1
|
Chen ZQ, He WY, Yang SY, Ma HH, Zhou J, Li H, Zhu YD, Qian XK, Zou LW. Discovery of natural anthraquinones as potent inhibitors against pancreatic lipase: structure-activity relationships and inhibitory mechanism. J Enzyme Inhib Med Chem 2024; 39:2398561. [PMID: 39223707 PMCID: PMC11373360 DOI: 10.1080/14756366.2024.2398561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity is acknowledged as a significant risk factor for various metabolic diseases, and the inhibition of human pancreatic lipase (hPL) can impede lipid digestion and absorption, thereby offering potential benefits for obesity treatment. Anthraquinones is a kind of natural and synthetic compounds with wide application. In this study, the inhibitory effects of 31 anthraquinones on hPL were evaluated. The data shows that AQ7, AQ26, and AQ27 demonstrated significant inhibitory activity against hPL, and exhibited selectivity towards other known serine hydrolases. Then the structure-activity relationship between anthraquinones and hPL was further analysed. AQ7 was found to be a mixed inhibition of hPL through inhibition kinetics, while AQ26 and AQ27 were effective non-competitive inhibition of hPL. Molecular docking data revealed that AQ7, AQ26, and AQ27 all could associate with the site of hPL. Developing hPL inhibitors for obesity prevention and treatment could be simplified with this novel and promising lead compound.
Collapse
Affiliation(s)
- Zi-Qiang Chen
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Yao He
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Yuan Yang
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hong-Hong Ma
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jing Zhou
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hao Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Di Zhu
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xing-Kai Qian
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen Y, Zhao T, Miao Z, Huang T, Chen M, Zhao Y, Hai A, Qi Q, Feng P, Li M, Ke B. Identification of the first selective bioluminescent probe for real-time monitoring of carboxylesterase 2 in vitro and in vivo. Analyst 2024; 149:418-425. [PMID: 38078792 DOI: 10.1039/d3an01745a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Carboxylesterase (CES), a main hydrolysis enzyme family in the human body, plays a crucial role in drug metabolism. Among them, CES1 and CES2 are the primary subtypes, and each exhibits distinct distribution and functions. However, convenient and non-invasive methods for distinguishing them and the real-time monitoring of CES2 are relatively rare, hindering the further understanding of physiological functions and underlying mechanisms. In this study, we have designed, synthesized, and evaluated the first selective bioluminescent probe (CBP 1) for CES2 with high sensitivity, high specificity and rapid reactivity. This probe offers a promising approach for the real-time detection of CES2 and its dynamic fluctuations both in vitro and in vivo.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tiantian Zhao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhuang Miao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Tianguang Huang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Meiyuan Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yi Zhao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Ao Hai
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Qingrong Qi
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Feng
- Institute of Clinical Trials, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Gan C, Wang J, Martínez-Chávez A, Hillebrand M, de Vries N, Beukers J, Wagenaar E, Wang Y, Lebre MC, Rosing H, Klarenbeek S, Ali RB, Pritchard C, Huijbers I, Beijnen JH, Schinkel AH. Carboxylesterase 1 family knockout alters drug disposition and lipid metabolism. Acta Pharm Sin B 2023; 13:618-631. [PMID: 36873183 PMCID: PMC9978993 DOI: 10.1016/j.apsb.2022.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 11/01/2022] Open
Abstract
The mammalian carboxylesterase 1 (Ces1/CES1) family comprises several enzymes that hydrolyze many xenobiotic chemicals and endogenous lipids. To investigate the pharmacological and physiological roles of Ces1/CES1, we generated Ces1 cluster knockout (Ces1 -/- ) mice, and a hepatic human CES1 transgenic model in the Ces1 -/- background (TgCES1). Ces1 -/- mice displayed profoundly decreased conversion of the anticancer prodrug irinotecan to SN-38 in plasma and tissues. TgCES1 mice exhibited enhanced metabolism of irinotecan to SN-38 in liver and kidney. Ces1 and hCES1 activity increased irinotecan toxicity, likely by enhancing the formation of pharmacodynamically active SN-38. Ces1 -/- mice also showed markedly increased capecitabine plasma exposure, which was moderately decreased in TgCES1 mice. Ces1 -/- mice were overweight with increased adipose tissue, white adipose tissue inflammation (in males), a higher lipid load in brown adipose tissue, and impaired blood glucose tolerance (in males). These phenotypes were mostly reversed in TgCES1 mice. TgCES1 mice displayed increased triglyceride secretion from liver to plasma, together with higher triglyceride levels in the male liver. These results indicate that the carboxylesterase 1 family plays essential roles in drug and lipid metabolism and detoxification. Ces1 -/- and TgCES1 mice will provide excellent tools for further study of the in vivo functions of Ces1/CES1 enzymes.
Collapse
Affiliation(s)
- Changpei Gan
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jing Wang
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Alejandra Martínez-Chávez
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.,Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Michel Hillebrand
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Niels de Vries
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Joke Beukers
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Els Wagenaar
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Yaogeng Wang
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Maria C Lebre
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Rahmen Bin Ali
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Colin Pritchard
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ivo Huijbers
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.,Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CS, the Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| |
Collapse
|
5
|
Zhang J, Xiao M, Ji X, Lai YS, Song Q, Zhang Y, Ip CM, Ng WL, Zuo Z. Inhibition of Radix Scutellariae flavones on carboxylesterase mediated activations of prodrugs. Life Sci 2022; 305:120743. [PMID: 35780840 DOI: 10.1016/j.lfs.2022.120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
AIMS Carboxylesterase (CES) plays an essential role in the hydrolysis of ester prodrugs. Our study explored the inhibitions of Radix Scutellariae flavones, including baicalein (B), baicalin (BG), wogonin (W), wogonoside (WG), oroxylin A (OXA) and oroxylin A-7-O-glucuronide (OAG), on CES-mediated hydrolysis of seven prodrugs (capecitabine, clopidogrel, mycophenolate mofetil, dabigatran etexilate, acetylsalicylic acid, prasugrel and irinotecan). MAIN METHODS In vitro screenings were developed by incubating the flavones with prodrugs in rat plasma, intestine S9 and liver S9. Docking simulations were conducted using AMDock v1.5.2. In vivo evaluations were performed in rats co-administered with the selected flavone and prodrug via oral gavage/intravenous administration for five consecutive days. KEY FINDINGS The in vitro investigation showed that B and OXA demonstrated strongest inhibitions on the hydrolysis of irinotecan followed by dabigatran in rat plasma, intestine S9 and liver S9. Consistent results showed in the molecular docking analyses. Additionally, in rats receiving irinotecan, B/OXA intravenous and oral pre-treatments both led to reduction trends on the active metabolite SN-38 formation in plasma. Besides, significant decreases of SN-38/irinotecan plasma concentration ratios were found in the B/OXA oral pre-treatment group with quicker and stronger inhibition potential in OXA pre-treatment than that from B pre-treatment. OXA oral pre-treatment was also found to be able to significantly inhibit intestinal CES2 activities at 0.5 h and 5 h after irinotecan administration. SIGNIFICANCE Our current findings for the first time alert on potential CES-mediated HDIs between RS flavones and prodrugs, which provide a constructive information referring to rational drug combinations in clinical practice.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Min Xiao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Xiaoyu Ji
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Yuen Sze Lai
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Qianbo Song
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Chung Man Ip
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Wai Lung Ng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
Tan G, Fei Z, Wei R, Wu X, Xiao P. Development of a Novel Bioluminescence Pyrophosphate Assay for the High-Sensitivity Detection of Hepatitis B Virus. Appl Biochem Biotechnol 2022; 194:725-736. [PMID: 34519921 DOI: 10.1007/s12010-021-03655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
The transmission of bloodborne viruses through transfusion remains a major blood supply-related safety concern, with hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV) being the most important pathogens in this context. Real-time bioluminescent pyrophosphate testing has been developed as a means of readily detecting bacterial cells within particular sample types without requiring the use of expensive or complex instrumentation. The sensitivity of this approach, however, is often limited such that it is not compatible with many potential applications. In this study, we sought to overcome the limitations of this pyrophosphate bioluminescent assay format by using 2-deoxyadenosine-5-(α-thio)-triphosphate (dATPαS) in place of dATP for PCR amplification, thereby dramatically reducing background signal levels. We leveraged this combination PCR and bioluminescent pyrophosphate assay approach to facilitate HBV detection. This assay yielded a limit of detection of 500 copies/mL, making it more sensitive than traditional bioluminescent assays, about 1000 times more sensitive than that of PCR product analysis by agarose gel electrophoresis, and roughly as sensitive as qPCR as a means of detecting viral DNA. We then used this assay to analyze 100 serum samples, with qPCR being used for result validation. The assay required 100 min to complete, and was able to detect as few as 500 copies/mL of viral DNA. Overall, our approach was rapid, sensitive, and simple, enabling users to readily detect HBV in a reliable and efficient manner.
Collapse
Affiliation(s)
- Guolei Tan
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Lu 1#, Gulou District, Nanjing, 210003, China
| | - Zhongjie Fei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Xuanwu District, Nanjing, 210096, China
| | - Rongbin Wei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Xuanwu District, Nanjing, 210096, China
| | - Xuping Wu
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Lu 1#, Gulou District, Nanjing, 210003, China.
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Xuanwu District, Nanjing, 210096, China.
| |
Collapse
|
7
|
Teyssier VR, Tournoux F, Simard JM, Gaudette F, Boudjemeline M, Petrenyov DR, DaSilva JN. Novel O-[ 11C]-methylated derivatives of the neprilysin inhibitor sacubitril: Radiosynthesis, autoradiography and plasma stability evaluation. Nucl Med Biol 2021; 102-103:34-44. [PMID: 34601168 DOI: 10.1016/j.nucmedbio.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The O-[11C]methylated derivatives of the clinically used neprilysin inhibitor (NEPi) sacubitril ([11C]SacOMe, (2R,4S)-ethyl 5-([biphenyl]-4-yl)-4-(4-[11C]methoxy-4-oxobutanamido)-2-methylpentanoate) and LBQ657 ([11C]MeOLBQ, (2R,4S)-5-(biphenyl-4-yl)-4-[(3-carboxypropionyl)amino]-2-methylpentanoic acid [11C]methyl ester and [11C]LBQOMe, (2R,4S)-5-(biphenyl-4-yl)-4-[(4-[11C]methoxy-4-oxobutanamido)]-2-methylpentanoic acid) were evaluated to determine their potential as PET imaging tracers and investigate the effect of such labeling esterification on neprilysin (NEP) binding. METHODS [11C]MeOLBQ, [11C]SacOMe and [11C]LBQOMe were synthesized by O-[11C]methylation using [11C]methyl triflate. Binding of these radiolabeled derivatives (5 nM) were assessed by autoradiography on rat neprilysin rich kidney slices with or without 10 μM NEPi (thiorphan or sacubitril) for 20 min at 37 °C. [11C]LBQOMe was further tested for binding selectivity in the presence of 10 μM of angiotensin-converting enzyme inhibitor (ACEi, captopril) or angiotensin II AT1 receptor blocker (AT1R, losartan). Radioligands were evaluated for their in vitro stability up to 20 min after incubation at 37 °C in rat and human plasma by reverse-phase column-switch HPLC. Non-radioactive SacOMe incubated in rat and human plasma was analyzed by HPLC-coupled with high resolution mass spectrometry (HRMS) to confirm the metabolites' identity. [11C]SacOMe main labeled metabolite was further analyzed by HPLC after incubation in rat kidney slices at 37 °C. RESULTS The novel [11C]SacOMe and [11C]LBQOMe were produced in 32 ± 3% RCY and 15 ± 6% at EOS (decay-corrected from [11C]CO2, n = 3), high molar activity (407 ± 92 GBq/μmol and 260 ± 92 GBq/μmol), and high chemical (≥90%) and radiochemical (≥99%) purities in a total synthesis time of 31 and 34 min, respectively. High accumulation of [11C]SacOMe and [11C]LBQOMe in kidneys was completely blocked (>99.9%) by pre-incubation with NEPi, whereas [11C]MeOLBQ displayed negligible uptake in autoradiography studies. [11C]LBQOMe binding was not affected by saturating doses of losartan or captopril indicating binding selectivity for NEP. While [11C]SacOMe and [11C]LBQOMe were stable in human plasma (>92%) even after 20 min incubation at 37 °C, rat plasma analyses exhibited >95% biotransformation of [11C]SacOMe, 40% of [11C]LBQOMe and >80% loss of the 11C-methyl group of [11C]MeOLBQ after 5 min of incubation. Comparable results using the non-radioactive SacOMe were obtained by HPLC-HRMS. Radio-HPLC analysis of the extracted activity of rat kidney slices incubated with [11C]SacOMe demonstrated that >95% of the radioactive signal corresponded to [11C]LBQOMe as the main metabolite. CONCLUSION The desethyl active metabolite of [11C]SacOMe, [11C]LBQOMe, displayed stability in human plasma, binding selectivity for neprilysin over ACE or AT1R in rat kidney slices. Rapid plasmatic dealkylation at the 2-methylbutanoic acid position is in line with the necessity of incorporating the labeling group on oxobutanoic acid side in the strategy to develop a stable O-alkylated labeled derivative of sacubitril.
Collapse
Affiliation(s)
- Valentin R Teyssier
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada; Institut de Génie Biomédical, Faculté de Médecine, Université de Montréal, Pavillon Paul-G. Desmarais, 2960 chemin de la Tour, Montréal, Québec H3T 1J4, Canada
| | - François Tournoux
- Laboratoire de Recherche @CoeurLab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada; Regroupement Cardio-vasculaire, Centre Hospitalier de l'Université de Montréal, 1051 Rue Sanguinet, Montréal, Québec H2X 3E4, Canada
| | - José-Mathieu Simard
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Mehdi Boudjemeline
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Daniil R Petrenyov
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Jean N DaSilva
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada; Institut de Génie Biomédical, Faculté de Médecine, Université de Montréal, Pavillon Paul-G. Desmarais, 2960 chemin de la Tour, Montréal, Québec H3T 1J4, Canada; Département de Radiologie, radio-oncologie et médecine nucléaire, Faculté de médecine, Université de Montréal, Pavillon Roger-Gaudry, 2900 boulevard Edouard Montpetit, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|