1
|
Naldrett HJ, Fekete C, Bartlett RH, Benkő Z, Schwendeman SP, Lautner G. Feasibility of controlled nitric oxide generation via ascorbate induced chemical reduction of nitrite ions. Dalton Trans 2024. [PMID: 39569571 PMCID: PMC11579995 DOI: 10.1039/d4dt01980f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Inhalable nitric oxide (iNO) is a lifesaving, FDA-approved drug to improve oxygenation in persistent pulmonary hypertension of the newborn. iNO also has many other applications in lung diseases owing to its vasodilatory and antimicrobial effects. However, its wider therapeutic application is often prohibited by the high cost and logistical barriers of traditional NO/N2 gas tanks. Development of low-cost, portable and tankless nitric oxide (NO) generators is a critical need to advance iNO therapy. Here, we describe the feasibility of NO generation by the controlled reduction of nitrite (NO2-) ions. This was accomplished by using ascorbate to reduce NO2- ions mediated by a copper(I/II) redox pair complexed by an azo-crown ether ligand ([Cu(II)L]2+/[Cu(I)L]+) in the solution phase. We found that oxalate, a decomposition product of ascorbate, interferes with the NO generation from the copper-ligand complex. This interference was mitigated, and the reaction was further optimized. NO generation through this method was found to be highly controllable via its proportionality to the flow rate of NO2- injected into a reaction chamber containing the reducing components. Hence, this simple approach adds to the current collection of innovative methods under development to obviate the use of NO tanks for iNO delivery.
Collapse
Affiliation(s)
- Hannah J Naldrett
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Csilla Fekete
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Robert H Bartlett
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
- HUN-REN-BME Computation Driven Chemistry Research Group, Budapest, Hungary
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gergely Lautner
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Fallon BP, Lautner-Csorba O, Major TC, Lautner G, Harvey SL, Langley MW, Johnson MD, Saveski C, Matusko N, Rabah R, Rojas-Pena A, Meyerhoff ME, Bartlett RH, Mychaliska GB. Extracorporeal life support without systemic anticoagulation: a nitric oxide-based non-thrombogenic circuit for the artificial placenta in an ovine model. Pediatr Res 2024; 95:93-101. [PMID: 37087539 PMCID: PMC10600655 DOI: 10.1038/s41390-023-02605-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/26/2023] [Accepted: 03/20/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Clinical translation of the extracorporeal artificial placenta (AP) is impeded by the high risk for intracranial hemorrhage in extremely premature newborns. The Nitric Oxide Surface Anticoagulation (NOSA) system is a novel non-thrombogenic extracorporeal circuit. This study aims to test the NOSA system in the AP without systemic anticoagulation. METHODS Ten extremely premature lambs were delivered and connected to the AP. For the NOSA group, the circuit was coated with DBHD-N2O2/argatroban, 100 ppm nitric oxide was blended into the sweep gas, and no systemic anticoagulation was given. For the Heparin control group, a non-coated circuit was used and systemic anticoagulation was administered. RESULTS Animals survived 6.8 ± 0.6 days with normal hemodynamics and gas exchange. Neither group had any hemorrhagic or thrombotic complications. ACT (194 ± 53 vs. 261 ± 86 s; p < 0.001) and aPTT (39 ± 7 vs. 69 ± 23 s; p < 0.001) were significantly lower in the NOSA group than the Heparin group. Platelet and leukocyte activation did not differ significantly from baseline in the NOSA group. Methemoglobin was 3.2 ± 1.1% in the NOSA group compared to 1.6 ± 0.6% in the Heparin group (p < 0.001). CONCLUSIONS The AP with the NOSA system successfully supported extremely premature lambs for 7 days without significant bleeding or thrombosis. IMPACT The Nitric Oxide Surface Anticoagulation (NOSA) system provides effective circuit-based anticoagulation in a fetal sheep model of the extracorporeal artificial placenta (AP) for 7 days. The NOSA system is the first non-thrombogenic circuit to consistently obviate the need for systemic anticoagulation in an extracorporeal circuit for up to 7 days. The NOSA system may allow the AP to be implemented clinically without systemic anticoagulation, thus greatly reducing the intracranial hemorrhage risk for extremely low gestational age newborns. The NOSA system could potentially be applied to any form of extracorporeal life support to reduce or avoid systemic anticoagulation.
Collapse
Affiliation(s)
- Brian P Fallon
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Orsolya Lautner-Csorba
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Terry C Major
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gergely Lautner
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephen L Harvey
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark W Langley
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew D Johnson
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claudia Saveski
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Niki Matusko
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Raja Rabah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alvaro Rojas-Pena
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Surgery, Section of Transplantation, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert H Bartlett
- Department of Surgery, ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - George B Mychaliska
- Department of Surgery, Section of Pediatric Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Spencer BL, Johnson MD, Wilhelm SK, Lautner-Csorba OD, Matich H, Lautner G, Fallon BP, Dann T, Gudex L, Langley M, Meyerhoff M, Potkay J, Bartlett R, Rojas-Pena A, Hirschl RB. A Pumpless Pediatric Artificial Lung Maintains Function for 72 h Without Systemic Anticoagulation Using the Nitric Oxide Surface Anticoagulation System. J Pediatr Surg 2024; 59:103-108. [PMID: 37858393 PMCID: PMC10843264 DOI: 10.1016/j.jpedsurg.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Children with end-stage lung disease are commonly managed with extracorporeal life support (ECLS) as a bridge to lung transplantation. A pumpless artificial lung (MLung) is a portable alternative to ECLS and it allows for ambulation. Both ECLS and pumpless artificial lungs require systemic anticoagulation which is associated with hemorrhagic complications. We tested the MLung with a novel Nitric Oxide (NO) Surface Anticoagulation (NOSA) system, to provide local anticoagulation for 72 h of support in a pediatric-size ovine model. METHODS Four mini sheep underwent thoracotomy and cannulation of the pulmonary artery (inflow) and left atrium (outflow), recovered and were monitored for 72hr. The circuit tubing and connectors were coated with the combination of an NO donor (diazeniumdiolated dibutylhexanediamine; DBHD-N2O2) and argatroban. The animals were connected to the MLung and 100 ppm of NO was added to the sweep gas. Systemic hemodynamics, blood chemistry, blood gases, and methemoglobin were collected. RESULTS Mean device flow was 836 ± 121 mL/min. Device outlet saturation was 97 ± 4%. Pressure drop across the lung was 3.5 ± 1.5 mmHg and resistance was 4.3 ± 1.7 mmHg/L/min. Activated clotting time averaged 170 ± 45s. Methemoglobin was 2.9 ± 0.8%. Platelets declined from 590 ± 101 at baseline to 160 ± 90 at 72 h. NO flux (x10-10 mol/min/cm2) of the NOSA circuit averaged 2.8 ± 0.6 (before study) and 1.9 ± 0.1 (72 h) and across the MLung 18 ± 3 NO flux was delivered. CONCLUSION The MLung is a more portable form of ECLS that demonstrates effective gas exchange for 72 h without hemodynamic changes. Additionally, the NOSA system successfully maintained local anticoagulation without evidence of systemic effects.
Collapse
Affiliation(s)
- Brianna L Spencer
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States.
| | - Matthew D Johnson
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Spencer K Wilhelm
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Orsolya D Lautner-Csorba
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Hannah Matich
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Gergely Lautner
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Brian P Fallon
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Tyler Dann
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Leah Gudex
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Mark Langley
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Mark Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Joseph Potkay
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States; VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Robert Bartlett
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Alvaro Rojas-Pena
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Ronald B Hirschl
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States; Section of Pediatric Surgery, Department of Surgery, University of Michigan Medical School, C.S. Mott Children's Hospital, 1540 E Hospital Dr, Ann Arbor, MI 48109, United States
| |
Collapse
|
4
|
Newman G, Leclerc A, Arditi W, Calzuola ST, Feaugas T, Roy E, Perrault CM, Porrini C, Bechelany M. Challenge of material haemocompatibility for microfluidic blood-contacting applications. Front Bioeng Biotechnol 2023; 11:1249753. [PMID: 37662438 PMCID: PMC10469978 DOI: 10.3389/fbioe.2023.1249753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Biological applications of microfluidics technology is beginning to expand beyond the original focus of diagnostics, analytics and organ-on-chip devices. There is a growing interest in the development of microfluidic devices for therapeutic treatments, such as extra-corporeal haemodialysis and oxygenation. However, the great potential in this area comes with great challenges. Haemocompatibility of materials has long been a concern for blood-contacting medical devices, and microfluidic devices are no exception. The small channel size, high surface area to volume ratio and dynamic conditions integral to microchannels contribute to the blood-material interactions. This review will begin by describing features of microfluidic technology with a focus on blood-contacting applications. Material haemocompatibility will be discussed in the context of interactions with blood components, from the initial absorption of plasma proteins to the activation of cells and factors, and the contribution of these interactions to the coagulation cascade and thrombogenesis. Reference will be made to the testing requirements for medical devices in contact with blood, set out by International Standards in ISO 10993-4. Finally, we will review the techniques for improving microfluidic channel haemocompatibility through material surface modifications-including bioactive and biopassive coatings-and future directions.
Collapse
Affiliation(s)
- Gwenyth Newman
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
- Eden Tech, Paris, France
| | - Audrey Leclerc
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, Montpellier, France
- École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques, Université de Toulouse, Toulouse, France
| | - William Arditi
- Eden Tech, Paris, France
- Centrale Supélec, Gif-sur-Yvette, France
| | - Silvia Tea Calzuola
- Eden Tech, Paris, France
- UMR7648—LadHyx, Ecole Polytechnique, Palaiseau, France
| | - Thomas Feaugas
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
- Eden Tech, Paris, France
| | | | | | | | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, Montpellier, France
- Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| |
Collapse
|
5
|
Hima F, Kalverkamp S, Kashefi A, Mottaghy K, Zayat R, Strudthoff L, Spillner J, Mouzakis F. Oxygenation performance assessment of an artificial lung in different central anatomic configurations. Int J Artif Organs 2023; 46:295-302. [PMID: 37051677 PMCID: PMC10160396 DOI: 10.1177/03913988231168163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
OBJECTIVES Aim of this work was to characterize possible central anatomical configurations in which a future artificial lung (AL) could be connected, in terms of oxygenation performance. METHODS Pulmonary and systemic circulations were simulated using a numerical and an in vitro approach. The in vitro simulation was carried out in a mock loop in three phases: (1) normal lung, (2) pulmonary shunt (50% and 100%), and (3) oxygenator support in three anatomical configurations: right atrium-pulmonary artery (RA-PA), pulmonary artery-left atrium (PA-LA), and aorta-left atrium (Ao-LA). The numerical simulation was performed for the oxygenator support phase. The oxygen saturation (SO2) of the arterial blood was plotted over time for two percentages of pulmonary shunt and three blood flow rates through the oxygenator. RESULTS During the pulmonary shunt phase, SO2 reached a steady state value (of 68% for a 50% shunt and of nearly 0% for a 100% shunt) 20 min after the shunt was set. During the oxygenator support phase, physiological values of SO2 were reached for RA-PA and PA-LA, in case of a 50% pulmonary shunt. For the same conditions, Ao-LA could reach a maximum SO2 of nearly 60%. Numerical results were congruous to the in vitro simulation ones. CONCLUSIONS Both in vitro and numerical simulations were able to properly characterize oxygenation properties of a future AL depending on its placement. Different anatomical configurations perform differently in terms of oxygenation. Right to right and right to left connections perform better than left to left ones.
Collapse
Affiliation(s)
- Flutura Hima
- Clinic for Thoracic Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Ali Kashefi
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Khosrow Mottaghy
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Rachad Zayat
- Clinic for Thoracic Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Lasse Strudthoff
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jan Spillner
- Clinic for Thoracic Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Foivos Mouzakis
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Roberts TR, Harea GT, Zang Y, Devine RP, Maffe P, Handa H, Batchinsky AI. A dual-action nitric oxide-releasing slippery surface for extracorporeal organ support: Dynamic in vitro hemocompatibility evaluation. J Biomed Mater Res B Appl Biomater 2023; 111:923-932. [PMID: 36404401 DOI: 10.1002/jbm.b.35202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022]
Abstract
Numerous biomaterials have been developed for application in blood-contacting medical devices to prevent thrombosis; however, few materials have been applied to full-scale devices and evaluated for hemocompatibility under clinical blood flow conditions. We applied a dual-action slippery liquid-infused (LI) nitric oxide (NO)-releasing material modification (LINO) to full-scale blood circulation tubing for extracorporeal lung support and evaluated the tubing ex vivo using swine whole blood circulated for 6 h at a clinically relevant flow. LINO tubing was compared to unmodified tubing (CTRL) and isolated LI and NO-releasing modifications (n = 9/group). The primary objective was to evaluate safety and blood compatibility of this approach, prior to progression to in vivo testing of efficacy in animal models. The secondary objective was to evaluate coagulation outcomes relevant to hemocompatibility. No untoward effects of the coating, such as elevated methemoglobin fraction, were observed. Additionally, LINO delayed platelet loss until 6 h versus the reduction in platelet count in CTRL at 3 h. At 6 h, LINO significantly reduced the concentration of platelets in an activated P-selectin expressing state versus CTRL (32 ± 1% decrease, p = .02). Blood clot deposition was significantly reduced on LINO blood pumps (p = .007) and numerically reduced on tubing versus CTRL. Following blood exposure, LINO tubing continued to produce a measurable NO-flux (0.20 ± 0.06 × 10-10 mol cm-2 min-1 ). LINO is a potential solution to reduce circuit-related bleeding and clotting during extracorporeal organ support, pending future extended testing in vivo using full-scale extracorporeal lung support devices.
Collapse
Affiliation(s)
- Teryn R Roberts
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas, USA
| | - George T Harea
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas, USA
| | - Yanyi Zang
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas, USA
| | - Ryan P Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Patrick Maffe
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Andriy I Batchinsky
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas, USA
| |
Collapse
|
7
|
Hemocompatibility challenge of membrane oxygenator for artificial lung technology. Acta Biomater 2022; 152:19-46. [PMID: 36089235 DOI: 10.1016/j.actbio.2022.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The artificial lung (AL) technology is one of the membrane-based artificial organs that partly augments lung functions, i.e. blood oxygenation and CO2 removal. It is generally employed as an extracorporeal membrane oxygenation (ECMO) device to treat acute and chronic lung-failure patients, and the recent outbreak of the COVID-19 pandemic has re-emphasized the importance of this technology. The principal component in AL is the polymeric membrane oxygenator that facilitates the O2/CO2 exchange with the blood. Despite the considerable improvement in anti-thrombogenic biomaterials in other applications (e.g., stents), AL research has not advanced at the same rate. This is partly because AL research requires interdisciplinary knowledge in biomaterials and membrane technology. Some of the promising biomaterials with reasonable hemocompatibility - such as emerging fluoropolymers of extremely low surface energy - must first be fabricated into membranes to exhibit effective gas exchange performance. As AL membranes must also demonstrate high hemocompatibility in tandem, it is essential to test the membranes using in-vitro hemocompatibility experiments before in-vivo test. Hence, it is vital to have a reliable in-vitro experimental protocol that can be reasonably correlated with the in-vivo results. However, current in-vitro AL studies are unsystematic to allow a consistent comparison with in-vivo results. More specifically, current literature on AL biomaterial in-vitro hemocompatibility data are not quantitatively comparable due to the use of unstandardized and unreliable protocols. Such a wide gap has been the main bottleneck in the improvement of AL research, preventing promising biomaterials from reaching clinical trials. This review summarizes the current state-of-the-art and status of AL technology from membrane researcher perspectives. Particularly, most of the reported in-vitro experiments to assess AL membrane hemocompatibility are compiled and critically compared to suggest the most reliable method suitable for AL biomaterial research. Also, a brief review of current approaches to improve AL hemocompatibility is summarized. STATEMENT OF SIGNIFICANCE: The importance of Artificial Lung (AL) technology has been re-emphasized in the time of the COVID-19 pandemic. The utmost bottleneck in the current AL technology is the poor hemocompatibility of the polymer membrane used for O2/CO2 gas exchange, limiting its use in the long-term. Unfortunately, most of the in-vitro AL experiments are unsystematic, irreproducible, and unreliable. There are no standardized in-vitro hemocompatibility characterization protocols for quantitative comparison between AL biomaterials. In this review, we tackled this bottleneck by compiling the scattered in-vitro data and suggesting the most suitable experimental protocol to obtain reliable and comparable hemocompatibility results. To the best of our knowledge, this is the first review paper focusing on the hemocompatibility challenge of AL technology.
Collapse
|