1
|
Funk A, Florin TA, Kuppermann N, Finkelstein Y, Kazakoff A, Baldovsky M, Tancredi DJ, Breslin K, Bergmann KR, Gardiner M, Pruitt CM, Liu DR, Neuman MI, Wilkinson M, Ambroggio L, Pang XL, Cauchemez S, Malley R, Klassen TP, Lee BE, Payne DC, Mahmud SM, Freedman SB. Household Transmission Dynamics of Asymptomatic SARS-CoV-2-Infected Children: A Multinational, Controlled Case-Ascertained Prospective Study. Clin Infect Dis 2024; 78:1522-1530. [PMID: 38530249 PMCID: PMC11175701 DOI: 10.1093/cid/ciae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Asymptomatic SARS-CoV-2 infection in children is highly prevalent but its acute and chronic implications have been minimally described. METHODS In this controlled case-ascertained household transmission study, we recruited asymptomatic children <18 years with SARS-CoV-2 nucleic acid testing performed at 12 tertiary care pediatric institutions in Canada and the United States. We attempted to recruit all test-positive children and 1 to 3 test-negative, site-matched controls. After 14 days' follow-up we assessed the clinical (ie, symptomatic) and combined (ie, test-positive, or symptomatic) secondary attack rates (SARs) among household contacts. Additionally, post-COVID-19 condition (PCC) was assessed in SARS-CoV-2-positive participating children after 90 days' follow-up. RESULTS A total of 111 test-positive and 256 SARS-CoV-2 test-negative asymptomatic children were enrolled between January 2021 and April 2022. After 14 days, excluding households with co-primary cases, the clinical SAR among household contacts of SARS-CoV-2-positive and -negative index children was 10.6% (19/179; 95% CI: 6.5%-16.1%) and 2.0% (13/663; 95% CI: 1.0%-3.3%), respectively (relative risk = 5.4; 95% CI: 2.7-10.7). In households with a SARS-CoV-2-positive index child, age <5 years, being pre-symptomatic (ie, developed symptoms after test), and testing positive during Omicron and Delta circulation periods (vs earlier) were associated with increased clinical and combined SARs among household contacts. Among 77 asymptomatic SARS-CoV-2-infected children with 90-day follow-up, 6 (7.8%; 95% CI: 2.9%-16.2%) reported PCC. CONCLUSIONS Asymptomatic SARS-CoV-2-infected children, especially those <5 years, are important contributors to household transmission, with 1 in 10 exposed household contacts developing symptomatic illness within 14 days. Asymptomatic SARS-CoV-2-infected children may develop PCC.
Collapse
Affiliation(s)
- Anna Funk
- Department of Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd A Florin
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Division of Emergency Medicine, Ann and Robert H. Lurie Children's Hospital Chicago, Chicago, Illinois, USA
| | - Nathan Kuppermann
- Department of Emergency Medicine, University of California, Davis School of Medicine, Sacramento, California, USA
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Yaron Finkelstein
- Divisions of Emergency Medicine and Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alissa Kazakoff
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Michael Baldovsky
- Division of Pediatric Emergency Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J Tancredi
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Kristen Breslin
- Division of Emergency Medicine, Children's National Hospital, Washington, D.C., USA
| | - Kelly R Bergmann
- Department of Pediatric Emergency Medicine, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Michael Gardiner
- Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, California, USA
- Division of Emergency Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Christopher M Pruitt
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Deborah R Liu
- Division of Emergency Medicine, Department of Pediatrics, Children's Hospital Los Angeles, Keck USC School of Medicine, Los Angeles, California, USA
| | - Mark I Neuman
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Matthew Wilkinson
- Department of Pediatrics, University of Texas at Austin, Dell Medical School, Austin, Texas, USA
| | - Lilliam Ambroggio
- Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
- Section of Emergency Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Paris, France
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Terry P Klassen
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bonita E Lee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel C Payne
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Salaheddin M Mahmud
- Dept of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephen B Freedman
- Section of Pediatric Emergency Medicine, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Section of Gastroenterology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Wiedenmann M, Ipekci AM, Araujo-Chaveron L, Prajapati N, Lam YT, Alam MI, L'Huillier AG, Zhelyazkov I, Heron L, Low N, Goutaki M. SARS-CoV-2 variants of concern in children and adolescents with COVID-19: a systematic review. BMJ Open 2023; 13:e072280. [PMID: 37813543 PMCID: PMC10565293 DOI: 10.1136/bmjopen-2023-072280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES Infections by SARS-CoV-2 variants of concern (VOCs) might affect children and adolescents differently than earlier viral lineages. We aimed to address five questions about SARS-CoV-2 VOC infections in children and adolescents: (1) symptoms and severity, (2) risk factors for severe disease, (3) the risk of infection, (4) the risk of transmission and (5) long-term consequences following a VOC infection. DESIGN Systematic review. DATA SOURCES The COVID-19 Open Access Project database was searched up to 1 March 2022 and PubMed was searched up to 9 May 2022. ELIGIBILITY CRITERIA We included observational studies about Alpha, Beta, Gamma, Delta and Omicron VOCs among ≤18-year-olds. We included studies in English, German, French, Greek, Italian, Spanish and Turkish. DATA EXTRACTION AND SYNTHESIS Two reviewers extracted and verified the data and assessed the risk of bias. We descriptively synthesised the data and assessed the risks of bias at the outcome level. RESULTS We included 53 articles. Most children with any VOC infection presented with mild disease, with more severe disease being described with the Delta or the Gamma VOC. Diabetes and obesity were reported as risk factors for severe disease during the whole pandemic period. The risk of becoming infected with a SARS-CoV-2 VOC seemed to increase with age, while in daycare settings the risk of onward transmission of VOCs was higher for younger than older children or partially vaccinated adults. Long-term symptoms following an infection with a VOC were described in <5% of children and adolescents. CONCLUSION Overall patterns of SARS-CoV-2 VOC infections in children and adolescents are similar to those of earlier lineages. Comparisons between different pandemic periods, countries and age groups should be improved with complete reporting of relevant contextual factors, including VOCs, vaccination status of study participants and the risk of exposure of the population to SARS-CoV-2. PROSPERO REGISTRATION NUMBER CRD42022295207.
Collapse
Affiliation(s)
- Margarethe Wiedenmann
- Medical Service Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Aziz Mert Ipekci
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Lucia Araujo-Chaveron
- EHESP French School of Public Health, Rennes, France
- Emerging Disease Epidemiology Unit, Insitut Pasteur, Paris, France
| | - Nirmala Prajapati
- Université Paris-Saclay, Gif-sur-Yvette, France
- Exposome and Heredity Team, Institut national de la santé et de la recherche médicale, Paris, France
| | - Yin Ting Lam
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Arnaud G L'Huillier
- Département de pédiatrie, gynécologie et obstétrique, HUG, Geneve, Switzerland
| | | | - Leonie Heron
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Tseng YJ, Olson KL, Bloch D, Mandl KD. Smart Thermometer-Based Participatory Surveillance to Discern the Role of Children in Household Viral Transmission During the COVID-19 Pandemic. JAMA Netw Open 2023; 6:e2316190. [PMID: 37261828 PMCID: PMC10236238 DOI: 10.1001/jamanetworkopen.2023.16190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 06/02/2023] Open
Abstract
Importance Children's role in spreading virus during the COVID-19 pandemic is yet to be elucidated, and measuring household transmission traditionally requires contact tracing. Objective To discern children's role in household viral transmission during the pandemic when enveloped viruses were at historic lows and the predominance of viral illnesses were attributed to COVID-19. Design, Setting, and Participants This cohort study of a voluntary US cohort tracked data from participatory surveillance using commercially available thermometers with a companion smartphone app from October 2019 to October 2022. Eligible participants were individuals with temperature measurements in households with multiple members between October 2019 and October 2022 who opted into data sharing. Main Outcomes and Measures Proportion of household transmissions with a pediatric index case and changes in transmissions during school breaks were assessed using app and thermometer data. Results A total of 862 577 individuals from 320 073 households with multiple participants (462 000 female [53.6%] and 463 368 adults [53.7%]) were included. The number of febrile episodes forecast new COVID-19 cases. Within-household transmission was inferred in 54 506 (15.4%) febrile episodes and increased from the fourth pandemic period, March to July 2021 (3263 of 32 294 [10.1%]) to the Omicron BA.1/BA.2 wave (16 516 of 94 316 [17.5%]; P < .001). Among 38 787 transmissions in 166 170 households with adults and children, a median (IQR) 70.4% (61.4%-77.6%) had a pediatric index case; proportions fluctuated weekly from 36.9% to 84.6%. A pediatric index case was 0.6 to 0.8 times less frequent during typical school breaks. The winter break decrease was from 68.4% (95% CI, 57.1%-77.8%) to 41.7% (95% CI, 34.3%-49.5%) at the end of 2020 (P < .001). At the beginning of 2022, it dropped from 80.3% (95% CI, 75.1%-84.6%) to 54.5% (95% CI, 51.3%-57.7%) (P < .001). During summer breaks, rates dropped from 81.4% (95% CI, 74.0%-87.1%) to 62.5% (95% CI, 56.3%-68.3%) by August 2021 (P = .02) and from 83.8% (95% CI, 79.2%-87.5) to 62.8% (95% CI, 57.1%-68.1%) by July 2022 (P < .001). These patterns persisted over 2 school years. Conclusions and Relevance In this cohort study using participatory surveillance to measure within-household transmission at a national scale, we discerned an important role for children in the spread of viral infection within households during the COVID-19 pandemic, heightened when schools were in session, supporting a role for school attendance in COVID-19 spread.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Karen L. Olson
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | | | - Kenneth D. Mandl
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Zhu Y, Xia Y, Pickering J, Bowen AC, Short KR. The role of children in transmission of SARS-CoV-2 variants of concern within households: an updated systematic review and meta-analysis, as at 30 June 2022. Euro Surveill 2023; 28:2200624. [PMID: 37140450 PMCID: PMC10161681 DOI: 10.2807/1560-7917.es.2023.28.18.2200624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
BackgroundMeta-analyses and single-site studies have established that children are less infectious than adults within a household when positive for ancestral SARS-CoV-2. In addition, children appear less susceptible to infection when exposed to ancestral SARS-CoV-2 within a household. The emergence of SARS-CoV-2 variants of concern (VOC) has been associated with an increased number of paediatric infections worldwide. However, the role of children in the household transmission of VOC, relative to the ancestral virus, remains unclear.AimWe aimed to evaluate children's role in household transmission of SARS-CoV-2 VOC.MethodsWe perform a meta-analysis of the role of children in household transmission of both ancestral SARS-CoV-2 and SARS-CoV-2 VOC.ResultsUnlike with the ancestral virus, children infected with VOC spread SARS-CoV-2 to an equivalent number of household contacts as infected adults and were equally as likely to acquire SARS-CoV-2 VOC from an infected family member. Interestingly, the same was observed when unvaccinated children exposed to VOC were compared with unvaccinated adults exposed to VOC.ConclusionsThese data suggest that the emergence of VOC was associated with a fundamental shift in the epidemiology of SARS-CoV-2. It is unlikely that this is solely the result of age-dependent differences in vaccination during the VOC period and may instead reflect virus evolution over the course of the pandemic.
Collapse
Affiliation(s)
- Yanshan Zhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Wesfarmer's Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Perth, Australia
- These authors contributed equally to this manuscript
| | - Yao Xia
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- These authors contributed equally to this manuscript
| | - Janessa Pickering
- Wesfarmer's Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Perth, Australia
| | - Asha C Bowen
- Wesfarmer's Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Perth, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Nedlands, Perth, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Chen F, Tian Y, Zhang L, Shi Y. The role of children in household transmission of COVID-19: a systematic review and meta-analysis. Int J Infect Dis 2022; 122:266-275. [PMID: 35562045 PMCID: PMC9091150 DOI: 10.1016/j.ijid.2022.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES To explore household transmissibility of SARS-CoV-2 in children in new-variants dominating periods. METHODS Through retrieval in PubMed and Embase, studies were included in two parts: meta-analysis of the household secondary attack rate (SAR) and case analysis of household pediatric infections. RESULTS A total of 95 articles were included: 48 for meta-analysis and 47 for case analysis. Pediatric COVID-19 only comprised a minority of the household transmission. The total pooled household SAR of child index cases and contacts were 0.20 (95% confidence interval [CI]: 0.15-0.26) and 0.24 (95% CI: 0.18-0.30). Lower household transmissibility was reported in both child index cases and contacts than in adults (relative risk [RR] = 0.64, 95% CI: 0.50-0.81; RR = 0.74, 95% CI: 0.64-0.85). Younger children were as susceptible as the older children (RR = 0.89, 95% CI: 0.72-1.10). Through subgroup analyses of different variants and periods, increased household SAR was observed in children (Wild: 0.20; Alpha: 0.42; Delta: 0.35; Omicron: 0.56), and no significant difference was found in household SAR between children and adults when new variants dominated. CONCLUSION Although children were found not to be dominant in the household transmission, their transmissibility of SARS-CoV-2 appeared to be on the rise as new variants emerged.
Collapse
Affiliation(s)
- Feifan Chen
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yan Tian
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lixin Zhang
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuan Shi
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|