallel improvements in HCT techniques and supportive care entails more patients surviving long-term, creating further emphasis on survivorship needs. Survivors are at risk for developing late complications secondary to pre-, peri- and post-transplant exposures and other underlying risk-factors. Guidelines for screening and preventive practices for HCT survivors were originally published in 2006 and updated in 2012. To review contemporary literature and update the recommendations while considering the changing practice of HCT and cellular therapy, an international group of experts was again convened. This review provides updated pediatric and adult survivorship guidelines for HCT and cellular therapy. The contributory role of chronic graft-versus-host disease (cGVHD) to the development of late effects is discussed but cGVHD management is not covered in detail. These guidelines emphasize special needs of patients with distinct underlying HCT indications or comorbidities (e.g., hemoglobinopathies, older adults) but do not replace more detailed group, disease, or condition specific guidelines. Although these recommendations should be applicable to the vast majority of HCT recipients, resource constraints may limit their implementation in some settings.
Collapse
Affiliation(s)
- Seth J Rotz
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Christine Duncan
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard University, Boston, MA, USA
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Yoshiko Atsuta
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Kristen Beebe
- Phoenix Children's Hospital and Mayo Clinic Arizona, Phoenix, AZ, USA
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, CA, USA
| | - Peggy Burkhard
- National Bone Marrow Transplant Link, Southfield, MI, USA
| | | | - Naeem Chaudhri
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed Elemary
- Hematology and BMT, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mahmoud Elsawy
- Division of Hematology, Dalhousie University, Halifax, NS, Canada
- QEII Health Sciences Center, Halifax, NS, Canada
| | - Gregory M T Guilcher
- Section of Pediatric Oncology/Transplant and Cellular Therapy, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital Sydney, Sydney, NSW, Australia
- St Vincent's Clinical School Sydney, University of New South Wales, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Sydney, WA, Australia
| | - Amado Karduss
- Bone Marrow Transplant Program, Clinica las Americas, Medellin, Colombia
| | - Zinaida Peric
- BMT Unit, Department of Hematology, University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Douglas Rizzo
- Medical College of Wisconsin, Milwaukee, WI, USA
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Maria Belén Rosales Ostriz
- Division of hematology and bone marrow transplantation, Instituto de trasplante y alta complejidad (ITAC), Buenos Aires, Argentina
| | - Nina Salooja
- Centre for Haematology, Imperial College London, London, UK
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Public Health and Primary Care, ACCENT VV, KU Leuven-University of Leuven, Leuven, Belgium
| | | | - Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Susan K Stewart
- Blood & Marrow Transplant Information Network, Highland Park, IL, 60035, USA
| | | | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, TN, USA
| | - Rachel Phelan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Ricci E, Bartalucci C, Russo C, Mariani M, Saffioti C, Massaccesi E, Pierri F, Brisca G, Moscatelli A, Caorsi R, Bruzzone B, Damasio MB, Marchese A, Mesini A, Castagnola E. Clinical and Radiological Features of Pneumocystis jirovecii Pneumonia in Children: A Case Series. J Fungi (Basel) 2024; 10:276. [PMID: 38667947 PMCID: PMC11050895 DOI: 10.3390/jof10040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Pneumocytis jirovecii pneumonia (PJP) has high mortality rates in immunocompromised children, even though routine prophylaxis has decreased in incidence. The aim of this case series is to present the radiological and clinical pathway of PJP in a pediatric population. DESCRIPTION OF CASES All PJP cases in non-HIV/AIDS patients diagnosed at Istituto Giannina Gaslini Pediatric Hospital in Genoa (Italy) from January 2012 until October 2022 were retrospectively evaluated. Nine cases were identified (median age: 8.3 years), and of these, 6/9 underwent prophylaxis with trimethoprim/sulfamethoxazole (TMP/SMX; five once-a-week schedules and one three times-a-week schedule), while 3/9 did not receive this. PJP was diagnosed by real-time PCR for P. jirovecii-DNA in respiratory specimens in 7/9 cases and two consecutive positive detections of β-d-glucan (BDG) in the serum in 2/9 cases. Most patients (6/8) had a CT scan with features suggestive of PJP, while one patient did not undergo a scan. All patients were treated with TMP/SMX after a median time from symptoms onset of 3 days. In 7/9 cases, empirical TMP/SMX treatment was initiated after clinical suspicion and radiological evidence and later confirmed by microbiological data. Clinical improvement with the resolution of respiratory failure and 30-day survival included 100% of the study population. DISCUSSION Due to the difficulty in obtaining biopsy specimens, PJP diagnosis is usually considered probable in most cases. Moreover, the severity of the clinical presentation often leads physicians to start TMP/SMX treatment empirically. BDG proved to be a useful tool for diagnosis, and CT showed good accuracy in identifying typical patterns. In our center, single-day/week prophylaxis was ineffective in high-risk patients; the three-day/week schedule would, therefore, seem preferable and, in any case, should be started promptly in all patients who have an indication of pneumonia.
Collapse
Affiliation(s)
- Erica Ricci
- Division of Infectious Diseases, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (E.R.); (C.R.); (C.S.); (E.C.)
| | - Claudia Bartalucci
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Chiara Russo
- Division of Infectious Diseases, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (E.R.); (C.R.); (C.S.); (E.C.)
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, 16132 Genoa, Italy
| | - Marcello Mariani
- Division of Infectious Diseases, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (E.R.); (C.R.); (C.S.); (E.C.)
| | - Carolina Saffioti
- Division of Infectious Diseases, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (E.R.); (C.R.); (C.S.); (E.C.)
| | - Erika Massaccesi
- Division of Ematology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Filomena Pierri
- Unit of Bone Marrow Transplantation, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giacomo Brisca
- Division of Neonatal and Pediatric Critical Care and Semi-Intensive Care, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.B.); (A.M.)
| | - Andrea Moscatelli
- Division of Neonatal and Pediatric Critical Care and Semi-Intensive Care, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.B.); (A.M.)
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Bianca Bruzzone
- Hygiene Unit, Department of Health Sciences, Ospedale Policlinico San Martino, University of Genoa, 16132 Genoa, Italy
| | | | - Anna Marchese
- Microbiology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy;
| | - Alessio Mesini
- Division of Infectious Diseases, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (E.R.); (C.R.); (C.S.); (E.C.)
| | - Elio Castagnola
- Division of Infectious Diseases, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (E.R.); (C.R.); (C.S.); (E.C.)
| |
Collapse
|
3
|
Rotz SJ, Bhatt NS, Hamilton BK, Duncan C, Aljurf M, Atsuta Y, Beebe K, Buchbinder D, Burkhard P, Carpenter PA, Chaudhri N, Elemary M, Elsawy M, Guilcher GM, Hamad N, Karduss A, Peric Z, Purtill D, Rizzo D, Rodrigues M, Ostriz MBR, Salooja N, Schoemans H, Seber A, Sharma A, Srivastava A, Stewart SK, Baker KS, Majhail NS, Phelan R. International Recommendations for Screening and Preventative Practices for Long-Term Survivors of Transplantation and Cellular Therapy: A 2023 Update. Transplant Cell Ther 2024; 30:349-385. [PMID: 38413247 PMCID: PMC11181337 DOI: 10.1016/j.jtct.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024]
Abstract
As hematopoietic cell transplantation (HCT) and cellular therapy expand to new indications and international access improves, the number of HCTs performed annually continues to rise. Parallel improvements in HCT techniques and supportive care entails more patients surviving long term, creating further emphasis on survivorship needs. Survivors are at risk for developing late complications secondary to pretransplantation, peritransplantation, and post-transplantation exposures and other underlying risk factors. Guidelines for screening and preventive practices for HCT survivors were originally published in 2006 and then updated in 2012. An international group of experts was convened to review the contemporary literature and update the recommendations while considering the changing practices of HCT and cellular therapy. This review provides updated pediatric and adult survivorship guidelines for HCT and cellular therapy. The contributory role of chronic graft-versus-host disease (cGVHD) to the development of late effects is discussed, but cGVHD management is not covered in detail. These guidelines emphasize the special needs of patients with distinct underlying HCT indications or comorbidities (eg, hemoglobinopathies, older adults) but do not replace more detailed group-, disease-, or condition-specific guidelines. Although these recommendations should be applicable to the vast majority of HCT recipients, resource constraints may limit their implementation in some settings.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Neel S Bhatt
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Christine Duncan
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard University, Boston, Massachusetts
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Yoshiko Atsuta
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Kristen Beebe
- Phoenix Children's Hospital and Mayo Clinic Arizona, Phoenix, Arizona
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, California
| | | | | | - Naeem Chaudhri
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed Elemary
- Hematology and BMT, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mahmoud Elsawy
- Division of Hematology, Dalhousie University, QEII Health Sciences Center, Halifax, Nova Scotia, Canada
| | - Gregory Mt Guilcher
- Section of Pediatric Oncology/Transplant and Cellular Therapy, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital Sydney, St Vincent's Clinical School Sydney, University of New South Wales, School of Medicine Sydney, University of Notre Dame Australia, Australia
| | - Amado Karduss
- Bone Marrow Transplant Program, Clinica las Americas, Medellin, Colombia
| | - Zinaida Peric
- BMT Unit, Department of Hematology, University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, PathWest Laboratory Medicine WA, Australia
| | - Douglas Rizzo
- Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Maria Belén Rosales Ostriz
- Division of hematology and bone marrow transplantation, Instituto de trasplante y alta complejidad (ITAC), Buenos Aires, Argentina
| | - Nina Salooja
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven, Department of Public Health and Primary Care, ACCENT VV, KU Leuven, University of Leuven, Leuven, Belgium
| | | | - Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, Tennessee
| | - Rachel Phelan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
4
|
Calder AD, Perucca G, Johnson SM, Pandey AR, Moshal K, Kusters MA. Lung infections in immunocompromised children. Pediatr Radiol 2024; 54:530-547. [PMID: 37589764 DOI: 10.1007/s00247-023-05735-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023]
Abstract
Pulmonary infection is the leading cause of infectious morbidity and mortality in children with immune defects. We provide a comprehensive review of lung infections in immunocompromised children, with a focus on imaging findings and imaging-based management. We include an overview of the immune defences of the respiratory tract, the aetiologies of immune defects in children, the features of specific infections and important differential diagnoses and describe diagnostic strategies using imaging and non-imaging-based techniques.
Collapse
Affiliation(s)
- Alistair D Calder
- Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.
| | - Giulia Perucca
- Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Sarah May Johnson
- Paediatric Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ashwin R Pandey
- Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Karyn Moshal
- Paediatric Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Maaike A Kusters
- Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Nair A, Elballushi R, Joshi R, Anjanappa S, Akter M, Arif S, Rehman S. Assessment of the Prevalence of Infections in Pediatric Patients With Acute Lymphoblastic Leukemia. Cureus 2023; 15:e46837. [PMID: 37954717 PMCID: PMC10636770 DOI: 10.7759/cureus.46837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Infections cause notable treatment-related morbidity during pediatric acute lymphoblastic leukemia/lymphoma (ALL/LLy) therapy. Infections are the most critical cause of morbidity and mortality in children undergoing treatment for acute lymphoblastic leukemia (ALL). Children with ALL, who are frequently underweight, are at increased risk of community-acquired pathogens, nosocomial multidrug-resistant pathogens, and opportunistic microorganisms. A weakened immune system from ALL itself and chemotherapy's side effects further worsen the prognosis. PubMed and Google Scholar articles were curated in a Google document with shared access. Discussion and development of the paper were achieved over Zoom meetings. This narrative review aims to analyze and summarize various pathogens responsible for infections in children receiving treatment for ALL and their treatment regimen and prophylaxis. The incidence of viral infection is higher in ALL patients, followed by bacterial and fungal infections. Prevention via prophylaxis and timely initiation of treatment is essential for positive outcomes.
Collapse
Affiliation(s)
- Arun Nair
- Pediatrics, Saint Peter's University Hospital, New Brunswick, USA
| | - Ruaa Elballushi
- School of Medicine, Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, BHR
| | - Riecha Joshi
- Pediatrics, Government Medical College, Kota, IND
| | - Sanvithi Anjanappa
- School of Medicine, Kempegowda Institute of Medical Sciences, Bangalore, IND
| | - Maksuda Akter
- School of Medicine, American International Medical University, Gros Islet, LCA
| | - Sehrish Arif
- Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore, PAK
| | - Sana Rehman
- Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore, PAK
| |
Collapse
|
6
|
Podpeskar A, Crazzolara R, Kropshofer G, Obexer P, Rabensteiner E, Michel M, Salvador C. Supportive methods for childhood acute lymphoblastic leukemia then and now: A compilation for clinical practice. Front Pediatr 2022; 10:980234. [PMID: 36172391 PMCID: PMC9510731 DOI: 10.3389/fped.2022.980234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Survival of childhood acute lymphoblastic leukemia has significantly improved over the past decades. In the early years of chemotherapeutic development, improvement in survival rates could be attained only by increasing the cytostatic dose, also by modulation of the frequency and combination of chemotherapeutic agents associated with severe short- and long-time side-effects and toxicity in a developing child's organism. Years later, new treatment options have yielded promising results through targeted immune and molecular drugs, especially in relapsed and refractory leukemia, and are continuously added to conventional therapy or even replace first-line treatment. Compared to conventional strategies, these new therapies have different side-effects, requiring special supportive measures. Supportive treatment includes the prevention of serious acute and sometimes life-threatening events as well as managing therapy-related long-term side-effects and preemptive treatment of complications and is thus mandatory for successful oncological therapy. Inadequate supportive therapy is still one of the main causes of treatment failure, mortality, poor quality of life, and unsatisfactory long-term outcome in children with acute lymphoblastic leukemia. But nowadays it is a challenge to find a way through the flood of supportive recommendations and guidelines that are available in the literature. Furthermore, the development of new therapies for childhood leukemia has changed the range of supportive methods and must be observed in addition to conventional recommendations. This review aims to provide a clear and recent compilation of the most important supportive methods in the field of childhood leukemia, based on conventional regimes as well as the most promising new therapeutic approaches to date.
Collapse
Affiliation(s)
- Alexandra Podpeskar
- Division of Hematology and Oncology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Roman Crazzolara
- Division of Hematology and Oncology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Kropshofer
- Division of Hematology and Oncology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Obexer
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria
| | - Evelyn Rabensteiner
- Division of Hematology and Oncology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Miriam Michel
- Division of Cardiology, Department of Pediatrics III, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Salvador
- Division of Hematology and Oncology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
St-Jean I, Friciu MM, Monfort A, MacMahon J, Forest JM, Walker S, Leclair G. Stability of Extemporaneously Compounded Suspensions of Trimethoprim and Sulfamethoxazole in Amber Plastic Bottles and Amber Plastic Syringes. Can J Hosp Pharm 2021; 74:327-333. [PMID: 34602620 DOI: 10.4212/cjhp.v74i4.3194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Trimethoprim (TMP) and sulfamethoxazole (SMX) are widely used, in combination, to treat or prevent various infections. Unfortunately, no liquid oral formulation is currently available in Canada for patients who are unable to swallow tablets. Objective To evaluate the stability of suspensions of TMP and SMX (8 and 40 mg/mL, respectively) prepared in Oral Mix or Oral Mix SF vehicle (Medisca Pharmaceutique Inc) and stored for up to 90 days in amber plastic bottles or amber plastic syringes at 5°C or 25°C. Methods Suspensions were prepared from bulk powder and from tablets in Oral Mix and Oral Mix SF vehicles, then transferred to amber plastic (polyethylene terephthalate glycol) bottles and plastic oral syringes and stored at 5°C and 25°C. Samples were collected on predetermined study days (0, 7, 14, 23, 45, 60, 75, and 90 days) and analyzed using a validated high-performance liquid chromatography - ultraviolet detection method. A suspension was considered stable if it maintained at least 90% of its initial concentration with 95% confidence. Observations of organoleptic characteristics such as colour and odour, as well as pH, were used to assess physical stability. Results Suspensions prepared from bulk powder maintained concentrations of TMP and SMX of at least 97% of the initial concentration over the 90-day study period. No obvious changes in colour, odour, or pH were observed. However, acceptable suspensions could not be prepared from the commercial tablets. A persistent foam that developed at the surface of all suspensions prepared from tablets could result in inconsistent dosing. Conclusions Extemporaneously compounded oral suspensions of TMP and SMX (8 and 40 mg/mL, respectively) prepared from bulk powder in Oral Mix and Oral Mix SF vehicles and stored in amber plastic bottles or syringes at 5°C or 25°C remained stable for at least 90 days. Suspensions made from tablets produced unacceptable formulations.
Collapse
Affiliation(s)
- Isabelle St-Jean
- , MSc, is a Research Associate with the Faculty of Pharmacy, Université de Montréal, Montréal, Quebec
| | - M Mihaela Friciu
- , MSc, is a Research Associate with the Faculty of Pharmacy, Université de Montréal, Montréal, Quebec
| | - Anaëlle Monfort
- , BSc, is a PhD student with the Faculty of Pharmacy, Université de Montréal, Montréal, Quebec
| | - Jessica MacMahon
- , BPharm, MSc, is a Pharmacist with CHU Sainte-Justine, Montréal, Quebec
| | - Jean-Marc Forest
- , BPharm, MSc, is a Pharmacist with CHU Sainte-Justine, Montréal, Quebec
| | - Scott Walker
- , BPharm, MSc is a Staff Pharmacist with Sunnybrook Health Sciences Centre, Toronto, Ontario
| | - Grégoire Leclair
- , BPharm, PhD, is Full Professor with the Faculty of Pharmacy, Université de Montréal, Montréal, Quebec
| |
Collapse
|
8
|
Proudfoot RH, Phillips B. UK paediatric oncology Pneumocystis jirovecii pneumonia surveillance study. Arch Dis Child 2021; 106:994-998. [PMID: 33632786 DOI: 10.1136/archdischild-2020-319997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/12/2020] [Accepted: 02/02/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Pneumocystis jirovecii pneumonia (PJP) is a serious infective complication of immunosuppressive therapy. There are insufficient data concerning the incidence or mortality rate in children undergoing treatment for malignancies and how these may be influenced by prophylaxis. OBJECTIVE Prospective collection of clinical information for all suspected and proven cases of PJP in children with cancer in the UK and Ireland. DESIGN A surveillance survey was undertaken using a key contact at each paediatric oncology Principle Treatment Centre (PTC). MAIN OUTCOME MEASURES To describe the mortality, outcomes and use of prophylaxis in this at-risk group. RESULTS The study confirms that PJP is rare, with only 32 cases detected in the UK over a 2-year period reported from all 20 PTCs. No deaths were directly attributed to PJP, in contrast to previously reported high mortality rates. Breakthrough infection may occur despite prescription of ostensibly adequate prophylaxis with co-trimoxazole; 11 such cases were identified. Six infections occurred in patients for whom prophylaxis was not thought to be indicated. Two infections occurred in patients for whom prophylaxis was specifically omitted due to concerns about potential bone marrow suppression or delayed engraftment. CONCLUSION PJP in children treated for malignant disease is rare. Breakthrough infection despite prophylaxis with co-trimoxazole may represent pathogen resistance or non-compliance. Further consideration of the use of PJP prophylaxis during acute myeloid leukaemia and non-Hodgkin's lymphoma treatment is warranted, alongside appraisal of the clinical implications of the possible marrow suppressive effects of co-trimoxazole and its interactions with methotrexate.
Collapse
Affiliation(s)
| | - Bob Phillips
- University of York Centre for Reviews and Dissemination, York, York, UK
| |
Collapse
|
9
|
Prophylaxis With Trimethoprim/Sulfamethoxazole Is Not Necessary in Children With Solid Tumors Treated With Low-medium Intensity Chemotherapy. Pediatr Infect Dis J 2021; 40:354-355. [PMID: 33710979 DOI: 10.1097/inf.0000000000003044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prophylaxis of Pneumocystis jiroveci pneumonia (PJP) with trimethoprim/sulfamethoxazole is a standard of care for children with hematologic malignancies, while its use in solid tumor patients is still debated. A retrospective study focusing on the use of PJP prophylaxis in patients with solid tumors was performed among 16 AIEOP centers: 1046/2863 patients did not receive prophylaxis and no cases of PJP were reported.
Collapse
|
10
|
Is cotrimoxazole prophylaxis against Pneumocystis jirovecii pneumonia needed in patients with systemic autoimmune rheumatic diseases requiring immunosuppressive therapies? Rheumatol Int 2021; 41:1419-1427. [PMID: 33656582 DOI: 10.1007/s00296-021-04808-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
The incidence of Pneumocystis jirovecii pneumonia (PJP) has increased over recent years in patients with systemic autoimmune rheumatic diseases (SARD). PJP prognosis is poor in those receiving immunosuppressive therapy and glucocorticoids in particular. Despite the effectiveness of cotrimoxazole against PJP, the risk of adverse effects remains significant, and no consensus has emerged regarding the need for PJP prophylaxis in SARD patients undergoing immunosuppressor therapies.Objective: To evaluate the efficacy and safety of cotrimoxazole prophylaxis against PJP in SARD adult patients receiving immunosuppressive therapies. Methods: We performed a systematic review, consulting MEDLINE, EMBASE, and Cochrane Library databases up to April 2020. Outcomes covered prevention of PJP, other infections, morbidity, mortality, and safety. The information obtained was summarized with a narrative review and results were tabulated. Of the 318 identified references, 8 were included. Two were randomized controlled trials and six observational studies. The quality of studies was moderate or low. Despite disparities in the cotrimoxazole prophylaxis regimens described, results were consistent in terms of efficacy, particularly with glucocorticoid doses > 20 mg/day. However, cotrimoxazole 400 mg/80 mg/day, prescribed three times/ week, or 200 mg/40 mg/day or in dose escalation, exhibited similar positive performances. Conversely, cotrimoxazole 400 mg/80 mg/day showed higher incidences of withdrawals and adverse effects. Cotrimoxazole prophylaxis against PJP exhibited efficacy in SARD, mainly in patients taking glucocorticoids ≥ 20 mg/day. All cotrimoxazole regimens exposed seemed equally efficacious, although, higher quality trials are needed. Adverse effects were observed 2 months after initiation, particularly with the 400 mg/80 mg/day regimen. Conversely, escalation dosing or 200 mg/40 mg/day regimens appeared better tolerated.
Collapse
|
11
|
Awad M, Sierra CM, Mesghali E, Bahjri K. Twice weekly prophylaxis with trimethoprim/sulfamethoxazole for Pneumocystis jirovecii pneumonia in pediatric oncology patients. J Oncol Pharm Pract 2020; 27:1936-1939. [PMID: 33307970 DOI: 10.1177/1078155220979046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Current recommendations for prophylaxis of Pneumocystis jirovecii pneumonia in oncology patients include administration of trimethoprim/sulfamethoxazole (TMP/SMX) three times weekly or the same total weekly dose given daily. The primary objective of this study was to evaluate the efficacy of two consecutive days per week of TMP/SMX for prevention of Pneumocystis jirovecii pneumonia (PJP) in pediatric oncology patients. A retrospective cohort, single-center analysis was conducted in oncology patients 21 years and younger who received TMP/SMX for PJP prophylaxis between February 1, 2013 and July 31, 2017. Changes to the prophylaxis regimen were documented and analyzed. A total of 322 patients received TMP/SMX on two consecutive days per week for PJP prevention, of whom four had confirmed PJP (1.3%). Neutropenia was the most common reason for switching to alternative prophylaxis therapy (11.5%). Two consecutive prophylaxis days with TMP/SMX may be insufficient to prevent PJP in children with hematologic malignancies. Neutropenia remains a barrier for TMP/SMX use for PJP prophylaxis. Further studies to compare PJP incidence in children receiving alternative prophylaxis regimens should be considered.
Collapse
Affiliation(s)
| | - Caroline M Sierra
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA, USA
| | | | - Khaled Bahjri
- Sutter Medical Center, Sacramento, CA, USA.,Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, CA, USA
| |
Collapse
|
12
|
Mantadakis E. Pneumocystis jirovecii Pneumonia in Children with Hematological Malignancies: Diagnosis and Approaches to Management. J Fungi (Basel) 2020; 6:E331. [PMID: 33276699 PMCID: PMC7761543 DOI: 10.3390/jof6040331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Pneumocystis jirovecii pneumonia (PJP) is an opportunistic infection that mostly affects children with suppressed cellular immunity. PJP was the most common cause of infectious death in children with acute lymphoblastic leukemia prior to the inclusion of cotrimoxazole prophylaxis as part of the standard medical care in the late 1980s. Children with acute leukemia, lymphomas, and those undergoing hematopoietic stem cell transplantation, especially allogeneic transplantation, are also at high risk of PJP. Persistent lymphopenia, graft versus host disease, poor immune reconstitution, and lengthy use of corticosteroids are significant risk factors for PJP. Active infection may be due to reactivation of latent infection or recent acquisition from environmental exposure. Intense hypoxemia and impaired diffusing capacity of the lungs are hallmarks of PJP, while computerized tomography of the lungs is the diagnostic technique of choice. Immunofluorescence testing with monoclonal antibodies followed by fluorescent microscopy and polymerase chain reaction testing of respiratory specimens have emerged as the best diagnostic methods. Measurement of (1-3)-β-D-glucan in the serum has a high negative predictive value in ruling out PJP. Oral cotrimoxazole is effective for prophylaxis, but in intolerant patients, intravenous and aerosolized pentamidine, dapsone, and atovaquone are effective alternatives. Ιntravenous cotrimoxazole is the treatment of choice, but PJP has a high mortality even with appropriate therapy.
Collapse
Affiliation(s)
- Elpis Mantadakis
- Department of Pediatrics, Hematology/Oncology Unit, University General Hospital of Alexandroupolis, Democritus University of Thrace, 68 100 Alexandroupolis, Thrace, Greece
| |
Collapse
|
13
|
Rauwolf KK, Floeth M, Kerl K, Schaumburg F, Groll AH. Toxoplasmosis after allogeneic haematopoietic cell transplantation-disease burden and approaches to diagnosis, prevention and management in adults and children. Clin Microbiol Infect 2020; 27:378-388. [PMID: 33065238 DOI: 10.1016/j.cmi.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Toxoplasmosis is a rare but highly lethal opportunistic infection after allogeneic haematopoietic cell transplantation (HCT). Successful management depends on screening, early recognition and effective treatment. OBJECTIVES To review the current epidemiology and approaches to diagnosis, prevention and treatment of toxoplasmosis in adult and paediatric allogeneic HCT recipients. SOURCE Search of the English literature published in MEDLINE up to 30 June 2020 using combinations of broad search terms including toxoplasmosis, transplantation, diagnosis, epidemiology, prevention and treatment. Selection of articles for review and synthesis on the basis of perceived quality and relevance of content. CONTENT Toxoplasmosis continues to be a major challenge in the management of allogeneic HCT recipients. Here we provide a summary of published case series of toxoplasmosis in adult and paediatric patients post allogeneic HCT. We review and discuss the pathogenesis, epidemiology, clinical presentation, diagnosis and current recommendations for prevention and treatment. We also discuss impacts of toxoplasmosis in this setting and factors affecting outcome, emphasizing attention to neurological, neuropsychological and neurocognitive late effects in survivors. IMPLICATIONS Apart from careful adherence to established strategies of disease prevention through avoidance of primary infection, identification of seropositive patients and implementation of molecular monitoring, future perspectives to improve the control of toxoplasmosis in allogeneic HCT recipients may include the systematic investigation of pre-emptive treatment, development of immunomodulatory approaches, antimicrobial agents with activity against the cyst form and vaccines to prevent chronic infection.
Collapse
Affiliation(s)
- Kerstin K Rauwolf
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Münster, Germany; Centre for Bone Marrow Transplantation, University Hospital Münster, Münster, Germany
| | - Matthias Floeth
- Centre for Bone Marrow Transplantation, University Hospital Münster, Münster, Germany; Department of Medicine A, Haematology and Oncology, University Hospital Münster, Münster, Germany
| | - Kornelius Kerl
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Münster, Germany; Centre for Bone Marrow Transplantation, University Hospital Münster, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Andreas H Groll
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Münster, Germany; Centre for Bone Marrow Transplantation, University Hospital Münster, Münster, Germany.
| |
Collapse
|
14
|
Barreto JN, Thompson CA, Wieruszewski PM, Pawlenty AG, Mara KC, Potter AL, Tosh PK, Limper AH. Incidence, clinical presentation, and outcomes of Pneumocystis pneumonia when utilizing Polymerase Chain Reaction-based diagnosis in patients with Hodgkin lymphoma. Leuk Lymphoma 2020; 61:2622-2629. [PMID: 32623928 DOI: 10.1080/10428194.2020.1786561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A Polymerase Chain Reaction-based diagnosis of Pneumocystis Pneumonia (PCP) and the need for anti-Pneumocystis prophylaxis in Hodgkin lymphoma patients receiving chemotherapy requires further investigation. This retrospective, single-center, study evaluated 506 consecutive adult patients diagnosed with Hodgkin lymphoma receiving chemotherapy between January 2006 and August 2018. The cumulative incidence of PCP 1 year after start of chemotherapy was 6.2% (95% CI 3.8-8.5%). Mortality 30 days from PCP diagnosis was 8% (n = 2) with one death attributable to PCP. Bleomycin-containing combination chemotherapy regimen was not significantly associated with a higher risk for PCP when compared to other regimens (HR = 1.59, 95% CI 0.55-4.62 p = 0.40). Anti-Pneumocystis prophylaxis was not significantly associated with a decreased incidence of PCP (HR = 0.51, 95% CI 0.15-1.71, p = 0.28). As the overall incidence is above the commonly accepted 3.5% threshold, clinicians should consider the potential value of prophylaxis. The utility of universal vs. targeted anti-Pneumocystis prophylaxis requires prospective, randomized investigation.
Collapse
Affiliation(s)
| | - Carrie A Thompson
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Kristin C Mara
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Pritish K Tosh
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Andrew H Limper
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Castagnola E, Mesini A, Saffioti C, Moscatelli A, Pierri F, Giardino S, Faraci M. Failures of once‐a‐week trimethoprim‐sulfamethoxazole prophylaxis in children undergoing allogeneic hematopoietic stem cell transplant. Transpl Infect Dis 2019; 22:e13231. [DOI: 10.1111/tid.13231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Elio Castagnola
- Istituto Giannina Gaslini Ospedale Pediatrico IRCCS Genova Italy
| | - Alessio Mesini
- Istituto Giannina Gaslini Ospedale Pediatrico IRCCS Genova Italy
| | | | | | - Filomena Pierri
- Istituto Giannina Gaslini Ospedale Pediatrico IRCCS Genova Italy
| | - Stefano Giardino
- Istituto Giannina Gaslini Ospedale Pediatrico IRCCS Genova Italy
| | - Maura Faraci
- Istituto Giannina Gaslini Ospedale Pediatrico IRCCS Genova Italy
| |
Collapse
|
16
|
Periselneris J, Brown JS. A clinical approach to respiratory disease in patients with hematological malignancy, with a focus on respiratory infection. Med Mycol 2019; 57:S318-S327. [PMID: 31292655 PMCID: PMC7107627 DOI: 10.1093/mmy/myy138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/12/2023] Open
Abstract
Respiratory complications, in particular infections, are common in the setting of hematological malignancy and after hematopoetic stem cell transplant. The symptoms can be nonspecific; therefore, it can be difficult to identify and treat the cause. However, an understanding of the specific immune defect, clinical parameters such as speed of onset, and radiological findings, allows the logical diagnostic and treatment plan to be made. Radiological findings can include consolidation, nodules, and diffuse changes such as ground glass and tree-in-bud changes. Common infections that induce these symptoms include bacterial pneumonia, invasive fungal disease, Pneumocystis jirovecii and respiratory viruses. These infections must be differentiated from inflammatory complications that often require immune suppressive treatment. The diagnosis can be refined with the aid of investigations such as bronchoscopy, computed tomography (CT) guided lung biopsy, culture, and serological tests. This article gives a schema to approach patients with respiratory symptoms in this patient group; however, in the common scenario of a rapidly deteriorating patient, treatment often has to begin empirically, with the aim to de-escalate treatment subsequently after targeted investigations.
Collapse
Affiliation(s)
| | - J S Brown
- Centre for Inflammation & Tissue Repair, University College London
| |
Collapse
|
17
|
Mesini A, Ricci E, Faraci M, Loy A, Moscatelli A, Castagnola E. Pneumocystis jirovecii pneumonia prophylaxis in hematopoietic stem cell transplantation, is it acceptable to wait for the engraftment for restarting it? Transpl Infect Dis 2019; 21:e13155. [PMID: 31381229 DOI: 10.1111/tid.13155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/24/2019] [Accepted: 05/12/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Alessio Mesini
- IRCCS Istituto Giannina Gaslini, Children's Hospital Genoa, Genoa, Italy
| | | | - Maura Faraci
- IRCCS Istituto Giannina Gaslini, Children's Hospital Genoa, Genoa, Italy
| | - Anna Loy
- IRCCS Istituto Giannina Gaslini, Children's Hospital Genoa, Genoa, Italy
| | - Andrea Moscatelli
- IRCCS Istituto Giannina Gaslini, Children's Hospital Genoa, Genoa, Italy
| | - Elio Castagnola
- IRCCS Istituto Giannina Gaslini, Children's Hospital Genoa, Genoa, Italy
| |
Collapse
|
18
|
Kim HA, Jang H, Kim YK, Kim D, Kim JY. Characteristic Features of Pneumocystis Pneumonia in Pediatric Acute Lymphoblastic Leukemia. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2018. [DOI: 10.15264/cpho.2018.25.2.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hyeon A Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Haemin Jang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yu Kyung Kim
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Dongsub Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Yoon Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
19
|
Güzel Bayülken D, Bostancıoğlu RB, Koparal AT, Ayaz Tüylü B, Dağ A, Benkli K. Assessment of in vitro cytotoxic and genotoxic activities of some trimethoprim conjugates. Cytotechnology 2018; 70:1051-1059. [PMID: 29335807 PMCID: PMC6021285 DOI: 10.1007/s10616-018-0187-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022] Open
Abstract
Trimethoprim, a commonly used antibacterial agent, is widely applied in the treatment of variety of infections in human. A few studies have demonstrated an extensive exposure of man to antibiotics, but there is still a lack of data for cytotoxic effects including nephrotoxicity, gastrointestinal toxicity, hematotoxicity, neurotoxicity and ototoxicity. The main purpose behind this study was to determine cytotoxic and genotoxic activities of trimethoprim (1), trimethoprim with maleic acid (2) and trimethoprim in conjugation with oxalic acid dihydrate (3). The cytotoxic effects of these three conjugates were elucidated by employing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoium bromide (MTT) assay using embryonic rat fibroblast-like cell line (F2408) and H-ras oncogene activated embryonic rat fibroblast-like cancer cell line (5RP7). Additionally, determination of genotoxic activity of these three compounds were studied by using cytokinesis blocked micronucleus assay (CBMN) in human lymphocytes. The results demonstrated that trimethoprim alone and its combination with other compounds are able to induce both cytotoxic and genotoxic damage on cultured cells (F2408, 5RP7, human lymphocytes).
Collapse
Affiliation(s)
- Devrim Güzel Bayülken
- Department of Biology, Faculty of Sciences, Anadolu University, 26470 Eskisehir, Turkey
| | | | - A. Tansu Koparal
- Department of Biology, Faculty of Sciences, Anadolu University, 26470 Eskisehir, Turkey
| | - Berrin Ayaz Tüylü
- Department of Biology, Faculty of Sciences, Anadolu University, 26470 Eskisehir, Turkey
| | - Aydan Dağ
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Kadriye Benkli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| |
Collapse
|
20
|
Antifungal Prophylaxis in Children Receiving Antineoplastic Chemotherapy. CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0311-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Leoni D, Encina B, Rello J. Managing the oncologic patient with suspected pneumonia in the intensive care unit. Expert Rev Anti Infect Ther 2017; 14:943-60. [PMID: 27573637 DOI: 10.1080/14787210.2016.1228453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Solid cancer patients are frequently admitted in intensive care units for critical events. Improving survival rates in this setting is considered an achievable goal today. Respiratory failure is the main reason for admission, representing a primary target for research. AREAS COVERED This review presents a diagnostic and therapeutic algorithm for pneumonia and other severe respiratory events in the solid cancer population. It aims to increase awareness of the risk factors and the different etiologies in this changing scenario in which neutropenia no longer seems to be a decisive factor in poor outcome. Bacterial pneumonia is the leading cause, but opportunistic diseases and non-infectious etiologies, especially unexpected adverse effects of radiation, biological drugs and monoclonal antibodies, are becoming increasingly frequent. Options for respiratory support and diagnostics are discussed and indications for antibiotics in the management of pneumonia are detailed. Expert commentary: Prompt initiation of critical care to facilitate optimal decision-making in the management of respiratory failure, early etiological assessment and appropriate antibiotic therapy are cornerstones in management of severe pneumonia in oncologic patients.
Collapse
Affiliation(s)
- D Leoni
- a Infectious Disease Department , Tor Vergata University Hospital, University of 'La Sapienza' , Rome , Italy.,b Clinical Research & Innovation in Pneumonia & Sepsis (CRIPS) , Vall d'Hebron Institute of Research , Barcelona , Spain
| | - B Encina
- b Clinical Research & Innovation in Pneumonia & Sepsis (CRIPS) , Vall d'Hebron Institute of Research , Barcelona , Spain
| | - J Rello
- b Clinical Research & Innovation in Pneumonia & Sepsis (CRIPS) , Vall d'Hebron Institute of Research , Barcelona , Spain.,c Centro de Investigación Biomédica En Red - Enfermedades Respiratorias (CIBERES) , Vall d'Hebron Institute of Research , Barcelona , Spain.,d Department of Medicine , Universitat Autònoma de Barcelona , Barcelona , Spain
| |
Collapse
|
22
|
Kruizinga MD, Bresters D, Smiers FJ, Lankester AC, Bredius RGM. The use of intravenous pentamidine for the prophylaxis of Pneumocystis pneumonia in pediatric patients. Pediatr Blood Cancer 2017; 64. [PMID: 28074607 DOI: 10.1002/pbc.26453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/25/2016] [Accepted: 12/18/2016] [Indexed: 11/06/2022]
Abstract
Pneumocystis jiroveci pneumonia was common in the immunocompromised host before the widespread use of prophylaxis. When trimethoprim-sulfamethoxazole is not tolerated, prophylaxis with intravenous pentamidine (IVP) may be initiated. We performed a retrospective analysis of all pediatric patients who received IVP regarding efficacy, safety, and reason for initiation. Of 106 patients included in our analysis, one patient tested positive for Pneumocystis DNA. Adverse events were reported in 18% of IVP courses, and main reason for initiation was cytopenia (59%). We found IVP to be effective and safe, and recommend the use of IVP in pediatric patients in whom first-line prophylaxis is contraindicated.
Collapse
Affiliation(s)
- Matthijs D Kruizinga
- Department of Pediatric Immunology-Infections and Stem Cell Transplantation, Leiden University Medical Center, Leiden, The Netherlands
| | - Dorine Bresters
- Department of Pediatric Immunology-Infections and Stem Cell Transplantation, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans J Smiers
- Department of Pediatric Immunology-Infections and Stem Cell Transplantation, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan C Lankester
- Department of Pediatric Immunology-Infections and Stem Cell Transplantation, Leiden University Medical Center, Leiden, The Netherlands
| | - Robbert G M Bredius
- Department of Pediatric Immunology-Infections and Stem Cell Transplantation, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Nazir HF, Elshinawy M, AlRawas A, Khater D, Zadjaly S, Wali Y. Efficacy and Safety of Dapsone Versus Trimethoprim/Sulfamethoxazol for Pneumocystis Jiroveci Prophylaxis in Children With Acute Lymphoblastic Leukemia With a Background of Ethnic Neutropenia. J Pediatr Hematol Oncol 2017; 39:203-208. [PMID: 28234744 DOI: 10.1097/mph.0000000000000804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
STUDY OBJECTIVE To study dapsone in comparison with trimethoprim/sulfamethoxazole (TMP/SMX) for Pneumocystis jiroveci (PJP) prophylaxis in children with acute lymphoblastic leukemia (ALL). DESIGN A retrospective study with a prospective follow-up. PATIENTS Pediatric ALL patients diagnosed between May 2009 and May 2014, who are still receiving or have completed their maintenance chemotherapy. Patients who completed chemotherapy were prospectively followed up for neutropenia. METHODS TMP/SMX was used as the initial PJP prophylaxis. An alternative drug was indicated if the patient remained cytopenic for >3 weeks. Average absolute neutrophilic count (ANC), average % of oral mercaptopurine (6-MP), and methotrexate doses were calculated over a period of 6 months before and after shifting to dapsone. RESULTS Sixty-two ALL patients were eligible for analysis. Twenty-four patients (38.7%) received TMP/SMX for PJP prophylaxis, whereas 34 patients received Dapsone (54.8%). Only 3 patients received IV pentamidine (4.8%), whereas 1 patient (1.6%) received atovaquone. The incidence of prophylaxis failure was 1/1041 months on TMP/SMX and 1/528 months on dapsone. After shifting to dapsone, patients maintained significantly higher ANC (1.46±0.46 vs. 1.17±0.40, P=0.0053), and received significantly higher doses of 6-MP (62.61%±11.45 vs. 57.45±10.14, P=0.0081) and methotrexate (64.9%±14.29 vs. 56.5%±9.9, P=0.0176), with a significantly shorter duration of chemotherapy interruption (1.94±1.2 vs. 3.25±1.29 wk, P=0.0002). CONCLUSIONS Dapsone for PJP prophylaxis in ALL allowed patients to maintain higher ANC and to receive higher doses of chemotherapy, while maintaining a low incidence of PJP breakthrough infection.
Collapse
Affiliation(s)
- Hanan F Nazir
- *Child Health Department ‡Pharmacy Department, Sultan Qaboos University Hospital, Muscat, Oman †Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | | | | | | | | | | |
Collapse
|
24
|
Kim KR, Kim JM, Kang JM, Kim YJ. Pneumocystis jirovecii pneumonia in pediatric patients: an analysis of 15 confirmed consecutive cases during 14 years. KOREAN JOURNAL OF PEDIATRICS 2016; 59:252-5. [PMID: 27462353 PMCID: PMC4958702 DOI: 10.3345/kjp.2016.59.6.252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 12/25/2015] [Accepted: 12/29/2015] [Indexed: 11/27/2022]
Abstract
Purpose Pneumocystis jirovecii pneumonia occurs in various immunocompromised patients. Despite the prophylaxis strategies in clinical practice, certain patients develop P. jirovecii pneumonia. This study was performed to investigate pediatric cases with P. jirovecii pneumonia in a single center. Methods We identified pediatric patients younger than 19 years with microbiologically confirmed P. jirovecii pneumonia from January 2000 to February 2014. A retrospective chart review was performed. Results Fifteen episodes of P. jirovecii pneumonia in 14 patients were identified with median age of 8.3 years (range, 0.4–18.6 years). Among these patients, 11 patients had hematology-oncology diseases, 2 had primary immunodeficiency disorders (one with severe combined immunodeficiency and the other with Wiskott Aldrich syndrome), 1 had systemic lupus erythematosus and 1 received kidney transplant. Four patients were transplant recipients; 1 allogeneic and 2 autologous hematopoietic cell transplant and 1 with kidney transplant. The median absolute lymphocyte count at the diagnosis of P. jirovecii pneumonia was 5,156 cells/mm3 (range, 20–5,111 cells/mm3). In 13 episodes (13 of 15, 86.7%), patients were not receiving prophylaxis at the onset of P. jirovecii pneumonia. For treatment, trimethoprim/sulfamethoxazole was given as a main therapeutic agent in all 15 episodes. Steroid was given in 9 episodes (60%). Median treatment duration was 15 days (range, 4–33 days). Overall mortality at 60 days was 35.7% (5 of 14). Conclusion Majority of our patients developed P. jirovecii pneumonia while not on prophylaxis. Continuous efforts and more data are needed to identify high risk patients who may get benefit from P. jirovecii pneumonia prophylaxis.
Collapse
Affiliation(s)
- Kyung-Ran Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Min Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Man Kang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Lighter-Fisher J, Stanley K, Phillips M, Pham V, Klejmont LM. Preventing Infections in Children with Cancer. Pediatr Rev 2016; 37:247-58. [PMID: 27252180 DOI: 10.1542/pir.2015-0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Kaitlin Stanley
- Department of Pediatrics, New York University Langone Medical Center, New York, NY
| | - Michael Phillips
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Vinh Pham
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Liana M Klejmont
- Department of Pharmacy, New York University Langone Medical Center, New York, NY
| |
Collapse
|
26
|
Simon A, Furtwängler R, Graf N, Laws HJ, Voigt S, Piening B, Geffers C, Agyeman P, Ammann RA. Surveillance of bloodstream infections in pediatric cancer centers - what have we learned and how do we move on? GMS HYGIENE AND INFECTION CONTROL 2016; 11:Doc11. [PMID: 27274442 PMCID: PMC4886351 DOI: 10.3205/dgkh000271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pediatric patients receiving conventional chemotherapy for malignant disease face an increased risk of bloodstream infection (BSI). Since BSI may represent an acute life-threatening event in patients with profound immunosuppression, and show further negative impact on quality of life and anticancer treatment, the prevention of BSI is of paramount importance to improve and guarantee patients' safety during intensive treatment. The great majority of all pediatric cancer patients (about 85%) have a long-term central venous access catheter in use (type Broviac or Port; CVAD). Referring to the current surveillance definitions a significant proportion of all BSI in pediatric patients with febrile neutropenia is categorized as CVAD-associated BSI. This state of the art review summarizes the epidemiology and the distinct pathogen profile of BSI in pediatric cancer patients from the perspective of infection surveillance. Problems in executing the current surveillance definition in this patient population are discussed and a new concept for the surveillance of BSI in pediatric cancer patients is outlined.
Collapse
Affiliation(s)
- Arne Simon
- Pädiatrische Onkologie und Hämatologie, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Rhoikos Furtwängler
- Pädiatrische Onkologie und Hämatologie, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Norbert Graf
- Pädiatrische Onkologie und Hämatologie, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Hans Jürgen Laws
- Klinik für Pädiatrische Onkologie, Hämatologie und Immunologie, Universitätskinderklinik, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Sebastian Voigt
- Klinik für Pädiatrie m. S. Onkologie / Hämatologie / Stammzelltransplantation, Charité – Universitätsmedizin Berlin, Germany
| | - Brar Piening
- Institut für Hygiene und Umweltmedizin, Charité – Universitätsmedizin Berlin, Germany
| | - Christine Geffers
- Institut für Hygiene und Umweltmedizin, Charité – Universitätsmedizin Berlin, Germany
| | - Philipp Agyeman
- Pädiatrische Infektiologie und Pädiatrische Hämatologie-Onkologie, Universitätsklinik für Kinderheilkunde, Inselspital, Bern, Switzerland
| | - Roland A. Ammann
- Pädiatrische Infektiologie und Pädiatrische Hämatologie-Onkologie, Universitätsklinik für Kinderheilkunde, Inselspital, Bern, Switzerland
| |
Collapse
|
27
|
Maertens J, Cesaro S, Maschmeyer G, Einsele H, Donnelly JP, Alanio A, Hauser PM, Lagrou K, Melchers WJG, Helweg-Larsen J, Matos O, Bretagne S, Cordonnier C. ECIL guidelines for preventing Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. J Antimicrob Chemother 2016; 71:2397-404. [PMID: 27550992 DOI: 10.1093/jac/dkw157] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 5th European Conference on Infections in Leukaemia (ECIL-5) meeting aimed to establish evidence-based recommendations for the prophylaxis of Pneumocystis jirovecii pneumonia (PCP) in non-HIV-infected patients with an underlying haematological condition, including allogeneic HSCT recipients. Recommendations were based on the grading system of the IDSA. Trimethoprim/sulfamethoxazole given 2-3 times weekly is the drug of choice for the primary prophylaxis of PCP in adults ( A-II: ) and children ( A-I: ) and should be given during the entire period at risk. Recent data indicate that children may benefit equally from a once-weekly regimen ( B-II: ). All other drugs, including pentamidine, atovaquone and dapsone, are considered second-line alternatives when trimethoprim/sulfamethoxazole is poorly tolerated or contraindicated. The main indications of PCP prophylaxis are ALL, allogeneic HSCT, treatment with alemtuzumab, fludarabine/cyclophosphamide/rituximab combinations, >4 weeks of treatment with corticosteroids and well-defined primary immune deficiencies in children. Additional indications are proposed depending on the treatment regimen.
Collapse
Affiliation(s)
- Johan Maertens
- Department of Haematology, Acute Leukaemia and Stem Cell Transplantation Unit, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Simone Cesaro
- Department of Haematology, Oncoematologia Pediatrica, Policlinico G. B. Rossi, Verona, Italy
| | - Georg Maschmeyer
- Department of Haematology, Oncology and Palliative Care, Ernst-von-Bergmann Klinikum, Potsdam, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, Julius Maximilians University, Würzburg, Germany
| | - J Peter Donnelly
- Department of Haematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexandre Alanio
- Parasitology-Mycology Laboratory, Groupe Hospitalier Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Diderot, Sorbonne Paris Cité, and Institut Pasteur, Unité de Mycologie Moléculaire, CNRS URA3012, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital and University, Lausanne, Switzerland
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven, Belgium and National Reference Center for Mycosis, Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jannik Helweg-Larsen
- Department of Infectious Diseases, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark
| | - Olga Matos
- Medical Parasitology Unit, Group of Opportunistic Protozoa/HIV and Other Protozoa, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Stéphane Bretagne
- Parasitology-Mycology Laboratory, Groupe Hospitalier Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Diderot, Sorbonne Paris Cité, and Institut Pasteur, Unité de Mycologie Moléculaire, CNRS URA3012, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | - Catherine Cordonnier
- Department of Haematology, Henri Mondor Teaching Hospital, Assistance Publique-Hôpitaux de Paris, and Université Paris-Est-Créteil, Créteil, France
| | | |
Collapse
|
28
|
Cordonnier C, Cesaro S, Maschmeyer G, Einsele H, Donnelly JP, Alanio A, Hauser PM, Lagrou K, Melchers WJG, Helweg-Larsen J, Matos O, Bretagne S, Maertens J. Pneumocystis jirovecii pneumonia: still a concern in patients with haematological malignancies and stem cell transplant recipients. J Antimicrob Chemother 2016; 71:2379-85. [DOI: 10.1093/jac/dkw155] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The risk of patients with ALL and recipients of an allogeneic HSCT developing Pneumocystis jirovecii pneumonia is sufficiently high to warrant guidelines for the laboratory diagnosis, prevention and treatment of the disease. In this issue, the European Conference on Infections in Leukemia (ECIL) presents its recommendations in three companion papers.
Collapse
Affiliation(s)
- Catherine Cordonnier
- Department of Haematology, Henri Mondor Teaching Hospital, Assistance Publique-hôpitaux de Paris, and Université Paris-Est-Créteil, Créteil, France
| | - Simone Cesaro
- Department of Haematology, Oncoematologia Pediatrica, Policlinico G. B. Rossi, Verona, Italy
| | - Georg Maschmeyer
- Department of Haematology, Oncology and Palliative Care, Ernst-von-Bergmann Klinikum, Potsdam, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, Julius Maximilians University, Würzburg, Germany
| | - J. Peter Donnelly
- Department of Haematology Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexandre Alanio
- Parasitology-Mycology Laboratory, Groupe Hospitalier Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Diderot, Sorbonne Paris Cité, and Institut Pasteur, Unité de Mycologie Moléculaire, CNRS URA3012, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | - Philippe M. Hauser
- Institute of Microbiology, Lausanne University Hospital and University, Lausanne, Switzerland
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven – University of Leuven, Leuven, Belgium and National Reference Center for Mycosis, Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jannik Helweg-Larsen
- Department of Infectious Diseases, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark
| | - Olga Matos
- Medical Parasitology Unit, Group of Opportunistic Protozoa/HIV and Other Protozoa, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Stéphane Bretagne
- Parasitology-Mycology Laboratory, Groupe Hospitalier Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Diderot, Sorbonne Paris Cité, and Institut Pasteur, Unité de Mycologie Moléculaire, CNRS URA3012, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | - Johan Maertens
- Department of Haematology, Acute Leukaemia and Stem Cell Transplantation Unit, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| |
Collapse
|
29
|
Williams KM, Ahn KW, Chen M, Aljurf MD, Agwu AL, Chen AR, Walsh TJ, Szabolcs P, Boeckh MJ, Auletta JJ, Lindemans CA, Zanis-Neto J, Malvezzi M, Lister J, de Toledo Codina JS, Sackey K, Chakrabarty JLH, Ljungman P, Wingard JR, Seftel MD, Seo S, Hale GA, Wirk B, Smith MS, Savani BN, Lazarus HM, Marks DI, Ustun C, Abdel-Azim H, Dvorak CC, Szer J, Storek J, Yong A, Riches MR. The incidence, mortality and timing of Pneumocystis jiroveci pneumonia after hematopoietic cell transplantation: a CIBMTR analysis. Bone Marrow Transplant 2016; 51:573-80. [PMID: 26726945 PMCID: PMC4823157 DOI: 10.1038/bmt.2015.316] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/13/2015] [Accepted: 11/01/2015] [Indexed: 11/09/2022]
Abstract
Pneumocystis jiroveci pneumonia (PJP) is associated with high morbidity and mortality after hematopoietic stem cell transplantation (HSCT). Little is known about PJP infections after HSCT because of the rarity of disease given routine prophylaxis. We report the results of a Center for International Blood and Marrow Transplant Research study evaluating the incidence, timing, prophylaxis agents, risk factors and mortality of PJP after autologous (auto) and allogeneic (allo) HSCT. Between 1995 and 2005, 0.63% allo recipients and 0.28% auto recipients of first HSCT developed PJP. Cases occurred as early as 30 days to beyond a year after allo HSCT. A nested case cohort analysis with supplemental data (n=68 allo cases, n=111 allo controls) revealed that risk factors for PJP infection included lymphopenia and mismatch after HSCT. After allo or auto HSCT, overall survival was significantly poorer among cases vs controls (P=0.0004). After controlling for significant variables, the proportional hazards model revealed that PJP cases were 6.87 times more likely to die vs matched controls (P<0.0001). We conclude PJP infection is rare after HSCT but is associated with high mortality. Factors associated with GVHD and with poor immune reconstitution are among the risk factors for PJP and suggest that protracted prophylaxis for PJP in high-risk HSCT recipients may improve outcomes.
Collapse
Affiliation(s)
- K M Williams
- Children's Research Institute, Children's National Health System, Washington, DC, USA
| | - K W Ahn
- CIBMTR (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Chen
- CIBMTR (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M D Aljurf
- Department of Oncology, King Faisal Specialist Hospital Center & Research, Riyadh, Saudi Arabia
| | - A L Agwu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A R Chen
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T J Walsh
- Division of Blood and Marrow Transplantation and Cellular Therapies, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - P Szabolcs
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - M J Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - J J Auletta
- Divisions of Hematology/Oncology, Bone Marrow Transplantation and Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA
| | - C A Lindemans
- Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, Netherlands
| | - J Zanis-Neto
- Hospital de Clínicas - Universidade Federal do Paraná, Curitiba, Brazil
| | - M Malvezzi
- Hospital de Clínicas - Universidade Federal do Paraná, Curitiba, Brazil
| | - J Lister
- Cell Transplantation Program, Western Pennsylvania Cancer Institute, Pittsburgh, PA, USA
| | - J S de Toledo Codina
- Paediatric Oncology, Haematology and SCT Department, Hospital Infantil Vall d'Hebron, Barcelona, Spain
| | - K Sackey
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - J L H Chakrabarty
- Department of Hematology/Oncology, University of Oklahoma, Oklahoma City, OK, USA
| | - P Ljungman
- Department of Hematology, Karolinska University, Stockholm, Sweden
| | - J R Wingard
- Division of Hematology & Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - M D Seftel
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - S Seo
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - G A Hale
- Department of Hematology/Oncology, All Children's Hospital, St. Petersburg, FL, USA
| | - B Wirk
- Division of Bone Marrow Transplant, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - M S Smith
- Viracor-IBT Laboratories, Lee's Summit, MO, USA
| | - B N Savani
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - H M Lazarus
- Seidman Cancer Center, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - D I Marks
- Pediatric Bone Marrow Transplant, University Hospitals Bristol NHS Trust, Bristol, UK
| | - C Ustun
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - H Abdel-Azim
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - C C Dvorak
- Department of Pediatrics, University of California San Francisco Medical Center, San Francisco, CA, USA
| | - J Szer
- Department Clinical Haematology and Bone Marrow Transplantation, Royal Melbourne Hospital, Victoria, Australia
| | - J Storek
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - A Yong
- Royal Adelaide Hospital/SA Pathology and School of Medicine, University of Adelaide, Adelaide, Australia
| | - M R Riches
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Boast A, Osowicki J, Cole T, Curtis N, Gwee A. Question 1: Co-trimoxazole dosing dilemma: what is the right dose? Arch Dis Child 2015; 100:1089-93. [PMID: 26408788 DOI: 10.1136/archdischild-2015-309100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/07/2015] [Indexed: 11/04/2022]
Affiliation(s)
- Alison Boast
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Joshua Osowicki
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Theresa Cole
- Department of Allergy and Immunology, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Nigel Curtis
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia Murdoch Childrens Research Institute, Parkville, Victoria, Australia Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Amanda Gwee
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia Murdoch Childrens Research Institute, Parkville, Victoria, Australia Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Cooley L, Dendle C, Wolf J, Teh BW, Chen SC, Boutlis C, Thursky KA. Consensus guidelines for diagnosis, prophylaxis and management of Pneumocystis jirovecii pneumonia in patients with haematological and solid malignancies, 2014. Intern Med J 2015; 44:1350-63. [PMID: 25482745 DOI: 10.1111/imj.12599] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pneumocystis jirovecii infection (PJP) is a common cause of pneumonia in patients with cancer-related immunosuppression. There are well-defined patients who are at risk of PJP due to the status of their underlying malignancy, treatment-related immunosuppression and/or concomitant use of corticosteroids. Prophylaxis is highly effective and should be given to all patients at moderate to high risk of PJP. Trimethoprim-sulfamethoxazole is the drug of choice for prophylaxis and treatment, although several alternative agents are available.
Collapse
Affiliation(s)
- L Cooley
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Hobart, Tasmania
| | | | | | | | | | | | | |
Collapse
|
32
|
Pneumocystis jirovecii--from a commensal to pathogen: clinical and diagnostic review. Parasitol Res 2015; 114:3577-85. [PMID: 26281787 PMCID: PMC4562001 DOI: 10.1007/s00436-015-4678-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023]
Abstract
Pneumocystis pneumonia is an opportunistic disease caused by invasion of unicellular fungus Pneumocystis jirovecii. Initially, it was responsible for majority of morbidity and mortality cases among HIV-infected patients, which later have been reduced due to the introduction of anti-retroviral therapy, as well as anti-Pneumocystis prophylaxis among these patients. Pneumocystis pneumonia, however, is still a significant cause of mortality among HIV-negative patients being under immunosuppression caused by different factors, such as transplant recipients as well as oncologically treated ones. The issue of pneumocystosis among these people is particularly emphasized in the article, since rapid onset and fast progression of severe symptoms result in high mortality rate among these patients, who thereby represent the group of highest risk of developing Pneumocystis pneumonia. In contrast, fungal invasion in immunocompetent people usually leads to asymptomatic colonization, which frequent incidence among healthy infants has even suggested the possibility of its association with sudden unexpected infant death syndrome. In the face of emerging strains with different epidemiological profiles resulting from genetic diversity, including drug-resistant genotypes, the colonization phenomenon desires particular attention, discussed in this article. We also summarize specific and sensitive methods, required for detection of Pneumocystis invasion and for distinguish colonization from the disease.
Collapse
|
33
|
Clark A, Hemmelgarn T, Danziger-Isakov L, Teusink A. Intravenous pentamidine for Pneumocystis carinii/jiroveci pneumonia prophylaxis in pediatric transplant patients. Pediatr Transplant 2015; 19:326-31. [PMID: 25712369 DOI: 10.1111/petr.12441] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2015] [Indexed: 11/30/2022]
Abstract
SMX/TMP is the current gold standard for prophylaxis against PCP in immunocompromised pediatric patients. Currently, there are several second-line options for prophylaxis but many, including intravenous (IV) pentamidine, have not been reported to be as effective or as safe as SMX/TMP in the pediatric transplant population. This study is to determine the efficacy and safety of IV pentamidine in preventing PCP in pediatric transplant patients. A retrospective chart review was conducted to evaluate all transplant patients that received at least one dose of IV pentamidine from January 2010 to July 2013. The primary outcome, IV pentamidine efficacy, was evaluated by the incidence of PCP diagnosis for 28 days after the last dose of IV pentamidine if patient was transitioned to another agent for PCP prophylaxis. Patients on IV pentamidine for entire course of PCP prophylaxis were followed at least six months after discontinuation of IV pentamidine. The safety of IV pentamidine was assessed by the incidence of adverse events leading to pentamidine discontinuation. All data were analyzed using descriptive statistics. All transplant patients at CCHMC who had received IV pentamidine were reviewed, and 333 patients met inclusion criteria. The overall incidence of PCP was found to be 0.3% for pediatric transplant patients on pentamidine. Pentamidine was found to be safe, and the incidence of adverse events leading to discontinuation was 6% with the most common reason being tachycardia 2.1%. IV pentamidine is safe and effective as PCP prophylaxis in pediatric transplant patients with a PCP breakthrough rate of 0.3% (1 of 333 patients), and only 20 adverse events led to discontinuation. We recommend that IV pentamidine be considered as a second-line option in pediatric transplant patients who cannot tolerate SMX/TMP.
Collapse
Affiliation(s)
- Abigail Clark
- Pharmacy Department, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
34
|
Infectious Prophylaxis in Paediatric Oncology and Stem Cell Transplantation. CURRENT PEDIATRICS REPORTS 2015. [DOI: 10.1007/s40124-015-0076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Kerl K, Ehlert K, Brentrup A, Schiborr M, Keyvani K, Becker K, Rossig C, Groll A. Cerebral toxoplasmosis in an adolescent post allogeneic hematopoietic stem cell transplantation: successful outcome by antiprotozoal chemotherapy and CD4+T-lymphocyte recovery. Transpl Infect Dis 2015; 17:119-24. [DOI: 10.1111/tid.12344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/04/2014] [Accepted: 11/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- K. Kerl
- Department of Pediatric Hematology and Oncology; University Children's Hospital Muenster; Muenster Germany
| | - K. Ehlert
- Department of Pediatric Hematology and Oncology; University Children's Hospital Muenster; Muenster Germany
| | - A. Brentrup
- Neurosurgery Department; University Hospital Muenster; Muenster Germany
| | - M. Schiborr
- Radiology Department; University Hospital Muenster; Muenster Germany
| | - K. Keyvani
- Neuropathology Department; University Hospital Muenster; Muenster Germany
| | - K. Becker
- Medical Microbiology Department; University Hospital Muenster; Muenster Germany
| | - C. Rossig
- Department of Pediatric Hematology and Oncology; University Children's Hospital Muenster; Muenster Germany
| | - A.H. Groll
- Department of Pediatric Hematology and Oncology; University Children's Hospital Muenster; Muenster Germany
| |
Collapse
|