1
|
Cheng S, Sun X, Li Y, Dong Y. Evaluation of SBDP145, melatonin, sLOX-1, HMGB1 and HIF-1α in preterm infants with brain injury. Ital J Pediatr 2024; 50:172. [PMID: 39256844 PMCID: PMC11389426 DOI: 10.1186/s13052-024-01744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Prematurity-related brain injury is a common and serious complication that has long-term effects on the survival and development of affected infants. Currently, the roles of certain biomarkers such as the protein hydrolysis product SBDP145, melatonin, soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1), high mobility group box 1 protein (HMGB1), and hypoxia-inducible factor 1-alpha (HIF-1α) in prematurity-related brain injury remain not fully elucidated. Our study aims to assess the significance of SBDP145, melatonin, sLOX-1, HMGB1 and HIF-1α in preterm infants with brain injury. METHODS 135 preterm infants admitted to our hospital from January 2020 to February 2022 were selected and divided into 78 cases in a prematurity-associated brain injury group, and 57 cases in another group of preterm infants without brain injury or other diseases according to the magnetic resonance imaging results. The levels of SBDP145, melatonin, sLOX-1, HMGB1 and HIF-1α in the two groups were analyzed. The serum concentrations of SBDP145, melatonin, sLOX-1, HMGB1 and HIF-1α in newborns with different severity of ventricular hemorrhage were observed, and the levels of SBDP145, melatonin, sLOX-1, HMGB1 and HIF-1α in those with different severity of white matter brain injury were compared. RESULTS The levels of SBDP145, sLOX-1, HMGB1 and HIF-1α were significantly higher in the preterm combined brain injury group than in the preterm group, and melatonin levels were significantly lower than in the preterm group(P < 0.05). The levels of SBDP145, sLOX-1, HMGB1 and HIF-1α were higher in the moderate to severe group and melatonin levels were lower in the mild group of newborns with ventricular hemorrhage (P < 0.05). The levels of SBDP145, sLOX-1, HMGB1 and HIF-1α were higher in the moderate-severe group and melatonin levels were lower in the mild group in newborns with cerebral white matter injury (P < 0.05). The independent variables were SBDP145, melatonin, sLOX-1, HMGB1, HIF-1α, and the dependent variable was the prognosis of neonates with brain injury. Univariate logistic regression analysis and multivariate logistic regression analysis were performed. The results showed that the influencing factors of newborns with brain injury were SBDP145, melatonin, sLOX-1, HMGB1, HIF-1α. CONCLUSION The levels of SBDP145, melatonin, sLOX-1, HMGB1 and HIF-1α were highly expressed in preterm newborns with brain injury, and the levels were higher when the condition of the newborns was more severe. These findings suggest the potential clinical utility of these biomarkers in predicting and monitoring brain injury in preterm infants, which could aid in early intervention and improve long-term outcomes.
Collapse
Affiliation(s)
- Sisi Cheng
- Department of Pediatrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, Hebei, 050000, China
| | - Xiao Sun
- Department of Pediatrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, Hebei, 050000, China
| | - Yanyan Li
- Department of Pediatrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, Hebei, 050000, China
| | - Yan Dong
- Department of Pediatrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
2
|
Bao J, Zhang X, Zhao X. MR imaging and outcome in neonatal HIBD models are correlated with sex: the value of diffusion tensor MR imaging and diffusion kurtosis MR imaging. Front Neurosci 2023; 17:1234049. [PMID: 37790588 PMCID: PMC10543095 DOI: 10.3389/fnins.2023.1234049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Objective Hypoxic-ischemic encephalopathy can lead to lifelong morbidity and premature death in full-term newborns. Here, we aimed to determine the efficacy of diffusion kurtosis (DK) [mean kurtosis (MK)] and diffusion tensor (DT) [fractional anisotropy (FA), mean diffusion (MD), axial diffusion (AD), and radial diffusion (RD)] parameters for the early diagnosis of early brain histopathological changes and the prediction of neurodegenerative events in a full-term neonatal hypoxic-ischemic brain injury (HIBD) rat model. Methods The HIBD model was generated in postnatal day 7 Sprague-Dawley rats to assess the changes in DK and DT parameters in 10 specific brain structural regions involving the gray matter, white matter, and limbic system during acute (12 h) and subacute (3 d and 5 d) phases after hypoxic ischemia (HI), which were validated against histology. Sensory and cognitive parameters were assessed by the open field, novel object recognition, elevated plus maze, and CatWalk tests. Results Repeated-measures ANOVA revealed that specific brain structures showed similar trends to the lesion, and the temporal pattern of MK was substantially more varied than DT parameters, particularly in the deep gray matter. The change rate of MK in the acute phase (12 h) was significantly higher than that of DT parameters. We noted a delayed pseudo-normalization for MK. Additionally, MD, AD, and RD showed more pronounced differences between males and females after HI compared to MK, which was confirmed in behavioral tests. HI females exhibited anxiolytic hyperactivity-like baseline behavior, while the memory ability of HI males was affected in the novel object recognition test. CatWalk assessments revealed chronic deficits in limb gait parameters, particularly the left front paw and right hind paw, as well as poorer performance in HI males than HI females. Conclusions Our results suggested that DK and DT parameters were complementary in the immature brain and provided great value in assessing early tissue microstructural changes and predicting long-term neurobehavioral deficits, highlighting their ability to detect both acute and long-term changes. Thus, the various diffusion coefficient parameters estimated by the DKI model are powerful tools for early HIBD diagnosis and prognosis assessment, thus providing an experimental and theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Jieaoxue Bao
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Xiaoan Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Xin Zhao
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| |
Collapse
|
3
|
Caramelo I, Coelho M, Rosado M, Cardoso CMP, Dinis A, Duarte CB, Grãos M, Manadas B. Biomarkers of hypoxic-ischemic encephalopathy: a systematic review. World J Pediatr 2023; 19:505-548. [PMID: 37084165 PMCID: PMC10199106 DOI: 10.1007/s12519-023-00698-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/31/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Current diagnostic criteria for hypoxic-ischemic encephalopathy in the early hours lack objective measurement tools. Therefore, this systematic review aims to identify putative molecules that can be used in diagnosis in daily clinical practice (PROSPERO ID: CRD42021272610). DATA SOURCES Searches were performed in PubMed, Web of Science, and Science Direct databases until November 2020. English original papers analyzing samples from newborns > 36 weeks that met at least two American College of Obstetricians and Gynecologists diagnostic criteria and/or imaging evidence of cerebral damage were included. Bias was assessed by the Newcastle-Ottawa Scale. The search and data extraction were verified by two authors separately. RESULTS From 373 papers, 30 met the inclusion criteria. Data from samples collected in the first 72 hours were extracted, and increased serum levels of neuron-specific enolase and S100-calcium-binding protein-B were associated with a worse prognosis in newborns that suffered an episode of perinatal asphyxia. In addition, the levels of glial fibrillary acidic protein, ubiquitin carboxyl terminal hydrolase isozyme-L1, glutamic pyruvic transaminase-2, lactate, and glucose were elevated in newborns diagnosed with hypoxic-ischemic encephalopathy. Moreover, pathway analysis revealed insulin-like growth factor signaling and alanine, aspartate and glutamate metabolism to be involved in the early molecular response to insult. CONCLUSIONS Neuron-specific enolase and S100-calcium-binding protein-B are potential biomarkers, since they are correlated with an unfavorable outcome of hypoxic-ischemic encephalopathy newborns. However, more studies are required to determine the sensitivity and specificity of this approach to be validated for clinical practice.
Collapse
Affiliation(s)
- Inês Caramelo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | - Margarida Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Chemistry Department, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Miguel Rosado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | | | - Alexandra Dinis
- Pediatric Intensive Care Unit, Hospital Pediátrico, Centro Hospitalar E Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3001-401, Coimbra, Portugal
| | - Mário Grãos
- Biocant, Technology Transfer Association, 3060-197, Cantanhede, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789, Coimbra, Portugal.
| |
Collapse
|
4
|
Okazaki K, Nakamura S, Koyano K, Konishi Y, Kondo M, Kusaka T. Neonatal asphyxia as an inflammatory disease: Reactive oxygen species and cytokines. Front Pediatr 2023; 11:1070743. [PMID: 36776908 PMCID: PMC9911547 DOI: 10.3389/fped.2023.1070743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Neonatologists resuscitate asphyxiated neonates by every available means, including positive ventilation, oxygen therapy, and drugs. Asphyxiated neonates sometimes present symptoms that mimic those of inflammation, such as fever and edema. The main pathophysiology of the asphyxia is inflammation caused by hypoxic-ischemic reperfusion. At birth or in the perinatal period, neonates may suffer several, hypoxic insults, which can activate inflammatory cells and inflammatory mediator production leading to the release of larger quantities of reactive oxygen species (ROS). This in turn triggers the production of oxygen stress-induced high mobility group box-1 (HMGB-1), an endogenous damage-associated molecular patterns (DAMPs) protein bound to toll-like receptor (TLR) -4, which activates nuclear factor-kappa B (NF-κB), resulting in the production of excess inflammatory mediators. ROS and inflammatory mediators are produced not only in activated inflammatory cells but also in non-immune cells, such as endothelial cells. Hypothermia inhibits pro-inflammatory mediators. A combination therapy of hypothermia and medications, such as erythropoietin and melatonin, is attracting attention now. These medications have both anti-oxidant and anti-inflammatory effects. As the inflammatory response and oxidative stress play a critical role in the pathophysiology of neonatal asphyxia, these drugs may contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Kaoru Okazaki
- Department of Neonatology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yukihiko Konishi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masatoshi Kondo
- Department of Neonatology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
5
|
Garcia-Alix A, Arnaez J. Value of brain damage biomarkers in cerebrospinal fluid in neonates with hypoxic-ischemic brain injury. Biomark Med 2022; 16:117-125. [PMID: 35081738 DOI: 10.2217/bmm-2021-0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypoxic-ischemic encephalopathy is one of the leading causes of death and neurological disability worldwide. A key issue in neonates with hypoxic-ischemic encephalopathy is accurately establishing the occurrence and severity of brain lesions soon after a perinatal hypoxic-ischemic event. This is crucial to help with prognosis; guide clinical decision-making, including the use of other therapies; and improve family counseling. Neurobiochemical markers may offer a quantitative approximation for estimating the severity of brain damage and identifying infants who have a high risk of further neurological disability. In addition, they should help identify those neonates who would benefit most from the implementation of other neuroprotective and neuroreparative interventions. Despite considerable progress in this area, relatively few studies have been aimed at examining the clinical utility of brain-specific proteins in cerebrospinal fluid, an important opening to characterizing pathological phenomena associated with hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
| | - Juan Arnaez
- Neonatal Neurology, NeNe Foundation, Madrid, 28010, Spain
- Hospital Universitario de Burgos, Burgos 09006, Spain. Neonatal Neurology, NeNe Foundation, Madrid, 28010, Spain
| |
Collapse
|
6
|
Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1-Related Microglial Activation in Neonatal Hypoxic-Ischemic Encephalopathy: Morphologic Consideration. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1303-1313. [PMID: 33964218 DOI: 10.1016/j.ajpath.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (nHIE) is a major neonatal brain injury. Despite therapeutic hypothermia, mortality and sequelae remain severe. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is associated with the pathophysiology of nHIE. In this study, morphologic change and microglial activation under the nHIE condition and LOX-1 treatment were investigated. The microglial activity and proliferation were assessed with a novel morphologic method, immunostaining, and quantitative PCR in the rat brains of both nHIE model and anti-LOX-1 treatment. Circumference ratio, the long diameter ratio, the cell area ratio, and the roundness of microglia were calculated. The correlation of the morphologic metrics and microglial activation in nHIE model and anti-LOX-1 treated brains was evaluated. LOX-1 was expressed in activated ameboid and round microglia in the nHIE model rat brain. In the evaluation of microglial activation, the novel morphologic metrics correlated with all scales of the nHIE-damaged and treated brains. While the circumference and long diameter ratios had a positive correlation, the cell area ratio and roundness had a negative correlation. Anti-LOX-1 treatment attenuated morphologic microglial activation and proliferation, and suppressed the subsequent production of inflammatory mediators by microglia. In human nHIE, round microglia and endothelial cells expressed LOX-1. The results indicate that LOX-1 regulates microglial activation in nHIE and anti-LOX-1 treatment attenuates brain injury by suppressing microglial activation.
Collapse
|
7
|
Nishida M, Takeno S, Takemoto K, Takahara D, Hamamoto T, Ishino T, Kawasumi T. Increased Tissue Expression of Lectin-Like Oxidized LDL Receptor-1 (LOX-1) Is Associated with Disease Severity in Chronic Rhinosinusitis with Nasal Polyps. Diagnostics (Basel) 2020; 10:diagnostics10040246. [PMID: 32340234 PMCID: PMC7236656 DOI: 10.3390/diagnostics10040246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background: The oxidative stress, induced by both environmental and intrinsic stimuli, underlies the onset and persistency of chronic rhinosinusitis (CRS). Scavenger receptors (SRs) are a broad family of transmembrane receptors involved in a dysfunctional host–environment interaction through a reaction with reactive oxygen species (ROS) production. Objective: We hypothesized possible roles of two major SRs in CRS pathology that can translate to clinical phenotypes or histological subtypes: lectin-like oxidized low-density lipoproteins (LDL) receptor-1 (LOX-1) and scavenger receptor class B type 1 (SR-B1). Patients and Methods: We collected ethmoid sinus mucosa specimens and blood samples from patients with CRS with nasal polyps (CRSwNP; n = 31) or CRS without NP (CRSsNP; n = 13) and 19 control subjects. We performed an RT-PCR analysis, ELISA assay, and immunostaining to determine the expressions and distributions of LOX-1 and SR-B1. Results: The CRSwNP group showed a significant increase in LOX-1 mRNA expression compared to the control group. There was no significant difference in SR-B1 mRNA levels among the three groups. The LOX-1 mRNA levels were positively correlated with the sinus computed tomography (CT) scores. Sinus tissue, but not serum samples, showed elevated concentrations of LOX-1 protein in the CRSwNP group versus the control group. The LOX-1 protein distribution was localized in inflammatory cells and vascular endothelial cells. Conclusion: LOX-1 is a major receptor for oxidized low-density lipoprotein produced by oxidative stress. This is the first study to report alterations in LOX-1 expression and production triggered by persistent inflammatory processes in CRSwNP patients. Our findings reveal complex but important roles for SRs that may contribute to the onset of different CRS phenotypes.
Collapse
Affiliation(s)
- Manabu Nishida
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Sachio Takeno
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Kohta Takemoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Daisuke Takahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Takao Hamamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Takashi Ishino
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Tomohiro Kawasumi
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
8
|
Oorschot DE, Sizemore RJ, Amer AR. Treatment of Neonatal Hypoxic-Ischemic Encephalopathy with Erythropoietin Alone, and Erythropoietin Combined with Hypothermia: History, Current Status, and Future Research. Int J Mol Sci 2020; 21:E1487. [PMID: 32098276 PMCID: PMC7073127 DOI: 10.3390/ijms21041487] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) remains a major cause of morbidity and mortality. Moderate hypothermia (33.5 °C) is currently the sole established standard treatment. However, there are a large number of infants for whom this therapy is ineffective. This inspired global research to find neuroprotectants to potentiate the effect of moderate hypothermia. Here we examine erythropoietin (EPO) as a prominent candidate. Neonatal animal studies show that immediate, as well as delayed, treatment with EPO post-injury, can be neuroprotective and/or neurorestorative. The observed improvements of EPO therapy were generally not to the level of control uninjured animals, however. This suggested that combining EPO treatment with an adjunct therapeutic strategy should be researched. Treatment with EPO plus hypothermia led to less cerebral palsy in a non-human primate model of perinatal asphyxia, leading to clinical trials. A recent Phase II clinical trial on neonatal infants with HIE reported better 12-month motor outcomes for treatment with EPO plus hypothermia compared to hypothermia alone. Hence, the effectiveness of combined treatment with moderate hypothermia and EPO for neonatal HIE currently looks promising. The outcomes of two current clinical trials on neurological outcomes at 18-24 months-of-age, and at older ages, are now required. Further research on the optimal dose, onset, and duration of treatment with EPO, and critical consideration of the effect of injury severity and of gender, are also required.
Collapse
Affiliation(s)
- Dorothy E. Oorschot
- Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (R.J.S.); (A.R.A.)
| | | | | |
Collapse
|