1
|
Chatatikun M, Pattaranggoon NC, Sama-Ae I, Ranteh O, Poolpirom M, Pantanakong O, Chumworadet P, Kawakami F, Imai M, Tedasen A. Mechanistic exploration of bioactive constituents in Gnetum gnemon for GPCR-related cancer treatment through network pharmacology and molecular docking. Sci Rep 2024; 14:25738. [PMID: 39468096 PMCID: PMC11519448 DOI: 10.1038/s41598-024-75240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
G Protein-Coupled Receptors (GPCRs) are integral membrane proteins that have gained considerable attention as drug targets, particularly in cancer treatment. In this study, we explored the capacity of bioactive compounds derived from Gnetum gnemon (GG) for the development of of pharmaceuticals targeting GPCRs within the context of cancer therapy. Integrated approach combined network pharmacology and molecular docking to identify and validate the underlying pharmacological mechanisms. We retrieved targets for GG-derived compounds and GPCRs-related cancer from databases. Subsequently, we established a protein-protein interaction (PPI) network by mapping the shared targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were employed to predict the mechanism of action of these targets. Molecular docking was conducted to validate our findings. We identified a total of 265 targets associated with GG-derived bioactive compounds for the treatment of GPCRs-related cancer. Functional enrichment analysis revealed the promising therapeutic effects of these targets on GPCRs-related cancer pathways. The PPI network analysis identified hub targets, including MAPK3, SRC, EGFR, STAT3, ESR1, MTOR, CCND1, and PPARG, which demonstrate as treatment targets for GPCRs-related cancer using GG-derived compounds. Additionally, molecular docking experiments demonstrated the strong binding affinity of gnetin A, gnetin C, (-)-viniferin, and resveratrol dimer, thus inhibiting MAPK3, SRC, EGFR, and MTOR. Survival analysis established the clinical prognostic relevance of identified hub genes in cancer. This study presents a novel approach for comprehending the therapeutic mechanisms of GG-derived active compounds and thereby paving the way for their prospective clinical applications in the field of cancer treatment.
Collapse
Affiliation(s)
- Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
- Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Nawanwat C Pattaranggoon
- Faculty of Medical Technology, Rangsit University, Muang Pathumthani, Pathumthani, 12000, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Imran Sama-Ae
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Onggan Ranteh
- Department of Community Public Health, School of Public Health, Walailak University, Nakhon Si Thammarat, 80161, Thailand
- Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Manlika Poolpirom
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Oranan Pantanakong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Pitchaporn Chumworadet
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Fumitaka Kawakami
- Research Facility of Regenerative Medicine and Cell Design, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan
- Department of Regulatory Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, 252-0373, Japan
| | - Motoki Imai
- Research Facility of Regenerative Medicine and Cell Design, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan
| | - Aman Tedasen
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand.
- Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80161, Thailand.
| |
Collapse
|
2
|
Dickinson K, Yee EJ, Vigil I, Schulick RD, Zhu Y. GPCRs: emerging targets for novel T cell immune checkpoint therapy. Cancer Immunol Immunother 2024; 73:253. [PMID: 39358616 PMCID: PMC11447192 DOI: 10.1007/s00262-024-03801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Although immune checkpoint blockade (ICB) has become the mainstay of treatment for advanced solid organ malignancies, success in revitalizing the host anticancer immune response remains limited. G-protein coupled receptors (GPCRs) are a broad family of cell-surface proteins that have been regarded as main players in regulating the immune system, namely by mediating the activity of T lymphocytes. Among the most novel immunoregulatory GPCRs include GPR171, lysophosphatidic acid receptors (LPARs), GPR68, cannabinoid receptor 2 (CB2), and prostaglandin E receptors, many of which have shown promise in mediating antitumor response via activation of cytotoxic T cells, inhibiting immunosuppressive lymphocytes, and facilitating immune cell infiltration within the tumor microenvironment across multiple types of cancers. This paper reviews our current understanding of some of the most novel GPCRs-their expression patterns, evolving roles within the immune system and cancer, potential therapeutic applications, and perspective for future investigation.
Collapse
Affiliation(s)
- Kaitlyn Dickinson
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elliott J Yee
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Isaac Vigil
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard D Schulick
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Gorostiola González M, Rakers PRJ, Jespers W, IJzerman AP, Heitman LH, van Westen GJP. Computational Characterization of Membrane Proteins as Anticancer Targets: Current Challenges and Opportunities. Int J Mol Sci 2024; 25:3698. [PMID: 38612509 PMCID: PMC11011372 DOI: 10.3390/ijms25073698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a leading cause of mortality worldwide and calls for novel therapeutic targets. Membrane proteins are key players in various cancer types but present unique challenges compared to soluble proteins. The advent of computational drug discovery tools offers a promising approach to address these challenges, allowing for the prioritization of "wet-lab" experiments. In this review, we explore the applications of computational approaches in membrane protein oncological characterization, particularly focusing on three prominent membrane protein families: receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and solute carrier proteins (SLCs). We chose these families due to their varying levels of understanding and research data availability, which leads to distinct challenges and opportunities for computational analysis. We discuss the utilization of multi-omics data, machine learning, and structure-based methods to investigate aberrant protein functionalities associated with cancer progression within each family. Moreover, we highlight the importance of considering the broader cellular context and, in particular, cross-talk between proteins. Despite existing challenges, computational tools hold promise in dissecting membrane protein dysregulation in cancer. With advancing computational capabilities and data resources, these tools are poised to play a pivotal role in identifying and prioritizing membrane proteins as personalized anticancer targets.
Collapse
Affiliation(s)
- Marina Gorostiola González
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
- Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Pepijn R. J. Rakers
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Willem Jespers
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Adriaan P. IJzerman
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Laura H. Heitman
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
- Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Gerard J. P. van Westen
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| |
Collapse
|
4
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
5
|
Ray M, Sayeed A, Ganshert M, Saha A. Direct Binding Methods to Measure Receptor-Ligand Interactions. J Phys Chem B 2024; 128:3-19. [PMID: 38134048 DOI: 10.1021/acs.jpcb.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
G-protein-coupled receptors (GPCRs) contribute to numerous physiological processes via complex network mechanisms. While indirect signaling assays (Ca2+ mobilization, cAMP production, and GTPγS binding) have been useful in identifying and characterizing downstream signaling mechanisms of GPCRs, these methods lack measurements of direct binding affinities, kinetics, binding specificity, and selectivity that are important parameters in GPCR drug discovery. In comparison to existing direct methods that use radio- or fluorescent labels, label-free techniques can closely emulate the native interactions around binding partners. Surface plasmon resonance (SPR) is a label-free technique that utilizes the refractive index (RI) property and is applied widely in quantitative GPCR-ligand binding kinetics measurement including small molecules screening. However, purified GPCRs are further embedded in a synthetic lipid environment which is immobilized through different tags to the SPR sensor surface, resulting in a non-native environment. Here, we introduced a methodology that also uses the RI property to measure binding interactions in a label-free, immobilization-free arrangement. The free-solution technique is successfully applied in quantifying the interaction of bioactive lipids to cognate lipid GPCRs, which is not purified but rather present in near-native conditions, i.e., in milieu of other cytoplasmic lipids and proteins. To further consider the wide applicability of these free-solution approaches in biomolecular interaction research, additional applications on a variety of receptor-ligand pairs are imperative.
Collapse
Affiliation(s)
- Manisha Ray
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Road, Chicago, Illinois 60660, United States
| | - Aryana Sayeed
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Road, Chicago, Illinois 60660, United States
| | - Madeline Ganshert
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Road, Chicago, Illinois 60660, United States
| | - Arjun Saha
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee Chemistry Bldg, 144, 3210 N Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
6
|
Rai AK, Satija NK. A comparative analysis of daunorubicin and its metabolite daunorubicinol interaction with apoptotic and drug resistance proteins using in silico approach. J Biomol Struct Dyn 2023; 41:10737-10749. [PMID: 36907598 DOI: 10.1080/07391102.2023.2187214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/07/2022] [Indexed: 03/13/2023]
Abstract
Daunorubicin (DNR) is a chemotherapeutic drug associated with multiple side effects, including drug resistance. As the molecular mechanism related to these side effects remain unclear and mostly hypothesized, this study addresses and compares the role of DNR and its metabolite Daunorubicinol (DAUNol) to induce apoptosis and drug resistance using molecular docking, Molecular Dynamics (MD) simulation, MM-PBSA and chemical pathway analysis. The results showed that DNR's interaction was stronger with Bax protein, Mcl-1:mNoxaB and Mcl-1:Bim protein complexes than DAUNol. On the other hand, contrasting results were obtained for drug resistance proteins where stronger interaction was obtained with DAUNol compared to DNR. Further, MD simulation performed for 100 ns provided the details of protein-ligand interaction. Most notable was the interaction of Bax protein with DNR, resulting in conformational changes at α-helices 5, 6 and 9, leading to Bax activation. Finally, the chemical signalling pathway analysis also revealed the regulation of different signalling pathways by DNR and DAUNol. It was observed that DNR majorly impacted the signalling associated with apoptosis while DAUNol mainly targeted pathways related to multidrug resistance and cardiotoxicity. Overall, the results highlight that DNR biotransformation reduces its capability to induce apoptosis while enhancing its ability to induce drug resistance and off-target toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar Rai
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Neeraj Kumar Satija
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Hall KA, Filardo EJ. The G Protein-Coupled Estrogen Receptor (GPER): A Critical Therapeutic Target for Cancer. Cells 2023; 12:2460. [PMID: 37887304 PMCID: PMC10605794 DOI: 10.3390/cells12202460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Estrogens have been implicated in the pathogenesis of various cancers, with increasing concern regarding the overall rising incidence of disease and exposure to environmental estrogens. Estrogens, both endogenous and environmental, manifest their actions through intracellular and plasma membrane receptors, named ERα, ERβ, and GPER. Collectively, they act to promote a broad transcriptional response that is mediated through multiple regulatory enhancers, including estrogen response elements (EREs), serum response elements (SREs), and cyclic AMP response elements (CREs). Yet, the design and rational assignment of antiestrogen therapy for breast cancer has strictly relied upon an endogenous estrogen-ER binary rubric that does not account for environmental estrogens or GPER. New endocrine therapies have focused on the development of drugs that degrade ER via ER complex destabilization or direct enzymatic ubiquitination. However, these new approaches do not broadly treat all cancer-involved receptors, including GPER. The latter is concerning since GPER is directly associated with tumor size, distant metastases, cancer stem cell activity, and endocrine resistance, indicating the importance of targeting this receptor to achieve a more complete therapeutic response. This review focuses on the critical importance and value of GPER-targeted therapeutics as part of a more holistic approach to the treatment of estrogen-driven malignancies.
Collapse
|
8
|
Ma L, Zhang S, Liang Q, Huang W, Wang H, Pan E, Xu P, Zhang S, Tao F, Tang J, Qing R. CrMP-Sol database: classification, bioinformatic analyses and comparison of cancer-related membrane proteins and their water-soluble variant designs. BMC Bioinformatics 2023; 24:360. [PMID: 37743473 PMCID: PMC10518928 DOI: 10.1186/s12859-023-05477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Membrane proteins are critical mediators for tumor progression and present enormous therapeutic potentials. Although gene profiling can identify their cancer-specific signatures, systematic correlations between protein functions and tumor-related mechanisms are still unclear. We present here the CrMP-Sol database ( https://bio-gateway.aigene.org.cn/g/CrMP ), which aims to breach the gap between the two. Machine learning was used to extract key functional descriptions for protein visualization in the 3D-space, where spatial distributions provide function-based predictive connections between proteins and cancer types. CrMP-Sol also presents QTY-enabled water-soluble designs to facilitate native membrane protein studies despite natural hydrophobicity. Five examples with varying transmembrane helices in different categories were used to demonstrate the feasibility. Native and redesigned proteins exhibited highly similar characteristics, predicted structures and binding pockets, and slightly different docking poses against known ligands, although task-specific designs are still required for proteins more susceptible to internal hydrogen bond formations. The database can accelerate therapeutic developments and biotechnological applications of cancer-related membrane proteins.
Collapse
Affiliation(s)
- Lina Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sitao Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Liang
- Zhejiang Lab, Research Center for Intelligent Computing Platforms, Hangzhou, 311121, Zhejiang, China
| | - Wenting Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Emily Pan
- The Lawrenceville School, 2500 Main Street, Lawrenceville, NJ, 08648, USA
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jin Tang
- Zhejiang Lab, Research Center for Intelligent Computing Platforms, Hangzhou, 311121, Zhejiang, China.
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
10
|
Guo D, Jin C, Gao Y, Lin H, Zhang L, Zhou Y, Yao J, Duan Y, Ren Y, Hui X, Ge Y, Yang R, Jiang W. GPR116 receptor regulates the antitumor function of NK cells via Gαq/HIF1α/NF-κB signaling pathway as a potential immune checkpoint. Cell Biosci 2023; 13:51. [PMID: 36895027 PMCID: PMC9999509 DOI: 10.1186/s13578-023-01005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND NK cell is one of innate immune cells and can protect the body from cancer-initiating cells. It has been reported that GPR116 receptor is involved in inflammation and tumors. However, the effect of GPR116 receptor on the NK cells remains largely unclear. RESULTS We discovered that GPR116-/- mice could efficiently eliminate pancreatic cancer through enhancing the proportion and function of NK cells in tumor. Moreover, the expression of GPR116 receptor was decreased upon the activation of the NK cells. Besides, GPR116-/- NK cells showed higher cytotoxicity and antitumor activity in vitro and in vivo by producing more GzmB and IFNγ than wild-type (WT) NK cells. Mechanistically, GPR116 receptor regulated the function of NK cells via Gαq/HIF1α/NF-κB signaling pathway. Furthermore, downregulation of GPR116 receptor promoted the antitumor activity of NKG2D-CAR-NK92 cells against pancreatic cancer both in vitro and in vivo. CONCLUSIONS Our data indicated that GPR116 receptor had a negatively effect on NK cell function and downregulation of GPR116 receptor in NKG2D-CAR-NK92 cells could enhance the antitumor activity, which provides a new idea to enhance the antitumor efficiency of CAR NK cell therapy.
Collapse
Affiliation(s)
- Dandan Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Chenxu Jin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Haizhen Lin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Li Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Ying Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Yaojun Ren
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Xinhui Hui
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Yujia Ge
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Renzheng Yang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Rood, Shanghai, 200241, China.
| |
Collapse
|
11
|
Overcoming chemoresistance in non-angiogenic colorectal cancer by metformin via inhibiting endothelial apoptosis and vascular immaturity. J Pharm Anal 2023; 13:262-275. [PMID: 37102105 PMCID: PMC10123948 DOI: 10.1016/j.jpha.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The development of chemoresistance which results in a poor prognosis often renders current treatments for colorectal cancer (CRC). In this study, we identified reduced microvessel density (MVD) and vascular immaturity resulting from endothelial apoptosis as therapeutic targets for overcoming chemoresistance. We focused on the effect of metformin on MVD, vascular maturity, and endothelial apoptosis of CRCs with a non-angiogenic phenotype, and further investigated its effect in overcoming chemoresistance. In situ transplanted cancer models were established to compare MVD, endothelial apoptosis and vascular maturity, and function in tumors from metformin- and vehicle-treated mice. An in vitro co-culture system was used to observe the effects of metformin on tumor cell-induced endothelial apoptosis. Transcriptome sequencing was performed for genetic screening. Non-angiogenic CRC developed independently of angiogenesis and was characterized by vascular leakage, immaturity, reduced MVD, and non-hypoxia. This phenomenon had also been observed in human CRC. Furthermore, non-angiogenic CRCs showed a worse response to chemotherapeutic drugs in vivo than in vitro. By suppressing endothelial apoptosis, metformin sensitized non-angiogenic CRCs to chemo-drugs via elevation of MVD and improvement of vascular maturity. Further results showed that endothelial apoptosis was induced by tumor cells via activation of caspase signaling, which was abrogated by metformin administration. These findings provide pre-clinical evidence for the involvement of endothelial apoptosis and subsequent vascular immaturity in the chemoresistance of non-angiogenic CRC. By suppressing endothelial apoptosis, metformin restores vascular maturity and function and sensitizes CRC to chemotherapeutic drugs via a vascular mechanism.
Collapse
|
12
|
den Hollander LS, Béquignon OJM, Wang X, van Wezel K, Broekhuis J, Gorostiola González M, de Visser KE, IJzerman AP, van Westen GJP, Heitman LH. Impact of cancer-associated mutations in CC chemokine receptor 2 on receptor function and antagonism. Biochem Pharmacol 2023; 208:115399. [PMID: 36581051 DOI: 10.1016/j.bcp.2022.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
CC chemokine receptor 2 (CCR2), a G protein-coupled receptor, plays a role in many cancer-related processes such as metastasis formation and immunosuppression. Since ∼ 20 % of human cancers contain mutations in G protein-coupled receptors, ten cancer-associated CCR2 mutants obtained from the Genome Data Commons were investigated for their effect on receptor functionality and antagonist binding. Mutations were selected based on either their vicinity to CCR2's orthosteric or allosteric binding sites or their presence in conserved amino acid motifs. One of the mutant receptors, namely S101P2.63 with a mutation near the orthosteric binding site, did not express on the cell surface. All other studied mutants showed a decrease in or a lack of G protein activation in response to the main endogenous CCR2 ligand CCL2, but no change in potency was observed. Furthermore, INCB3344 and LUF7482 were chosen as representative orthosteric and allosteric antagonists, respectively. No change in potency was observed in a functional assay, but mutations located at F1163.28 impacted orthosteric antagonist binding significantly, while allosteric antagonist binding was abolished for L134Q3.46 and D137N3.49 mutants. As CC chemokine receptor 2 is an attractive drug target in cancer, the negative effect of these mutations on receptor functionality and drugability should be considered in the drug discovery process.
Collapse
Affiliation(s)
- L S den Hollander
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands
| | - O J M Béquignon
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands
| | - X Wang
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands
| | - K van Wezel
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands
| | - J Broekhuis
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands
| | - M Gorostiola González
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands; Oncode Institute, Leiden, The Netherlands
| | - K E de Visser
- Oncode Institute, Leiden, The Netherlands; Netherlands Cancer Institute, Division of Tumor Biology & Immunology, Amsterdam, The Netherlands; Leiden University, Department of Immunology, Medical Centre, Leiden, The Netherlands
| | - A P IJzerman
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands
| | - G J P van Westen
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands
| | - L H Heitman
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands; Oncode Institute, Leiden, The Netherlands.
| |
Collapse
|
13
|
An Update of G-Protein-Coupled Receptor Signaling and Its Deregulation in Gastric Carcinogenesis. Cancers (Basel) 2023; 15:cancers15030736. [PMID: 36765694 PMCID: PMC9913146 DOI: 10.3390/cancers15030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) belong to a cell surface receptor superfamily responding to a wide range of external signals. The binding of extracellular ligands to GPCRs activates a heterotrimeric G protein and triggers the production of numerous secondary messengers, which transduce the extracellular signals into cellular responses. GPCR signaling is crucial and imperative for maintaining normal tissue homeostasis. High-throughput sequencing analyses revealed the occurrence of the genetic aberrations of GPCRs and G proteins in multiple malignancies. The altered GPCRs/G proteins serve as valuable biomarkers for early diagnosis, prognostic prediction, and pharmacological targets. Furthermore, the dysregulation of GPCR signaling contributes to tumor initiation and development. In this review, we have summarized the research progress of GPCRs and highlighted their mechanisms in gastric cancer (GC). The aberrant activation of GPCRs promotes GC cell proliferation and metastasis, remodels the tumor microenvironment, and boosts immune escape. Through deep investigation, novel therapeutic strategies for targeting GPCR activation have been developed, and the final aim is to eliminate GPCR-driven gastric carcinogenesis.
Collapse
|
14
|
Roy A. Advances in the molecular level understanding of G-protein coupled receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:1-13. [PMID: 36813353 DOI: 10.1016/bs.pmbts.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G-protein coupled receptors (GPCRs) represent largest family of plasma membrane-bound receptor proteins that are involved in numerous cellular and physiological functions. Many extracellular stimuli such as hormones, lipids and chemokines activate these receptors. Aberrant expression and genetic alteration in GPCR are associated with many human diseases including cancer and cardiovascular disease. GPCRs have emerged as potential therapeutic target and numerous drugs are either approved by FDA or under clinical trial. This chapter provides an update on GPCR research and its significance as a promising therapeutic target.
Collapse
Affiliation(s)
- Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
15
|
Otkur W, Liu X, Chen H, Li S, Ling T, Lin H, Yang R, Xia T, Qi H, Piao HL. GPR35 antagonist CID-2745687 attenuates anchorage-independent cell growth by inhibiting YAP/TAZ activity in colorectal cancer cells. Front Pharmacol 2023; 14:1126119. [PMID: 37113762 PMCID: PMC10126512 DOI: 10.3389/fphar.2023.1126119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Background and purpose: GPR35, a member of the orphan G-protein-coupled receptor, was recently implicated in colorectal cancer (CRC). However, whether targeting GPR35 by antagonists can inhibit its pro-cancer role has yet to be answered. Experimental approach: We applied antagonist CID-2745687 (CID) in established GPR35 overexpressing and knock-down CRC cell lines to understand its anti-cell proliferation property and the underlying mechanism. Key results: Although GPR35 did not promote cell proliferation in 2D conditions, it promoted anchorage-independent growth in soft-agar, which was reduced by GPR35 knock-down and CID treatment. Furthermore, YAP/TAZ target genes were expressed relatively higher in GPR35 overexpressed cells and lower in GPR35 knock-down cells. YAP/TAZ activity is required for anchorage-independent growth of CRC cells. By detecting YAP/TAZ target genes, performing TEAD4 luciferase reporter assay, and examining YAP phosphorylation and TAZ protein expression level, we found YAP/TAZ activity is positively correlated to GPR35 expression level, which CID disrupted in GPR35 overexpressed cells, but not in GPR35 knock-down cells. Intriguingly, GPR35 agonists did not promote YAP/TAZ activity but ameliorated CID's inhibitory effect; GPR35-promoted YAP/TAZ activity was only partly attenuated by ROCK1/2 inhibitor. Conclusion and implications: GPR35 promoted YAP/TAZ activity partly through Rho-GTPase with its agonist-independent constitutive activity, and CID exhibited its inhibitory effect. GPR35 antagonists are promising anti-cancer agents that target hyperactivation and overexpression of YAP/TAZ in CRC.
Collapse
|
16
|
Kaczor AA, Wróbel TM, Bartuzi D. Allosteric Modulators of Dopamine D 2 Receptors for Fine-Tuning of Dopaminergic Neurotransmission in CNS Diseases: Overview, Pharmacology, Structural Aspects and Synthesis. Molecules 2022; 28:molecules28010178. [PMID: 36615372 PMCID: PMC9822192 DOI: 10.3390/molecules28010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays a hot topic in medicinal chemistry. Allosteric modulators, i.e., compounds which bind in a receptor site topologically distinct from orthosteric sites, exhibit a number of advantages. They are more selective, safer and display a ceiling effect which prevents overdosing. Allosteric modulators of dopamine D2 receptor are potential drugs against a number of psychiatric and neurological diseases, such as schizophrenia and Parkinson's disease. In this review, an insightful summary of current research on D2 receptor modulators is presented, ranging from their pharmacology and structural aspects of ligand-receptor interactions to their synthesis.
Collapse
Affiliation(s)
- Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence: ; Tel.: +48-81-448-72-73
| | - Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
17
|
EMR1/ADGRE1 Expression in Cancer Cells Upregulated by Tumor-Associated Macrophages Is Related to Poor Prognosis in Colorectal Cancer. Biomedicines 2022; 10:biomedicines10123121. [PMID: 36551877 PMCID: PMC9775542 DOI: 10.3390/biomedicines10123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
EMR1, a member of the adhesion G protein-coupled receptor family (ADGRE1), is a macrophage marker that is abnormally expressed in cancer cells. However, its clinical significance in colorectal cancer (CRC) is not well-known. In this investigation, EMR1 expression in tumor cells (EMR1-TC) was found in 91 (22.8%) of the 399 CRC samples tested by immunohistochemical staining and showed a significant relationship with lymph node metastasis. Furthermore, EMR1-TC was significantly associated with CD68+ CD163+ tumor-associated macrophages (TAMs), and CRC with a high combined EMR1-TC+CD68+CD163+ score showed worse recurrence-free survival prognosis. In an in vitro co-culture assay of colon cancer cells with myeloid cells, we found that EMR1 expression significantly upregulated in cancer cells was induced by macrophages. In addition, there was increased expression of M2 markers (CD163 and interleukin-6 & 10) in myeloid portion, while that of M1 markers (CD86 and iNOS) remained unchanged. Accordingly, upon treatment with M2 macrophage polarization inhibitors (O-ATP, trametinib, bardoxolone methyl), EMR1 expression reduced significantly, along with M2 markers (CD163 and interleukin-6 & 10). In conclusion, EMR1-TC was a high-risk factor for lymph node metastasis and correlated with poor recurrence free survival, particularly in patients with TAM-rich CRC. Furthermore, EMR1 expression in colon cancer cells may be related to M2 macrophage polarization and vice versa.
Collapse
|
18
|
Yi C, He J, Huang D, Zhao Y, Zhang C, Ye X, Huang Y, Nussinov R, Zheng J, Liu M, Lu W. Activation of orphan receptor GPR132 induces cell differentiation in acute myeloid leukemia. Cell Death Dis 2022; 13:1004. [PMID: 36437247 PMCID: PMC9701798 DOI: 10.1038/s41419-022-05434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
Blocked cellular differentiation is a critical pathologic hallmark of acute myeloid leukemia (AML). Here, we showed that genetic activation of the orphan GPCR GPR132 significantly induced cell differentiation of AML both in vitro and in vivo, indicating that GPR132 is a potential trigger of myeloid differentiation. To explore the therapeutic potential of GPR132 signaling, we screened and validated a natural product 8-gingerol (8GL) as a GPR132 agonist. Notably, GPR132 activation by 8GL promoted differentiation and reduced colony formation in human AML cell lines with diverse genetic profiles. Mechanistic studies revealed that 8GL treatment inhibits the activation of the mammalian target of rapamycin (mTOR), a regulator of AML cell differentiation blockade, via activating GPR132-Gs-PKA pathway. We further showed that the combination of 8GL and an mTOR inhibitor synergistically elicited AML cell differentiation in vitro. Importantly, 8GL alone or in combination with an mTOR inhibitor remarkably impaired tumor growth and extended mouse survival in an AML xenograft model accompanied by enhanced cell differentiation. Notably, genetic or pharmacological activation of GPR132 triggered the differentiation of human primary AML cells. In summary, this study demonstrated that activation of orphan GPR132 represents a potential strategy for inducing myeloid differentiation in AML patients.
Collapse
Affiliation(s)
- Chunyang Yi
- grid.22069.3f0000 0004 0369 6365Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Jiacheng He
- grid.22069.3f0000 0004 0369 6365Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Dan Huang
- grid.16821.3c0000 0004 0368 8293Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumiao Zhao
- grid.22069.3f0000 0004 0369 6365Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Chan Zhang
- grid.22069.3f0000 0004 0369 6365Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Xiyun Ye
- grid.22069.3f0000 0004 0369 6365Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Ying Huang
- grid.506955.aNMPA Key Laboratory of Rapid Drug Inspection Technology, Guangdong Institute for Drug Control, 766 Shenzhou Road, Guangzhou, 510663 China
| | - Ruth Nussinov
- grid.418021.e0000 0004 0535 8394Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702 USA ,grid.12136.370000 0004 1937 0546Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Junke Zheng
- grid.16821.3c0000 0004 0368 8293Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyao Liu
- grid.22069.3f0000 0004 0369 6365Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Weiqiang Lu
- grid.22069.3f0000 0004 0369 6365Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
19
|
Kasavi C. Gene co-expression network analysis revealed novel biomarkers for ovarian cancer. Front Genet 2022; 13:971845. [PMID: 36338962 PMCID: PMC9627302 DOI: 10.3389/fgene.2022.971845] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/10/2022] [Indexed: 09/18/2023] Open
Abstract
Ovarian cancer is the second most common gynecologic cancer and remains the leading cause of death of all gynecologic oncologic disease. Therefore, understanding the molecular mechanisms underlying the disease, and the identification of effective and predictive biomarkers are invaluable for the development of diagnostic and treatment strategies. In the present study, a differential co-expression network analysis was performed via meta-analysis of three transcriptome datasets of serous ovarian adenocarcinoma to identify novel candidate biomarker signatures, i.e. genes and miRNAs. We identified 439 common differentially expressed genes (DEGs), and reconstructed differential co-expression networks using common DEGs and considering two conditions, i.e. healthy ovarian surface epithelia samples and serous ovarian adenocarcinoma epithelia samples. The modular analyses of the constructed networks indicated a co-expressed gene module consisting of 17 genes. A total of 11 biomarker candidates were determined through receiver operating characteristic (ROC) curves of gene expression of module genes, and miRNAs targeting these genes were identified. As a result, six genes (CDT1, CNIH4, CRLS1, LIMCH1, POC1A, and SNX13), and two miRNAs (mir-147a, and mir-103a-3p) were suggested as novel candidate prognostic biomarkers for ovarian cancer. Further experimental and clinical validation of the proposed biomarkers could help future development of potential diagnostic and therapeutic innovations in ovarian cancer.
Collapse
Affiliation(s)
- Ceyda Kasavi
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
20
|
Kim GT, Kim EY, Shin SH, Lee H, Lee SH, Sohn KY, Kim JW. Suppression of tumor progression by thioredoxin-interacting protein-dependent adenosine 2B receptor degradation in a PLAG-treated Lewis lung carcinoma-1 model of non-small cell lung cancer. Neoplasia 2022; 31:100815. [PMID: 35728512 PMCID: PMC9209866 DOI: 10.1016/j.neo.2022.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
PLAG effectively inhibited excessive growth of LLC1 cells in an NSCLC model. PLAG inhibited tumor growth by inducing adenosine 2B receptor (A2BR) degradation. Unlike antagonists, PLAG terminates rather than suppresses signaling pathways. A2BR degradation by PLAG occurs through expression and re-localization of TXNIP.
Extracellular adenosine in the tumor microenvironment plays a vital role in cancer development. Specifically, activation of adenosine receptors affects tumor cell growth and adenosine release. We examined the anti-tumor efficacy of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) in animal models, revealing the role of PLAG in inhibiting tumor progression by promoting the degradation of adenosine 2B receptors (A2BRs) in tumors. PLAG induced the expression of thioredoxin-interacting protein (TXNIP), a type of α-arrestin that accelerates A2BR internalization by interacting with A2BR complexes containing β-arrestin. Engulfed receptors bound to TXNIP were rapidly degraded after E3 ligase recruitment and ubiquitination, resulting in early termination of intracellular signals that promote tumor overgrowth. However, in control cancer cells, A2BRs bound to protein phosphatase 2A and were returned to the cell membrane instead of being degraded, resulting in continuous receptor-mediated signaling by pathways including the Raf-Erk axis, which promotes tumor proliferation. A TXNIP-silenced cell-implanted mouse model and TXNIP knockout (KO) mice were used to verify that PLAG-mediated suppression of tumor progression is dependent on TXNIP expression. Increased tumor growth was observed in TXNIP-silenced cell-implanted mice, and the anti-tumor effects of PLAG, including delayed tumor overgrowth, were greatly reduced. However, the anti-tumor effects of PLAG were observed in cancer cell-implanted TXNIP-KO mice, which indicates that PLAG produces anti-tumor effects by enhancing TXNIP expression in tumor cells. These essential functions of PLAG, including delaying tumor growth via A2BR degradation, suggest innovative directions for anticancer drug development.
Collapse
Affiliation(s)
- Guen Tae Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Eun Young Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Su-Hyun Shin
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Hyowon Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Se Hee Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Ki-Young Sohn
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Jae Wha Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Kwahak-ro, Daejeon, South Korea.
| |
Collapse
|
21
|
Shen Q, Han Y, Wu K, He Y, Jiang X, Liu P, Xia C, Xiong Q, Liu R, Chen Q, Zhang Y, Zhao S, Yang C, Chen Y. MrgprF acts as a tumor suppressor in cutaneous melanoma by restraining PI3K/Akt signaling. Signal Transduct Target Ther 2022; 7:147. [PMID: 35504869 PMCID: PMC9065076 DOI: 10.1038/s41392-022-00945-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
The incidence of cutaneous melanoma (CM) has been increasing annually worldwide. In this study, we identify that MrgprF, a MAS related GPR family member, is decreased in cutaneous melanoma tissues and cell lines due to hypermethylation of its promoter region, and show that patients with CM expressing high levels of MrgprF exhibit an improved clinical outcome. We demonstrate that MrgprF forced expression inhibits tumor cell proliferation, migration, xenograft tumor growth, and metastasis. On the contrary, MrgprF knockdown promotes tumor cell proliferation and transformation of immortalized human keratinocyte-HaCaT cells, supporting the inhibitory role of MrgprF during tumor progression. Mechanistic studies reveal that MrgprF reduces the phosphoinositol‑3‑kinase (PI3K) complex formation between p101 and p110γ subunits, the critical step for phosphatidylinositol-(3, 4)-P2 (PIP2) conversion to phosphatidylinositol-(3, 4, 5)-P3 (PIP3), and then reduces the activation of PI3K/Akt signaling. This effect can be reversed by Akt specific agonist SC79. In addition, AMG 706, a previously documented inhibitor for endothelial cell proliferation, is identified as a potential agonist for MrgprF, and can impede tumor growth both in vitro and in vivo. Taken together, our findings suggest that MrgprF, a novel tumor suppressor in cutaneous melanoma, may be useful as a therapeutic target in the future.
Collapse
Affiliation(s)
- Qiushuo Shen
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Yanfei Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Kai Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yaomei He
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Peishen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Cuifeng Xia
- Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Qiuxia Xiong
- Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Shenyang, Liaoning, 110042, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Yongbin Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
| |
Collapse
|
22
|
Blocking Gi/o-Coupled Signaling Eradicates Cancer Stem Cells and Sensitizes Breast Tumors to HER2-Targeted Therapies to Inhibit Tumor Relapse. Cancers (Basel) 2022; 14:cancers14071719. [PMID: 35406489 PMCID: PMC8997047 DOI: 10.3390/cancers14071719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Cancer stem cells (CSCs) are associated with therapeutic resistance and tumor relapse but effective approaches for eliminating CSCs are still lacking. The aim of this study was to assess the role of G protein-coupled receptors (GPCRs) in regulating CSCs in breast cancer. We showed that a subgroup of GPCRs that coupled to Gi/o proteins (Gi/o-GPCRs) was required for maintaining the tumor-forming capability of CSCs in HER2+ breast cancer. Targeting Gi/o-GPCRs or their downstream PI3K/AKT and Src pathways was able to enhance HER2-targeted elimination of CSCs and therapeutic efficacy. These findings suggest that targeting Gi/o-GPCR signaling is an effective strategy for eradicating CSCs, enhancing HER2+ targeted therapy and blocking tumor recurrence. Abstract Cancer stem cells (CSCs) are a small subpopulation of cells within tumors that are resistant to anti-tumor therapies, making them a likely origin of tumor relapse after treatment. In many cancers including breast cancer, CSC function is regulated by G protein-coupled receptors (GPCRs), making GPCR signaling an attractive target for new therapies designed to eradicate CSCs. Yet, CSCs overexpress multiple GPCRs that are redundant in maintaining CSC function, so it is unclear how to target all the various GPCRs to prevent relapse. Here, in a model of HER2+ breast cancer (i.e., transgenic MMTV-Neu mice), we were able to block the tumorsphere- and tumor-forming capability of CSCs by targeting GPCRs coupled to Gi/o proteins (Gi/o-GPCRs). Similarly, in HER2+ breast cancer cells, blocking signaling downstream of Gi/o-GPCRs in the PI3K/AKT and Src pathways also enhanced HER2-targeted elimination of CSCs. In a proof-of-concept study, when CSCs were selectively ablated (via a suicide gene construct), loss of CSCs from HER2+ breast cancer cell populations mimicked the effect of targeting Gi/o-GPCR signaling, suppressing their capacity for tumor initiation and progression and enhancing HER2-targeted therapy. Thus, targeting Gi/o-GPCR signaling in HER2+ breast cancer is a promising approach for eradicating CSCs, enhancing HER2+ targeted therapy and blocking tumor reemergence.
Collapse
|
23
|
Huang C, Zhang N, Xiong H, Wang N, Chen Z, Ni Z, Liu X, Lin B, Ge B, Du B, Huang Q. Multi-Omics Analysis for Transcriptional Regulation of Immune-Related Targets Using Epigenetic Data: A New Research Direction. Front Immunol 2022; 12:741634. [PMID: 35046932 PMCID: PMC8761734 DOI: 10.3389/fimmu.2021.741634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Currently, a comprehensive method for exploration of transcriptional regulation has not been well established. We explored a novel pipeline to analyze transcriptional regulation using co-analysis of RNA sequencing (RNA-seq), assay for transposase-accessible chromatin using sequencing (ATAC-seq), and chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq). Methods The G protein-coupled receptors (GPCRs) possibly associated with macrophages were further filtered using a reduced-Cox regression model. ATAC-seq profiles were used to map the chromatin accessibility of the GPRC5B promoter region. Pearson analysis was performed to identify the transcription factor (TF) whose expression was correlated with open chromatin regions of GPRC5B promoter. ChIP-seq profiles were obtained to confirm the physical binding of GATA4 and its predicted binding regions. For verification, quantitative polymerase chain reaction (qPCR) and multidimensional database validations were performed. Results The reduced-Cox regression model revealed the prognostic value of GPRC5B. A novel pipeline for TF exploration was proposed. With our novel pipeline, we first identified chr16:19884686-19885185 as a reproducible open chromatin region in the GPRC5B promoter. Thereafter, we confirmed the correlation between GATA4 expression and the accessibility of this region, confirmed its physical binding, and proved in vitro how its overexpression could regulate GPRC5B. GPRC5B was significantly downregulated in colon adenocarcinoma (COAD) as seen in 28 patient samples. The correlation between GPRC5B and macrophages in COAD was validated using multiple databases. Conclusion GPRC5B, correlated with macrophages, was a key GPCR affecting COAD prognosis. Further, with our novel pipeline, TF GATA4 was identified as a direct upstream of GPRC5B. This study proposed a novel pipeline for TF exploration and provided a theoretical basis for COAD therapy.
Collapse
Affiliation(s)
- Chenshen Huang
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Na Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Xiong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ning Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhizhong Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian, China
| | - Zhizhan Ni
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohong Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Boxu Lin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bujun Ge
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qi Huang
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
25
|
Park JY, Lee CH. Will ET A-antibody arouse new interest in cancer therapeutics? Trends Pharmacol Sci 2021; 43:352-354. [PMID: 34895946 DOI: 10.1016/j.tips.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
Although endothelin receptor type A (ETA) is emerging as a novel anticancer target, previously only small molecule drugs have been available as ETA antagonists. Ju and colleagues have successfully developed a functional anti-ETA antibody for colorectal cancer.
Collapse
Affiliation(s)
- Ji-Young Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Republic of Korea.
| |
Collapse
|
26
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
27
|
Identifying GPSM Family Members as Potential Biomarkers in Breast Cancer: A Comprehensive Bioinformatics Analysis. Biomedicines 2021; 9:biomedicines9091144. [PMID: 34572330 PMCID: PMC8471503 DOI: 10.3390/biomedicines9091144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
G-protein signaling modulators (GPSMs) are a class of proteins involved in the regulation of G protein-coupled receptors, the most abundant family of cell-surface receptors that are crucial in the development of various tumors, including breast cancer. This study aims to identify the potential therapeutic and prognostic roles of GPSMs in breast cancer. Oncomine and UALCAN databases were queried to determine GPSM expression levels in breast cancer tissues compared to normal samples. Survival analysis was conducted to reveal the prognostic significance of GPSMs in individuals with breast cancer. Functional enrichment analysis was performed using cBioPortal and MetaCore platforms. Finally, the association between GPSMs and immune infiltration cells in breast cancer was identified using the TIMER server. The experimental results then showed that all GPSM family members were significantly differentially expressed in breast cancer according to Oncomine and UALCAN data. Their expression levels were also associated with advanced tumor stages, and GPSM2 was found to be related to worse distant metastasis-free survival in patients with breast cancer. Functional enrichment analysis indicated that GPSMs were largely involved in cell division and cell cycle pathways. Finally, GPSM3 expression was correlated with the infiltration of several immune cells. Members of the GPSM class were differentially expressed in breast cancer. In conclusion, expression of GPSM2 was linked with worse distant metastasis-free outcomes, and hence could potentially serve as a prognostic biomarker. Furthermore, GPSM3 has potential to be a possible target for immunotherapy for breast cancer.
Collapse
|
28
|
Sigismund S, Lanzetti L, Scita G, Di Fiore PP. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat Rev Mol Cell Biol 2021; 22:625-643. [PMID: 34075221 DOI: 10.1038/s41580-021-00375-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Endocytosis allows cells to transport particles and molecules across the plasma membrane. In addition, it is involved in the termination of signalling through receptor downmodulation and degradation. This traditional outlook has been substantially modified in recent years by discoveries that endocytosis and subsequent trafficking routes have a profound impact on the positive regulation and propagation of signals, being key for the spatiotemporal regulation of signal transmission in cells. Accordingly, endocytosis and membrane trafficking regulate virtually every aspect of cell physiology and are frequently subverted in pathological conditions. Two key aspects of endocytic control over signalling are coming into focus: context-dependency and long-range effects. First, endocytic-regulated outputs are not stereotyped but heavily dependent on the cell-specific regulation of endocytic networks. Second, endocytic regulation has an impact not only on individual cells but also on the behaviour of cellular collectives. Herein, we will discuss recent advancements in these areas, highlighting how endocytic trafficking impacts complex cell properties, including cell polarity and collective cell migration, and the relevance of these mechanisms to disease, in particular cancer.
Collapse
Affiliation(s)
- Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Scita
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy. .,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
29
|
Alain C, Pascal N, Valérie G, Thierry V. Orexins/Hypocretins and Cancer: A Neuropeptide as Emerging Target. Molecules 2021; 26:4849. [PMID: 34443437 PMCID: PMC8398691 DOI: 10.3390/molecules26164849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023] Open
Abstract
Over 20 years ago, orexin neuropeptides (Orexin-A/hypocretin-1 and Orexin-B/hypocretins-2) produced from the same precursor in hypothalamus were identified. These two neurotransmitters and their receptors (OX1R and OX1R), present in the central and peripheral nervous system, play a major role in wakefulness but also in drug addiction, food consumption, homeostasis, hormone secretion, reproductive function, lipolysis and blood pressure regulation. With respect to these biological functions, orexins were involved in various pathologies encompassing narcolepsy, neurodegenerative diseases, chronic inflammations, metabolic syndrome and cancers. The expression of OX1R in various cancers including colon, pancreas and prostate cancers associated with its ability to induce a proapoptotic activity in tumor cells, suggested that the orexins/OX1R system could have a promising therapeutic role. The present review summarizes the relationship between cancers and orexins/OX1R system as an emerging target.
Collapse
Affiliation(s)
- Couvineau Alain
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, DHU UNITY, 75018 Paris, France; (N.P.); (G.V.); (V.T.)
| | | | | | | |
Collapse
|
30
|
Lyu C, Ye Y, Lensing MM, Wagner KU, Weigel RJ, Chen S. Targeting Gi/o protein-coupled receptor signaling blocks HER2-induced breast cancer development and enhances HER2-targeted therapy. JCI Insight 2021; 6:e150532. [PMID: 34343132 PMCID: PMC8492335 DOI: 10.1172/jci.insight.150532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
GPCRs are highly desirable drug targets for human disease. Although GPCR dysfunction drives development and progression of many tumors, including breast cancer (BC), targeting individual GPCRs has limited efficacy as a cancer therapy because numerous GPCRs are activated. Here, we sought a new way of blocking GPCR activation in HER2+ BC by targeting a subgroup of GPCRs that couple to Gi/o proteins (Gi/o-GPCRs). In mammary epithelial cells of transgenic mouse models, and BC cell lines, HER2 hyperactivation altered GPCR expression, particularly, Gi/o-GPCR expression. Gi/o-GPCR stimulation transactivated EGFR and HER2 and activated the PI3K/AKT and Src pathways. If we uncoupled Gi/o-GPCRs from their cognate Gi/o proteins by pertussis toxin (PTx), then BC cell proliferation and migration was inhibited in vitro and HER2-driven tumor formation and metastasis were suppressed in vivo. Moreover, targeting Gi/o-GPCR signaling via PTx, PI3K, or Src inhibitors enhanced HER2-targeted therapy. These results indicate that, in BC cells, HER2 hyperactivation drives aberrant Gi/o-GPCR signaling and Gi/o-GPCR signals converge on the PI3K/AKT and Src signaling pathways to promote cancer progression and resistance to HER2-targeted therapy. Our findings point to a way to pharmacologically deactivate GPCR signaling to block tumor growth and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Cancan Lyu
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Yuanchao Ye
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Maddison M Lensing
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine, Detroit, United States of America
| | - Ronald J Weigel
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Songhai Chen
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| |
Collapse
|
31
|
Cornwell AC, Feigin ME. Unintended Effects of GPCR-Targeted Drugs on the Cancer Phenotype. Trends Pharmacol Sci 2020; 41:1006-1022. [PMID: 33198923 PMCID: PMC7672258 DOI: 10.1016/j.tips.2020.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/28/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most common class of therapeutic targets, accounting for ~35% of all FDA-approved drugs. Cancer patients receive numerous medications not only to combat cancer but also to alleviate pain, nausea, and anxiety, many of which target GPCRs. Emerging evidence has implicated GPCRs as drivers of cancer progression, therapeutic resistance, and metastasis. Therefore, the effects of commonly prescribed GPCR-targeted drugs must be reevaluated in the context of cancer. Epidemiological and experimental evidence indicate that widely used GPCR-targeted drugs may promote or inhibit cancer progression. It is crucial that we more fully understand the indirect effects of GPCR-targeted drugs on the cancer phenotype. This review summarizes recent advances in characterizing these interactions and highlights future research opportunities.
Collapse
Affiliation(s)
- Abigail C Cornwell
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michael E Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
32
|
Muthiah I, Rajendran K, Dhanaraj P. In silico molecular docking and physicochemical property studies on effective phytochemicals targeting GPR116 for breast cancer treatment. Mol Cell Biochem 2020; 476:883-896. [PMID: 33106912 DOI: 10.1007/s11010-020-03953-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 11/28/2022]
Abstract
G protein-coupled receptor 116 (GPR116), an orphan adhesion receptor, found an important role in cell adhesion and migration in eukaryotes. Abnormal expression of GPCR identified in various cancers turns focus of research community towards GPCR to identify the targeting drug against GPCR. Though GPR116 role was studied in progression of metastasis in triple-negative breast cancer (TNBC), unfortunately, still no drugs targeting GPR116 were identified. TNBC is a hormone-negative aggressive breast cancer found even in young women. Since TNBC has no target receptor for therapy, it would be desirable to target GPR116. Currently, chemotherapy is the only promising option for TNBC; however, these drugs cause chemoresistance. Hence this current study concentrated on finding drugable natural phytochemical ligands targeting GPR116 using in silico approach. Best docked ligand with target and active binding site amino acids were identified in molecular docking study. Pharmacokinetic properties (ADME) were assessed by Qikprop. Result showed that pharmacokinetics properties of natural phytochemicals were as good as existing chemotherapeutic cancer drugs. This study indicates that phytochemicals could be a promising target for GPR116. This in silico analysis facilitates further research to design the drug targeting GPR116 for treatment of TNBC.
Collapse
Affiliation(s)
- Indiraleka Muthiah
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India
| | - Karthikeyan Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India.
| | - Premnath Dhanaraj
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Science (Deemed To Be University), Coimbatore, Tamilnadu, 641114, India
| |
Collapse
|
33
|
A peptide immunoaffinity LC-MS/MS strategy for quantifying the GPCR protein, S1PR1 in human colon biopsies. Bioanalysis 2020; 12:1311-1324. [PMID: 32945691 DOI: 10.4155/bio-2020-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: S1PR1, a G protein-coupled receptor (GPCR) protein, is a therapeutic target for treatment of autoimmune diseases. As a potential biomarker for drug effect and patient stratification, it is of great significance to measure it in biological samples. However, due to the hydrophobic nature of S1PR1 and the difficulties in extraction and solubilization, as well as low expression levels, quantitative determination of S1PR1 remains challenging. Results: In this work, a peptide immunoaffinity LC-MS/MS method was developed to quantify S1PR1 in biopsy-sized colon samples with an LLOQ of 7.81 pM. Conclusion: Peptide immunoaffinity LC-MS/MS based strategy has achieved the desired sensitivity for low abundance S1PR1, and the same strategy could be applied to quantify S1PR1 in multiple species and other GPCR proteins.
Collapse
|