1
|
Liu Z, Zhou Y, Lu J, Gong T, Ibáñez E, Cifuentes A, Lu W. Microfluidic biosensors for biomarker detection in body fluids: a key approach for early cancer diagnosis. Biomark Res 2024; 12:153. [PMID: 39639411 PMCID: PMC11622463 DOI: 10.1186/s40364-024-00697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Early detection of cancer significantly improves patient outcomes, with biomarkers offering a promising avenue for earlier and more precise diagnoses. Microfluidic biosensors have emerged as a powerful tool for detecting these biomarkers in body fluids, providing enhanced sensitivity, specificity, and rapid analysis. This review focuses on recent advances in microfluidic biosensors from 2018 to 2024, detailing their operational principles, fabrication techniques, and integration with nanotechnology for cancer biomarker detection. Additionally, we have reviewed recent innovations in several aspects of microfluidic biosensors, such as novel detection technologies, nanomaterials and novel microfluidic chip structures, which significantly enhance detection capabilities. We highlight key biomarkers pertinent to early cancer detection and explore how these innovations in biosensor technology contribute to the evolving landscape of personalized medicine. We further explore how these technologies could be incorporated into clinical cancer diagnostic workflows to improve early detection and treatment outcomes. These innovations could help enable more precise and personalized cancer diagnostics. In addition, this review addresses several important issues such as enhancing the scalability and sensitivity of these biosensors in clinical settings and points out future possibilities of combining artificial intelligence diagnostics with microfluidic biosensors to optimize their practical applications. This overview aims to guide future research and clinical applications by addressing current challenges and identifying opportunities for further development in the field of biomarker research.
Collapse
Affiliation(s)
- Zhiting Liu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Yingyu Zhou
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China.
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
| | - Jia Lu
- School of Mechatronics Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China.
| | - Ting Gong
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China.
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
2
|
Shen X, Lin Z, Jiang X, Zhu X, Zeng S, Cai S, Liu H. Dumbbell probe initiated multi-rolling circle amplification assisted CRISPR/Cas12a for highly sensitive detection of clinical microRNA. Biosens Bioelectron 2024; 264:116676. [PMID: 39151261 DOI: 10.1016/j.bios.2024.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
A novel miRNA detection technique named Dumbbell probe initiated multi-Rolling Circle Amplification assisted CRISPR/Cas12a (DBmRCA) was developed relying on the ligation-free dumbbell probe and the high-sensitivity CRISPR/Cas12a signal out strategy. This DBmRCA assay streamlines miRNA quantification within a mere 30-min timeframe and with exceptional analytical precision. The efficacy of this method was validated by assessing miRNA levels in clinical samples, revealing distinct expression panel of miR-200a and miR-126 in lung cancer/adjacent/normal tissue specimens. Moreover, a predictive model was established to classify benign and malignant tumor. Due to its time efficiency, enhanced sensitivity, and streamlined workflow, this assay would be a reliable tool for miRNA analysis in clinical settings, offering potential guidance for early diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Xudan Shen
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Ziwei Lin
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xianfeng Jiang
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xinlan Zhu
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Su Zeng
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Sheng Cai
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua, 321299, Zhejiang, China.
| | - Hui Liu
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
| |
Collapse
|
3
|
Zheng C, Zhang L, Huang H, Wang X, Van Schepdael A, Ye J. Raman spectroscopy: A promising analytical tool used in human reproductive medicine. J Pharm Biomed Anal 2024; 249:116366. [PMID: 39029353 DOI: 10.1016/j.jpba.2024.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Over the past few years, there has been growing interest in developing new methods of embryo quality assessment to improve the outcomes of assisted reproductive technologies in the medical field. Raman microscopy as an increasingly promising analytical tool has been widely used in life sciences, biomedicine and "omics" to study molecular, biochemical components, living cells and tissues due to the label-free and non-destructive nature of the imaging technique. This paper reviews the analytical capability of Raman microscopy and applications of Raman spectroscopy technology mainly in reproductive medicine. The purpose of this review is to introduce the Raman spectroscopy technology, application and underlying principles of the method, to provide an intact picture of its uses in biomedical science and reproductive medicine, to offer ideas for its future application, verification and validation. The focus is on the application of Raman spectroscopy in the reproductive medicine field, including the application in gametes, embryos and spent embryo culture media.
Collapse
Affiliation(s)
- Chao Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lumei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hefeng Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
5
|
Chang YJ, Yang WT, Lei CH. Identification and Quantification of Extracellular Vesicles: Comparison of SDS-PAGE Analysis and Biosensor Analysis with QCM and IDT Chips. BIOSENSORS 2024; 14:366. [PMID: 39194595 DOI: 10.3390/bios14080366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
This study presents and compares two methods for identifying the types of extracellular vesicles (EVs) from different cell lines. Through SDS-PAGE analysis, we discovered that the ratio of CD63 to CD81 in different EVs is consistent and distinct, making it a reliable characteristic for recognizing EVs secreted by cancer cells. However, the electrophoresis and imaging processes may introduce errors in the concentration values, especially at lower concentrations, rendering this method potentially less effective. An alternative approach involves the use of quartz crystal microbalance (QCM) and electroanalytical interdigitated electrode (IDT) biosensors for EV type identification and quantification. The QCM frequency shift caused by EVs is directly proportional to their concentration, while electroanalysis relies on measuring the curvature of the I-V curve as a distinguishing feature, which is also proportional to EV concentration. Linear regression lines for the QCM frequency shift and the electroanalysis curvature of various EV types are plotted separately, enabling the estimation of the corresponding concentration for an unknown EV type on the graphs. By intersecting the results from both biosensors, the unknown EV type can be identified. The biosensor analysis method proves to be an effective means of analyzing both the type and concentration of EVs from different cell lines.
Collapse
Affiliation(s)
- Yaw-Jen Chang
- Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 320314, Taiwan
| | - Wen-Tung Yang
- Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 320314, Taiwan
| | - Cheng-Hsuan Lei
- Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 320314, Taiwan
| |
Collapse
|
6
|
Abdul Wahab MR, Palaniyandi T, Viswanathan S, Baskar G, Surendran H, Gangadharan SGD, Sugumaran A, Sivaji A, Kaliamoorthy S, Kumarasamy S. Biomarker-specific biosensors revolutionise breast cancer diagnosis. Clin Chim Acta 2024; 555:117792. [PMID: 38266968 DOI: 10.1016/j.cca.2024.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Breast cancer is the most common cancer among women across the globe. In order to treat breast cancer successfully, it is crucial to conduct a comprehensive assessment of the condition during its initial stages. Although mammogram screening has long been a common method of breast cancer screening, high rates of type I error and type II error results as well as radiation exposure have always been of concern. The outgrowth cancer mortality rate is primarily due to delayed diagnosis, which occurs most frequently in a metastatic III or IV stage, resulting in a poor prognosis after therapy. Traditional detection techniques require identifying carcinogenic properties of cells, such as DNA or RNA alterations, conformational changes and overexpression of certain proteins, and cell shape, which are referred to as biomarkers or analytes. These procedures are complex, long-drawn-out, and expensive. Biosensors have recently acquired appeal as low-cost, simple, and super sensitive detection methods for analysis. The biosensor approach requires the existence of biomarkers in the sample. Thus, the development of novel molecular markers for diverse forms of cancer is a rising complementary affair. These biosensor devices offer two major advantages: (1) a tiny amount of blood collected from the patient is sufficient for analysis, and (2) it could help clinicians swiftly select and decide on the best therapy routine for the individual. This review will include updates on prospective cancer markers and biosensors in cancer diagnosis, as well as the associated detection limitations, with a focus on biosensor development for marker detection.
Collapse
Affiliation(s)
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - S G D Gangadharan
- Department of Medical Oncology, Madras Medical College, R. G. G. G. H., Chennai, Tamil Nadu, India
| | - Abimanyu Sugumaran
- Department of Pharmaceutical Sciences, Assam University, (A Central University), Silchar, Assam, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | - Senthilkumar Kaliamoorthy
- Department of Electronics and Communication Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Saravanan Kumarasamy
- Department of Electrical and Electronics Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Kurdadze T, Lamadie F, Nehme KA, Teychené S, Biscans B, Rodriguez-Ruiz I. On-Chip Photonic Detection Techniques for Non-Invasive In Situ Characterizations at the Microfluidic Scale. SENSORS (BASEL, SWITZERLAND) 2024; 24:1529. [PMID: 38475065 DOI: 10.3390/s24051529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is particularly advantageous due to its non-invasive nature, which permits sensitive, real-time, high throughput, and rapid analyses, taking advantage of the microfluidic special environments and reduced sample volumes. Putting a special emphasis on integrated detection schemes, this review article explores the most relevant advances in the on-chip implementation of UV-vis, near-infrared, terahertz, and X-ray-based techniques for different characterizations, ranging from punctual spectroscopic or scattering-based measurements to different types of mapping/imaging. The principles of the techniques and their interest are discussed through their application to different systems.
Collapse
Affiliation(s)
- Tamar Kurdadze
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Fabrice Lamadie
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Karen A Nehme
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Béatrice Biscans
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| |
Collapse
|
8
|
Yang X, Li J, Qi H, Gao Q, Zhang C. Disposable capillary-fill device for the determination of proteases incorporating elimination of light-shielding from the magnetic beads with cleavage of the electrogenerated chemiluminescence label-tagged peptide probe. Analyst 2023; 148:6253-6260. [PMID: 37937443 DOI: 10.1039/d3an01591b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A novel point-of-care testing (POCT) method for the determination of proteases was developed for the first time using a designed disposable capillary-fill device based on the cleavage of electrogenerated chemiluminescence (ECL)-label-tagged peptide probes and enabling elimination of the light-shielding from the magnetic beads (MBs). As a proof-of-principle, prostate-specific antigen (PSA) was taken as a model analyte, and streptavidin-coated magnetic beads bound with ruthenium-complex-tagged specific peptide (biotin-HSSKLQK) were utilized as MB ECL probes. The capillary-fill device was designed to be divided into a reaction zone and detection zone. In the reaction zone, the bio-cleavage reaction between the PSA analyte with the peptide on the surface of the MB ECL probes occurred, while in the detection zone, ECL emission was produced by a screen-printed carbon electrode, Ag/AgCl reference electrode and carbon counter electrode. When the analyte PSA was introduced into the suspension of MB ECL probes in the reaction zone of the device, biocleavage of the peptide occurred, and the cleaved Ru1 part was released from the surface of the MB ECL probes. The capillary-filled device was tilted 90°, and with the aid of gravity, the solution containing the released Ru1 part flowed to the surface of the working electrode in the detection region of the device, while the MB ECL probes were fixed in the reaction zone by an external magnet. PSA can be determined by the ECL emission from the released Ru1 part in the presence of the co-reactant tri-n-propylamine at the detection zone. Under the optimal conditions, the developed ECL method showed a low detection limit of 0.12 ng mL-1 for PSA. This work demonstrates that the developed ECL biosensing approach can eliminate the MB light-shielding effect and quantify proteases with high sensitivity and selectivity, which could be easily extended to POCT-based ECL biosensing for other proteases.
Collapse
Affiliation(s)
- Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| | - Jie Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| |
Collapse
|
9
|
Liang T, Qin X, Zhang Y, Yang Y, Chen Y, Yuan L, Liu F, Chen Z, Li X, Yang F. CRISPR/dCas9-Mediated Specific Molecular Assembly Facilitates Genotyping of Mutant Circulating Tumor DNA. Anal Chem 2023; 95:16305-16314. [PMID: 37874695 DOI: 10.1021/acs.analchem.3c03481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Breakthroughs in circulating tumor DNA (ctDNA) analysis are critical in tumor liquid biopsies but remain a technical challenge due to the double-stranded structure, extremely low abundance, and short half-life of ctDNA. Here, we report an electrochemical CRISPR/dCas9 sensor (E-dCas9) for sensitive and specific detection of ctDNA at a single-nucleotide resolution. The E-dCas9 design harnesses the specific capture and unzipping of target ctDNA by dCas9 to introduce a complementary reporter probe for specific molecular assembly and signal amplification. By efficient homogeneous assembly and interfacial click reaction, the assay demonstrates superior sensitivity (up to 2.86 fM) in detecting single-base mutant ctDNA and a broad dynamic range spanning 6 orders of magnitude. The sensor is also capable of measuring 10 fg/μL of a mutated target in excess of wild-type ones (1 ng/μL), equivalent to probing 0.001% of the mutation relative to the wild type. In addition, our sensor can monitor the dynamic expression of cellular genomic DNA and allows accurate analysis of blood samples from patients with nonsmall cell lung cancer, suggesting the potential of E-dCas9 as a promising tool in ctDNA-based cancer diagnosis.
Collapse
Affiliation(s)
- Tingting Liang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Xiaojie Qin
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yuyuan Zhang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yu Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yu Chen
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rhumatic Diseases, Hubei Minzu University, Enshi 445000, China
| | - Feng Liu
- Department of Blood Transfusion, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Zhizhong Chen
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Xinchun Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fan Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rhumatic Diseases, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|