1
|
Svenning JB, Vasskog T, Campbell K, Bæverud AH, Myhre TN, Dalheim L, Forgereau ZL, Osanen JE, Hansen EH, Bernstein HC. Lipidome Plasticity Enables Unusual Photosynthetic Flexibility in Arctic vs. Temperate Diatoms. Mar Drugs 2024; 22:67. [PMID: 38393038 PMCID: PMC10890139 DOI: 10.3390/md22020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The diatom lipidome actively regulates photosynthesis and displays a high degree of plasticity in response to a light environment, either directly as structural modifications of thylakoid membranes and protein-pigment complexes, or indirectly via photoprotection mechanisms that dissipate excess light energy. This acclimation is crucial to maintaining primary production in marine systems, particularly in polar environments, due to the large temporal variations in both the intensity and wavelength distributions of downwelling solar irradiance. This study investigated the hypothesis that Arctic marine diatoms uniquely modify their lipidome, including their concentration and type of pigments, in response to wavelength-specific light quality in their environment. We postulate that Arctic-adapted diatoms can adapt to regulate their lipidome to maintain growth in response to the extreme variability in photosynthetically active radiation. This was tested by comparing the untargeted lipidomic profiles, pigmentation, specific growth rates and carbon assimilation of the Arctic diatom Porosira glacialis vs. the temperate species Coscinodiscus radiatus during exponential growth under red, blue and white light. Here, we found that the chromatic wavelength influenced lipidome remodeling and growth in each strain, with P. glacialis showing effective utilization of red light coupled with increased inclusion of primary light-harvesting pigments and polar lipid classes. These results indicate a unique photoadaptation strategy that enables Arctic diatoms like P. glacialis to capitalize on a wide chromatic growth range and demonstrates the importance of active lipid regulation in the Arctic light environment.
Collapse
Affiliation(s)
- Jon Brage Svenning
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (L.D.); (E.H.H.); (H.C.B.)
- SINTEF Nord, Storgata 118, 9008 Tromsø, Norway
| | - Terje Vasskog
- Department of Pharmacy, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (T.V.); (A.H.B.); (T.N.M.)
| | - Karley Campbell
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (K.C.); (Z.L.F.); (J.E.O.)
| | - Agnethe Hansen Bæverud
- Department of Pharmacy, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (T.V.); (A.H.B.); (T.N.M.)
| | - Torbjørn Norberg Myhre
- Department of Pharmacy, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (T.V.); (A.H.B.); (T.N.M.)
| | - Lars Dalheim
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (L.D.); (E.H.H.); (H.C.B.)
| | - Zoé Lulu Forgereau
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (K.C.); (Z.L.F.); (J.E.O.)
| | - Janina Emilia Osanen
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (K.C.); (Z.L.F.); (J.E.O.)
| | - Espen Holst Hansen
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (L.D.); (E.H.H.); (H.C.B.)
| | - Hans C. Bernstein
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (L.D.); (E.H.H.); (H.C.B.)
- The Arctic Centre for Sustainable Energy—ARC, UiT—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
2
|
Estime B, Ren D, Sureshkumar R. Tailored Fabrication of Plasmonic Film Light Filters for Enhanced Microalgal Growth and Biomass Composition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:44. [PMID: 38202499 PMCID: PMC10780999 DOI: 10.3390/nano14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Through plasmon resonance, silver and gold nanoparticles can selectively backscatter light within different regions of the visible electromagnetic spectrum. We engineered a plasmonic film technology that utilizes gold and silver nanoparticles to enhance light at the necessary wavelengths for microalgal photosynthetic activities. Nanoparticles were embedded in a polymeric matrix to fabricate millimeter-thin plasmonic films that can be used as light filters in microalgal photobioreactors. Experiments conducted with microalga Chlamydomonas reinhardtii proved that microalgal growth and photosynthetic pigment production can be increased by up to 50% and 78%, respectively, by using these plasmonic film light filters. This work provides a scalable strategy for the efficient production of specialty chemicals and biofuels from microalgae through irradiation control with plasmonic nanoparticles.
Collapse
Affiliation(s)
- Bendy Estime
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (B.E.); (D.R.)
- Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (B.E.); (D.R.)
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Radhakrishna Sureshkumar
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (B.E.); (D.R.)
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Physics, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
3
|
Schomaker RA, Richardson TL, Dudycha JL. Consequences of light spectra for pigment composition and gene expression in the cryptophyte Rhodomonas salina. Environ Microbiol 2023; 25:3280-3297. [PMID: 37845005 DOI: 10.1111/1462-2920.16523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Algae with a more diverse suite of pigments can, in principle, exploit a broader swath of the light spectrum through chromatic acclimation, the ability to maximize light capture via plasticity of pigment composition. We grew Rhodomonas salina in wide-spectrum, red, green, and blue environments and measured how pigment composition differed. We also measured expression of key light-capture and photosynthesis-related genes and performed a transcriptome-wide expression analysis. We observed the highest concentration of phycoerythrin in green light, consistent with chromatic acclimation. Other pigments showed trends inconsistent with chromatic acclimation, possibly due to feedback loops among pigments or high-energy light acclimation. Expression of some photosynthesis-related genes was sensitive to spectrum, although expression of most was not. The phycoerythrin α-subunit was expressed two-orders of magnitude greater than the β-subunit even though the peptides are needed in an equimolar ratio. Expression of genes related to chlorophyll-binding and phycoerythrin concentration were correlated, indicating a potential synthesis relationship. Pigment concentrations and expression of related genes were generally uncorrelated, implying post-transcriptional regulation of pigments. Overall, most differentially expressed genes were not related to photosynthesis; thus, examining associations between light spectrum and other organismal functions, including sexual reproduction and glycolysis, may be important.
Collapse
Affiliation(s)
| | - Tammi L Richardson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- School of the Earth, Ocean, & Environment, University of South Carolina, Columbia, South Carolina, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
4
|
Seveno J, Car A, Sirjacobs D, Fullgrabe L, Dupčić Radić I, Lejeune P, Leignel V, Mouget JL. Benthic Diatom Blooms of Blue Haslea spp. in the Mediterranean Sea. Mar Drugs 2023; 21:583. [PMID: 37999407 PMCID: PMC10672038 DOI: 10.3390/md21110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Blue Haslea species are marine benthic pennate diatoms able to synthesize a blue-green water-soluble pigment, like marennine produced by H. ostrearia Simonsen. New species of Haslea synthetizing blue pigments were recently described (H. karadagensis, H. nusantara, H. provincialis and H. silbo). Their marennine-like pigments have allelopathic, antioxidative, antiviral and antibacterial properties, which have been demonstrated in laboratory conditions. Marennine is also responsible for the greening of oysters, for example, in the Marennes Oléron area (France), a phenomenon that has economical and patrimonial values. While blue Haslea spp. blooms have been episodically observed in natural environments (e.g., France, Croatia, USA), their dynamics have only been investigated in oyster ponds. This work is the first description of blue Haslea spp. benthic blooms that develop in open environments on the periphyton, covering turf and some macroalgae-like Padina. Different sites were monitored in the Mediterranean Sea (Corsica, France and Croatia) and two different blue Haslea species involved in these blooms were identified: H. ostrearia and H. provincialis. A non-blue Haslea species was also occasionally encountered. The benthic blooms of blue Haslea followed the phytoplankton spring bloom and occurred in shallow calm waters, possibly indicating a prominent role of light to initiate the blooms. In the absence of very strong winds and water currents that can possibly disaggregate the blue biofilm, the end of blooms coincided with the warming of the upper water masses, which might be profitable for other microorganisms and ultimately lead to a shift in the biofilm community.
Collapse
Affiliation(s)
- Julie Seveno
- BIOSSE Laboratory, Le Mans University, 72000 Le Mans, France
- Station de Recherches Sous-Marines et Océanographiques STARESO, 20260 Calvi, France (P.L.)
| | - Ana Car
- Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, 20000 Dubrovnik, Croatia; (A.C.)
| | - Damien Sirjacobs
- InBioS–PhytoSYSTEMS Laboratory, University of Liège, B-4000 Liège, Belgium
| | - Lovina Fullgrabe
- Station de Recherches Sous-Marines et Océanographiques STARESO, 20260 Calvi, France (P.L.)
| | - Iris Dupčić Radić
- Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, 20000 Dubrovnik, Croatia; (A.C.)
| | - Pierre Lejeune
- Station de Recherches Sous-Marines et Océanographiques STARESO, 20260 Calvi, France (P.L.)
| | - Vincent Leignel
- BIOSSE Laboratory, Le Mans University, 72000 Le Mans, France
| | - Jean-Luc Mouget
- BIOSSE Laboratory, Le Mans University, 72000 Le Mans, France
| |
Collapse
|
5
|
Liu M, Zhao Y, Fan P, Kong J, Wang Y, Xu X, Xu M, Wang L, Li S, Liang Z, Duan W, Dai Z. Grapevine plantlets respond to different monochromatic lights by tuning photosynthesis and carbon allocation. HORTICULTURE RESEARCH 2023; 10:uhad160. [PMID: 37719274 PMCID: PMC10500148 DOI: 10.1093/hr/uhad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023]
Abstract
The quality of planting materials is the foundation for productivity, longevity, and berry quality of perennial grapevines with a long lifespan. Manipulating the nursery light spectrum may speed up the production of healthy and high-quality planting vines but the underlying mechanisms remain elusive. Herein, the effects of different monochromatic lights (green, blue, and red) on grapevine growth, leaf photosynthesis, whole-plant carbon allocation, and transcriptome reprograming were investigated with white light as control. Results showed that blue and red lights were favorable for plantlet growth in comparison with white light. Blue light repressed excessive growth, significantly increased the maximum net photosynthetic rate (Pn) of leaves by 39.58% and leaf specific weight by 38.29%. Red light increased the dry weight of the stem by 53.60%, the starch content of the leaf by 53.63%, and the sucrose content of the stem by 230%. Green light reduced all photosynthetic indexes of the grape plantlet. Photosynthetic photon flux density (PPFD)/Ci-Pn curves indicated that blue light affected photosynthetic rate depending on the light intensity and CO2 concentration. RNA-seq analysis of different organs (leaf, stem, and root) revealed a systematic transcriptome remodeling and VvCOP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1), VvHY5 (ELONGATED HYPOCOTYL5), VvHYH (HY5 HOMOLOG), VvELIP (early light-induced protein) and VvPIF3 (PHYTOCHROME INTERACTING FACTOR 3) may play important roles in this shoot-to-root signaling. Furthermore, the correlation network between differential expression genes and physiological traits indicated that VvpsbS (photosystem II subunit S), Vvpsb28 (photosystem II subunit 28), VvHYH, VvSUS4 (sucrose synthase 4), and VvALDA (fructose-bisphosphate aldolase) were pertinent candidate genes in responses to different light qualities. Our results provide a foundation for optimizing the light recipe of grape plantlets and strengthen the understanding of light signaling and carbon metabolism under different monochromatic lights.
Collapse
Affiliation(s)
- Menglong Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peige Fan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yongjian Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaobo Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilong Xu
- Ningxia Horticulture Research Institute, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Lijun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Duan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhanwu Dai
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
You X, Chen C, Yang L, Xia X, Zhang Y, Zhou X. Physiological and morphological responses of Chlorella pyrenoidosa to different exposure methods of graphene oxide quantum dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158722. [PMID: 36108851 DOI: 10.1016/j.scitotenv.2022.158722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide quantum dots (GOQDs) can convert the ultraviolet (200- 380 nm) into available wavelength (400- 700 nm) for microalgae cultivation. However, it has not been applied in large-scale microalgae culture due to its high cost and difficulties in recovery. This study proposed a new strategy for the sustainable use of GOQDs, namely, GOQDs solution was added to the outer sandwich of the reactor. Herein, the effects of direct and indirect exposure of different GOQDs concentrations (0, 100, and 1000 mg/L) on the microalgae culture were compared. When microalgae were directly exposed to the GOQDs, 100 mg/L of GOQDs increased the biomass production of microalgae by 24.0 %, while 1000 mg/L of GOQDs decreased biomass production by 31 %. High concentration of GOQDs (direct exposure) could cause extra oxidative stress in the microalgae cells and result in a significant reduction of pigment content. When microalgae were indirectly exposed to the GOQDs, the increased concentration of GOQDs enhanced the growth of microalgae. Compared to the blank group, 1000 mg/L of GOQDs increased the microalgae biomass production and bioenergy by 14.1 % and 40.17 %, respectively. The indirect exposure of GOQDs can effectively avoid photo-oxidation and organelle damage to the microalgae cells. Overall, the indirect exposure of GOQDs is a sustainable way for effectively promoting microalgae growth and reducing the application cost.
Collapse
Affiliation(s)
- Xiaogang You
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Can Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Libin Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China.
| | - Xuefen Xia
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| |
Collapse
|
7
|
Jin H, Guo Y, Li Y, Chen B, Ma H, Wang H, Wang L, Yuan D. Effective fucoxanthin production in the flagellate alga Poterioochromonas malhamensis by coupling heterotrophic high-cell-density fermentation with illumination. Front Bioeng Biotechnol 2022; 10:1074850. [DOI: 10.3389/fbioe.2022.1074850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
The unicellular flagellate algae Poterioochromonas malhamensis is a potential fucoxanthin-rich resource for sustainable and cost-effective fucoxanthin production. Light and nutrients are critical regulators for the accumulation of fucoxanthin in P. malhamensis. In this study, the maximum fucoxanthin yield of 50.5 mg L−1 and productivity of 6.31 mg L−1 d−1 were achieved by coupling high-cell-density fermentation with illumination. It was found that the combined use of organic and inorganic nitrogen (N) nutrition could improve the fucoxanthin yield as single inorganic or organic N had limitation to enhance cell growth and fucoxanthin accumulation. White light was the optimal light quality for fucoxanthin accumulation. Under white light and a moderate light intensity of 150 μmol m−2 s−1, the highest biomass concentration and fucoxanthin content reached 32.9 g L−1 and 1.56 mg g−1 of dry cell weight (DCW), respectively. This is the first study on effective fucoxanthin production in P. malhamensis by integrating illumination with high-cell-density fermentation, which paved the way for further development of P. malhamensis as a potential source for commercial fucoxanthin production.
Collapse
|
8
|
Potential for the Production of Carotenoids of Interest in the Polar Diatom Fragilariopsis cylindrus. Mar Drugs 2022; 20:md20080491. [PMID: 36005496 PMCID: PMC9409807 DOI: 10.3390/md20080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Carotenoid xanthophyll pigments are receiving growing interest in various industrial fields due to their broad and diverse bioactive and health beneficial properties. Fucoxanthin (Fx) and the inter-convertible couple diadinoxanthin–diatoxanthin (Ddx+Dtx) are acknowledged as some of the most promising xanthophylls; they are mainly synthesized by diatoms (Bacillariophyta). While temperate strains of diatoms have been widely investigated, recent years showed a growing interest in using polar strains, which are better adapted to the natural growth conditions of Nordic countries. The aim of the present study was to explore the potential of the polar diatom Fragilariopsis cylindrus in producing Fx and Ddx+Dtx by means of the manipulation of the growth light climate (daylength, light intensity and spectrum) and temperature. We further compared its best capacity to the strongest xanthophyll production levels reported for temperate counterparts grown under comparable conditions. In our hands, the best growing conditions for F. cylindrus were a semi-continuous growth at 7 °C and under a 12 h light:12 h dark photoperiod of monochromatic blue light (445 nm) at a PUR of 11.7 μmol photons m−2 s−1. This allowed the highest Fx productivity of 43.80 µg L−1 day−1 and the highest Fx yield of 7.53 µg Wh−1, more than two times higher than under ‘white’ light. For Ddx+Dtx, the highest productivity (4.55 µg L−1 day−1) was reached under the same conditions of ‘white light’ and at 0 °C. Our results show that F. cylindrus, and potentially other polar diatom strains, are very well suited for Fx and Ddx+Dtx production under conditions of low temperature and light intensity, reaching similar productivity levels as model temperate counterparts such as Phaeodactylum tricornutum. The present work supports the possibility of using polar diatoms as an efficient cold and low light-adapted bioresource for xanthophyll pigments, especially usable in Nordic countries.
Collapse
|
9
|
Effects of temperature, irradiance, and pH on the growth and biochemical composition of Haslea ostrearia batch-cultured in an airlift plan-photobioreactor. Appl Microbiol Biotechnol 2022; 106:5233-5247. [DOI: 10.1007/s00253-022-12055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/26/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
|
10
|
Iwasaki K, Szabó M, Tamburic B, Evenhuis C, Zavafer A, Kuzhiumparambil U, Ralph P. Investigating the impact of light quality on macromolecular composition of Chaetoceros muelleri. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:554-564. [PMID: 34635201 DOI: 10.1071/fp21131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Diatoms (Bacillariophyceae) are important to primary productivity of aquatic ecosystems. This algal group is also a valuable source of high value compounds that are utilised as aquaculture feed. The productivity of diatoms is strongly driven by light and CO2 availability, and macro- and micronutrient concentrations. The light dependency of biomass productivity and metabolite composition is well researched in diatoms, but information on the impact of light quality, particularly the productivity return on energy invested when using different monochromatic light sources, remains scarce. In this work, the productivity return on energy invested of improving growth rate, photosynthetic activity, and metabolite productivity of the diatom Chaetoceros muelleri under defined wavelengths (blue, red, and green) as well as while light is analysed. By adjusting the different light qualities to equal photosynthetically utilisable radiation, it was found that the growth rate and photosynthetic oxygen evolution was unchanged under white, blue, and green light, but it was lower under red light. Blue light improved the productivity return on energy invested for biomass, total protein, total lipid, total carbohydrate, and in fatty acids production, which would suggest that blue light should be used for aquaculture feed production.
Collapse
Affiliation(s)
- Kenji Iwasaki
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Milán Szabó
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia; and Institute of Plant Biology, Biological Research Centre, Hungary, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Bojan Tamburic
- Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW, Australia
| | - Christian Evenhuis
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Alonso Zavafer
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia; and Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Peter Ralph
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
11
|
Watanabe S, Matsunami N, Okuma I, Naythen PT, Fujibayashi M, Iseri Y, Hao A, Kuba T. Blue light irradiation increases the relative abundance of the diatom Nitzschia palea in co-culture with cyanobacterium Microcystis aeruginosa. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10707. [PMID: 35403347 DOI: 10.1002/wer.10707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Lake eutrophication is associated with cyanobacterial blooms. The pennate diatom Nitzschia palea (N. palea) inhibits the growth of the cyanobacterium Microcystis aeruginosa (M. aeruginosa); therefore, increasing the relative abundance of N. palea may contribute to the inhibition of Microcystis blooms. Several studies have demonstrated that blue light irradiation promotes diatom growth and inhibits cyanobacterial growth. In this study, we evaluated the effects of blue light irradiation on N. palea and M. aeruginosa abundance. Monocultures and co-cultures of N. palea and M. aeruginosa were exposed to blue light and fluorescent light at 32 μmol photons m-2 s-1. The relative abundance of N. palea under fluorescent light decreased gradually, whereas the abundance under blue light was relatively higher (approximately 74% and 98% under fluorescent light and blue light, respectively, at the end of the experiment). The inhibition efficiency of blue light on the growth rate of M. aeruginosa was related to the light intensity. The optimal light intensity was considered 20 μmol photons m-2 s-1 based on the inhibition efficiency of 100%. Blue light irradiation can be used to increase the abundance of N. palea to control Microcystis blooms. PRACTITIONER POINTS: The effects of blue light irradiation on N. palea abundance was discussed. Monocultures and co-cultures of N. palea and M. aeruginosa were exposed to blue light and to fluorescent light. The relative abundance of N. palea increased upon irradiation with blue light in co-culture with M. aeruginosa.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan
| | - Naoki Matsunami
- Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan
| | - Ikki Okuma
- Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan
| | | | - Megumu Fujibayashi
- Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan
| | - Yasushi Iseri
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Aimin Hao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Takahiro Kuba
- Central Water Authority Head Office, Phoenix, Mauritius
| |
Collapse
|
12
|
Hintz NH, Schulze B, Wacker A, Striebel M. Ecological impacts of photosynthetic light harvesting in changing aquatic environments: A systematic literature map. Ecol Evol 2022; 12:e8753. [PMID: 35356568 PMCID: PMC8939368 DOI: 10.1002/ece3.8753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Underwater light is spatially as well as temporally variable and directly affects phytoplankton growth and competition. Here we systematically (following the guidelines of PRISMA-EcoEvo) searched and screened the published literature resulting in 640 individual articles. We mapped the conducted research for the objectives of (1) phytoplankton fundamental responses to light, (2) effects of light on the competition between phytoplankton species, and (3) effects of climate-change-induced changes in the light availability in aquatic ecosystems. Among the fundamental responses of phytoplankton to light, the effects of light intensity (quantity, as measure of total photon or energy flux) were investigated in most identified studies. The effects of the light spectrum (quality) that via species-specific light absorbance result in direct consequences on species competition emerged more recently. Complexity in competition arises due to variability and fluctuations in light which effects are sparsely investigated on community level. Predictions regarding future climate change scenarios included changes in in stratification and mixing, lake and coastal ocean darkening, UV radiation, ice melting as well as light pollution which affect the underwater light-climate. Generalization of consequences is difficult due to a high variability, interactions of consequences as well as a lack in sustained timeseries and holistic approaches. Nevertheless, our systematic literature map, and the identified articles within, provide a comprehensive overview and shall guide prospective research.
Collapse
Affiliation(s)
- Nils Hendrik Hintz
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University of OldenburgWilhelmshavenGermany
| | - Brian Schulze
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Alexander Wacker
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University of OldenburgWilhelmshavenGermany
| |
Collapse
|
13
|
Pigment and Fatty Acid Production under Different Light Qualities in the Diatom Phaeodactylum tricornutum. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diatoms are microscopic biorefineries producing value-added molecules, including unique pigments, triglycerides (TAGs) and long-chain polyunsaturated fatty acids (LC-PUFAs), with potential implications in aquaculture feeding and the food or biofuel industries. These molecules are utilized in vivo for energy harvesting from sunlight to drive photosynthesis and as photosynthetic storage products, respectively. In the present paper, we evaluate the effect of narrow-band spectral illumination on carotenoid, LC-PUFAs and TAG contents in the model diatom Phaeodactylum tricornutum. Shorter wavelengths in the blue spectral range resulted in higher production of total fatty acids, namely saturated TAGs. Longer wavelengths in the red spectral range increased the cell’s content in Hexadecatrienoic acid (HTA) and Eicosapentaenoic acid (EPA). Red wavelengths induced higher production of photoprotective carotenoids, namely fucoxanthin. In combination, the results demonstrate how diatom value-added molecule production can be modulated by spectral light control during the growth. How diatoms could use such mechanisms to regulate efficient light absorption and cell buoyancy in the open ocean is discussed.
Collapse
|
14
|
Gao F, Woolschot S, Cabanelas ITD, Wijffels RH, Barbosa MJ. Light spectra as triggers for sorting improved strains of Tisochrysis lutea. BIORESOURCE TECHNOLOGY 2021; 321:124434. [PMID: 33257166 DOI: 10.1016/j.biortech.2020.124434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
It is known that microalgae respond to different light colors, but not at single-cell level. This work aimed to assess if different light colors could be used as triggers to sort over-producing cells. Six light spectra were used: red + green + blue (RGBL), blue (BL), red (RL), green (GL), blue + red (BRL) and blue + green (BGL). Fluorescence-activated cell sorting method was used to analyse single-cell fluorescence and sort cells. BGL and RGBL lead to the highest fucoxanthin production, while RL showed the lowest. Therefore, it was hypothesized that hyper-producing cells can be isolated efficiently under the adverse condition (RL). After exposure to all light colors for 14 days, the top 1% fucoxanthin producing cells were sorted. A sorted strain from RL showed higher (16-19%) growth rate and fucoxanthin productivity. This study showed how light spectra affected single-cell fucoxanthin and lipid contents and productivities. Also, it supplied an approach to sort for high-fucoxanthin or high-lipid cells.
Collapse
Affiliation(s)
- Fengzheng Gao
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, Netherlands.
| | - Sep Woolschot
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, Netherlands
| | | | - René H Wijffels
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, Netherlands; Faculty Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Maria J Barbosa
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, Netherlands
| |
Collapse
|
15
|
Derwenskus F, Schäfer B, Müller J, Frick K, Gille A, Briviba K, Schmid‐Staiger U, Hirth T. Coproduction of EPA and Fucoxanthin withP. tricornutum– A Promising Approach for Up‐ and Downstream Processing. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Felix Derwenskus
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
- University of Stuttgart Institute of Interfacial Process Engineering and Plasma Technology IGVP Nobelstraße 12 70569 Stuttgart Germany
| | - Benjamin Schäfer
- University of Stuttgart Institute of Interfacial Process Engineering and Plasma Technology IGVP Nobelstraße 12 70569 Stuttgart Germany
| | - Jan Müller
- University of Stuttgart Institute of Interfacial Process Engineering and Plasma Technology IGVP Nobelstraße 12 70569 Stuttgart Germany
| | - Konstantin Frick
- University of Stuttgart Institute of Interfacial Process Engineering and Plasma Technology IGVP Nobelstraße 12 70569 Stuttgart Germany
| | - Andrea Gille
- Max Rubner-Institut Federal Research Institute of Nutrition and Food Haid-und-Neu-Straße 9 76131 Karlsruhe Germany
| | - Karlis Briviba
- Max Rubner-Institut Federal Research Institute of Nutrition and Food Haid-und-Neu-Straße 9 76131 Karlsruhe Germany
| | - Ulrike Schmid‐Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| | - Thomas Hirth
- Karlsruhe Institute of Technology Kaiserstraße 12 76131 Karlsruhe Germany
| |
Collapse
|
16
|
Heidenreich KM, Richardson TL. Photopigment, Absorption, and Growth Responses of Marine Cryptophytes to Varying Spectral Irradiance. JOURNAL OF PHYCOLOGY 2020; 56:507-520. [PMID: 31876286 DOI: 10.1111/jpy.12962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
The underwater light field of lakes, estuaries, and oceans may vary greatly in spectral composition. Phytoplankton in these environments must contain pigments that absorb the available colors of light. If spectral quality changes, acclimation to the new spectral environment would confer an ecological advantage in terms of photosynthesis and growth. Here, we explored the capacity of eight marine cryptophytes to adjust pigmentation in response to changes in spectral irradiance and related effects on light absorption, photosynthetically useable radiation (PUR), and growth rate. The pigment composition of all species changed in some way in response to shifts in spectral irradiance, but not all pigment changes could be considered advantageous in the context of chromatic acclimation. For most species, absorption by chl-a and chl-c2 resulted in highest absorption in the blue region, highest PUR values for blue-light grown cells, and highest growth rates in blue light. The exception was Chroomonas mesostigmatica (CCMP 1168), which contains a high percentage of Cryptophyte-Phycocyanin (Cr-PC) 645, absorbs strongly in the orange-to-red region of the spectrum, and grew fastest under red light. The position and magnitude of the maximum and secondary absorption peak of Cr-PC 569, the phycobiliprotein pigment of Hemiselmis cryptochromatica, varied with spectral irradiance. The underlying cause remains unknown, but may represent a mechanism by which cryptophytes optimize photon capture.
Collapse
Affiliation(s)
- Kristin M Heidenreich
- Department of Biological Sciences and School of the Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Tammi L Richardson
- Department of Biological Sciences and School of the Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina, 29208, USA
| |
Collapse
|
17
|
Transcriptomic and metabolomic adaptation of Nannochloropsis gaditana grown under different light regimes. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Nguyen MK, Moon JY, Bui VKH, Oh YK, Lee YC. Recent advanced applications of nanomaterials in microalgae biorefinery. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101522] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Su Y. The effect of different light regimes on pigments in Coscinodiscus granii. PHOTOSYNTHESIS RESEARCH 2019; 140:301-310. [PMID: 30478709 DOI: 10.1007/s11120-018-0608-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The influence of six different light regimes throughout the photosynthetically active radiation range (from 400 to 700 nm, including blue, green, yellow, red-orange, red, and white) at two intensities (100 and 300 µmol photons m-2 s-1) on pigmentation was assessed for the centric marine diatom Coscinodiscus granii for the first time. Chlorophyll (Chl) a and fucoxanthin were the dominating pigments in all treatments. The cellular concentrations of light harvesting pigment (Chl a, Chl c1 + c2, and fucoxanthin) were higher at 100 than at 300 µmol photons m-2 s-1 at all wavelengths, with the largest increases at red and blue light. The normalized concentrations of photoprotective pigments (violaxanthin, zeaxanthin, diadinoxanthin, and diatoxanthin) were higher at high light intensity than in cells grown at low light intensity. An increase in β-carotene in low light conditions is expected as the increased Chl a was related to increased photosynthetic subunits which require β-carotene (bound to photosystem core). At 300 µmol photons m-2 s-1, yellow light resulted in significantly lower concentration of most of the detected pigments than the other wavelengths. At 100 µmol photons m-2 s-1, W and B light led to statistically lower and higher concentration of most of the detected pigments than the other wavelengths, respectively.
Collapse
Affiliation(s)
- Yanyan Su
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
- Carlsberg Research Laboratory, Bjerregaardsvej 5, 2500, Valby, Denmark.
| |
Collapse
|
20
|
Perkins R, Williamson C, Lavaud J, Mouget JL, Campbell DA. Time-dependent upregulation of electron transport with concomitant induction of regulated excitation dissipation in Haslea diatoms. PHOTOSYNTHESIS RESEARCH 2018; 137:377-388. [PMID: 29663190 PMCID: PMC6182385 DOI: 10.1007/s11120-018-0508-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/11/2018] [Indexed: 06/01/2023]
Abstract
Photoacclimation by strains of Haslea "blue" diatom species H. ostrearia and H. silbo sp. nov. ined. was investigated with rapid light curves and induction-recovery curves using fast repetition rate fluorescence. Cultures were grown to exponential phase under 50 µmol m-2 s-1 photosynthetic available radiation (PAR) and then exposed to non-sequential rapid light curves where, once electron transport rate (ETR) had reached saturation, light intensity was decreased and then further increased prior to returning to near growth light intensity. The non-sequential rapid light curve revealed that ETR was not proportional to the instantaneously applied light intensity, due to rapid photoacclimation. Changes in the effective absorption cross sections for open PSII reaction centres (σPSII') or reaction centre connectivity (ρ) did not account for the observed increases in ETR under extended high light. σPSII' in fact decreased as a function of a time-dependent induction of regulated excitation dissipation Y(NPQ), once cells were at or above a PAR coinciding with saturation of ETR. Instead, the observed increases in ETR under extended high light were explained by an increase in the rate of PSII reopening, i.e. QA- oxidation. This acceleration of electron transport was strictly light dependent and relaxed within seconds after a return to low light or darkness. The time-dependent nature of ETR upregulation and regulated NPQ induction was verified using induction-recovery curves. Our findings show a time-dependent induction of excitation dissipation, in parallel with very rapid photoacclimation of electron transport, which combine to make ETR independent of short-term changes in PAR. This supports a selective advantage for these diatoms when exposed to fluctuating light in their environment.
Collapse
Affiliation(s)
- R Perkins
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK.
| | - C Williamson
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK
- Schools of Biological and Geographical Sciences, University of Bristol, 12 Berkeley Square, Bristol, BS8 1SS, UK
| | - J Lavaud
- UMI 3376 Takuvik, CNRS/Université Laval, Département de Biologie-Pavillon Alexandre Vachon, Québec, QC, G1V 0A6, Canada
| | - J-L Mouget
- Mer-Molécules-Santé (MMS), FR CNRS 3473 IUML, Le Mans Université, Av. O. Messiaen, 72085, Le Mans Cedex 9, France
| | - D A Campbell
- Department of Biology, Mount Allison University, Sackville, NB, E4L3M7, Canada
| |
Collapse
|
21
|
Selvakumar P, Sivashanmugam P. Study on Lipid Accumulation in Novel Oleaginous Yeast Naganishia liquefaciens NITTS2 Utilizing Pre-digested Municipal Waste Activated Sludge: a Low-cost Feedstock for Biodiesel Production. Appl Biochem Biotechnol 2018; 186:731-749. [DOI: 10.1007/s12010-018-2777-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
|
22
|
Lawrenz E, Richardson TL. Differential effects of changes in spectral irradiance on photoacclimation, primary productivity and growth in Rhodomonas salina (Cryptophyceae) and Skeletonema costatum (Bacillariophyceae) in simulated blackwater environments. JOURNAL OF PHYCOLOGY 2017; 53:1241-1254. [PMID: 28815594 DOI: 10.1111/jpy.12578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
The underwater light field in blackwater environments is strongly skewed toward the red end of the electromagnetic spectrum due to blue light absorption by colored dissolved organic matter (CDOM). Exposure of phytoplankton to full spectrum irradiance occurs only when cells are mixed up to the surface. We studied the potential effects of mixing-induced changes in spectral irradiance on photoacclimation, primary productivity and growth in cultures of the cryptophyte Rhodomonas salina and the diatom Skeletonema costatum. We found that these taxa have very different photoacclimation strategies. While S. costatum showed classical complementary chromatic adaption, R. salina showed inverse chromatic adaptation, a strategy previously unknown in the cryptophytes. Transfer of R. salina to periodic full spectrum light (PFSL) significantly enhanced growth rate (μ) by 1.8 times and primary productivity from 0.88 to 1.35 mg C · (mg Chl-1 ) · h-1 . Overall, R. salina was less dependent on PFSL than was S. costatum, showing higher μ and net primary productivity rates. In the high-CDOM simulation, carbon metabolism of the diatom was impaired, leading to suppression of growth rate, short-term 14 C uptake and net primary production. Upon transfer to PFSL, μ of the diatom increased by up to 3-fold and carbon fixation from 2.4 to 6.0 mg C · (mg Chl-1 ) · h-1 . Thus, a lack of PFSL differentially impairs primarily CO2 -fixation and/or carbon metabolism, which, in turn, may determine which phytoplankton dominate the community in blackwater habitats and may therefore influence the structure and function of these ecosystems.
Collapse
Affiliation(s)
- Evelyn Lawrenz
- Marine Science Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Tammi L Richardson
- Department of Biological Sciences, School of the Earth, Ocean and Environment, University of South Carolina, Columbia, South Carolina, 29208, USA
| |
Collapse
|
23
|
Herbstová M, Bína D, Kaňa R, Vácha F, Litvín R. Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. Sci Rep 2017; 7:11976. [PMID: 28931902 PMCID: PMC5607283 DOI: 10.1038/s41598-017-12247-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/06/2017] [Indexed: 01/12/2023] Open
Abstract
Diatoms greatly contribute to carbon fixation and thus strongly influence the global biogeochemical balance. Capable of chromatic acclimation (CA) to unfavourable light conditions, diatoms often dominate benthic ecosystems in addition to their planktonic lifestyle. Although CA has been studied at the molecular level, our understanding of this phenomenon remains incomplete. Here we provide new data to better explain the acclimation-associated changes under red-enhanced ambient light (RL) in diatom Phaeodactylum tricornutum, known to express a red-shifted antenna complex (F710). The complex was found to be an oligomer of a single polypeptide, Lhcf15. The steady-state spectroscopic properties of the oligomer were also studied. The oligomeric assembly of the Lhcf15 subunits is required for the complex to exhibit a red-shifted absorption. The presence of the red antenna in RL culture coincides with the development of a rounded phenotype of the diatom cell. A model summarizing the modulation of the photosynthetic apparatus during the acclimation response to light of different spectral quality is proposed. Our study suggests that toggling between alternative organizations of photosynthetic apparatus and distinct cell morphologies underlies the remarkable acclimation capacity of diatoms.
Collapse
Affiliation(s)
- Miroslava Herbstová
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - David Bína
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Radek Kaňa
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
- Institute of Microbiology, Algatech Centre CAS, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - František Vácha
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Radek Litvín
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
24
|
Miyashita K, Hosokawa M. Fucoxanthin in the management of obesity and its related disorders. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
25
|
Serive B, Nicolau E, Bérard JB, Kaas R, Pasquet V, Picot L, Cadoret JP. Community analysis of pigment patterns from 37 microalgae strains reveals new carotenoids and porphyrins characteristic of distinct strains and taxonomic groups. PLoS One 2017; 12:e0171872. [PMID: 28231253 PMCID: PMC5322898 DOI: 10.1371/journal.pone.0171872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/26/2017] [Indexed: 11/26/2022] Open
Abstract
Phytoplankton, with an estimated 30 000 to 1 000 000 species clustered in 12 phyla, presents a high taxonomic and ecophysiological diversity, reflected by the complex distribution of pigments among the different algal classes. High performance liquid chromatography is the gold standard method for qualitative and quantitative analysis of phytoplankton pigments in seawater and culture samples, but only a few pigments can be used as robust chemotaxonomic markers. A major challenge is thus to identify new ones, characteristic of a strain, species, class or taxon that cannot be currently identified on the basis of its pigment signature. Using an optimized extraction process coupled to a HPLC de-replication strategy, we examined the pigment composition of 37 microalgae strains, representative of the broad taxonomic diversity of marine and freshwater species (excluding cyanobacteria). For each species, the major pigments already described were unambiguously identified. We also observed the presence of several minor unidentified pigments in each chromatogram. The global analysis of pigment compositions revealed a total of 124 pigments, including 98 pigments or derivatives unidentified using the standards. Absorption spectra indicated that 35 corresponded to chlorophyll/porphyrin derivatives, 57 to carotenoids and six to derivatives having both spectral signatures. Sixty-one of these unidentified or new carotenoids and porphyrin derivatives were characteristic of particular strains or species, indicating their possible use as highly specific chemotaxonomic markers capable of identifying one strain out of the 37 selected. We developed a graphical analysis using Gephi software to give a clear representation of pigment communities among the various phytoplankton strains, and to reveal strain-characteristic and shared pigments. This made it possible to reconstruct the taxonomic evolution of microalgae classes, on the basis of the conservation, loss, and/or appearance of pigments.
Collapse
Affiliation(s)
- Benoît Serive
- Laboratoire de Physiologie et Biotechnologie des Algues, IFREMER, BP, Nantes, France
- * E-mail: (BS); (EN)
| | - Elodie Nicolau
- Laboratoire de Physiologie et Biotechnologie des Algues, IFREMER, BP, Nantes, France
- * E-mail: (BS); (EN)
| | - Jean-Baptiste Bérard
- Laboratoire de Physiologie et Biotechnologie des Algues, IFREMER, BP, Nantes, France
| | - Raymond Kaas
- Laboratoire de Physiologie et Biotechnologie des Algues, IFREMER, BP, Nantes, France
| | - Virginie Pasquet
- UMRi CNRS 7266 LIENSs, Université de la Rochelle, La Rochelle, France
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, Université de la Rochelle, La Rochelle, France
| | - Jean-Paul Cadoret
- Laboratoire de Physiologie et Biotechnologie des Algues, IFREMER, BP, Nantes, France
| |
Collapse
|
26
|
Garrido JL, Brunet C, Rodríguez F. Pigment variations in Emiliania huxleyi (CCMP370) as a response to changes in light intensity or quality. Environ Microbiol 2016; 18:4412-4425. [PMID: 27198623 DOI: 10.1111/1462-2920.13373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many studies on photoacclimation examine the pigment responses to changes in light intensity, but variations in light climate in the aquatic environment are also related to changes in spectral composition. We have employed a high-performance liquid chromatography method with improved resolution towards chlorophyll c and fucoxanthin-related xanthophylls to examine the pigment composition of Emiliania huxleyi CCMP 370 under different light intensities and spectral qualities. To maintain its photosynthetic performance, E. huxleyi CCMP370 promotes drastic pigment changes that can be either the interconversion of pigments in pools with the same basic chromophoric structure (Fucoxanthin type or chlorophyll c type), or the ex novo synthesis (Diatoxanthin). These changes are linked either to variations in light quality (Fucoxanthin related xanthophylls) or in light intensity (chlorophyll c3 /Monovinyl chlorophyll c3 , Diadinoxanthin/Diatoxanthin, β,ɛ-carotene/ β,β-carotene). Fucoxanthin and 19'-hexanoyloxyfucoxanthin proportions were highly dependent on spectral conditions. Whereas Fucoxanthin dominated in green and red light, 19'-hexanoyloxyfucoxanthin prevailed under blue spectral conditions. Our results suggest that the huge pigment diversity enhanced the photoacclimative capacities of E. huxleyi to efficiently perform under changing light environments. The ubiquity and success in the global ocean as well as the capacity of E. huxleyi to form large surface blooms might be associated to the plasticity described here.
Collapse
Affiliation(s)
- José L Garrido
- Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| | | | | |
Collapse
|
27
|
Terasaki M, Kawagoe C, Ito A, Kumon H, Narayan B, Hosokawa M, Miyashita K. Spatial and seasonal variations in the biofunctional lipid substances (fucoxanthin and fucosterol) of the laboratory-grown edible Japanese seaweed ( Sargassum horneri Turner) cultured in the open sea. Saudi J Biol Sci 2016; 24:1475-1482. [PMID: 30294215 PMCID: PMC6169547 DOI: 10.1016/j.sjbs.2016.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/09/2015] [Accepted: 01/05/2016] [Indexed: 01/30/2023] Open
Abstract
This work studied the effect of spatial and seasonal differences on the accumulation of functional lipid components in Sargassum horneri (Turner), an edible Japanese seaweed popularly called Akamoku. S. horneri obtained from Samenoura bay area of Japan was laboratory cultured to evaluate the effect of temperature on the accumulation of total lipids (TL), fucoxanthin (Fx) and fucosterol (Fs) by the alga. The laboratory cultured 3 month old S. horneri were cultured in the open sea in two different geographical locations off Usujiri and Matsushima to evaluate the monthly variations, over a year, in their TL, Fx and Fs contents. S. horneri grown off the Usujiri area accumulated the maximum TL close to 193 mg g-1 dry weight during the coldest part of the year. Fx and Fs contributed 5.6% and 16.2% of the TL in S. horneri harvested off Usujiri in February. Further, in spite of being the same species and parent stock, S. horneri grown off the Matsushima area accumulated less TL, Fx and Fs as compared to their Usujiri counterparts. Our study clearly indicates the role of temperature and light apart from nutritional profile and depth of waters where the seaweed was grown on the accumulation of functional lipid components in S. horneri.
Collapse
Affiliation(s)
- Masaru Terasaki
- Department of Health & Environmental Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Chikara Kawagoe
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, Japan
| | - Atsushi Ito
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, Japan
| | - Hiroko Kumon
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, Japan
| | - Bhaskar Narayan
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.,MMS, CSIR-CFTRI, Mysore 570 020, India
| | - Masashi Hosokawa
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Kazuo Miyashita
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
28
|
Estime B, Ren D, Sureshkumar R. Effects of plasmonic film filters on microalgal growth and biomass composition. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Abbasian F, Lockington R, Mallavarapu M, Naidu R. A pyrosequencing-based analysis of microbial diversity governed by ecological conditions in the Winogradsky column. World J Microbiol Biotechnol 2015; 31:1115-26. [DOI: 10.1007/s11274-015-1861-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/25/2015] [Indexed: 01/27/2023]
|
30
|
Vadiveloo A, Moheimani NR, Cosgrove JJ, Bahri PA, Parlevliet D. Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae). ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.02.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Valle KC, Nymark M, Aamot I, Hancke K, Winge P, Andresen K, Johnsen G, Brembu T, Bones AM. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum. PLoS One 2014; 9:e114211. [PMID: 25470731 PMCID: PMC4254936 DOI: 10.1371/journal.pone.0114211] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022] Open
Abstract
Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.
Collapse
Affiliation(s)
- Kristin Collier Valle
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Inga Aamot
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Kasper Hancke
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Kjersti Andresen
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Geir Johnsen
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Tore Brembu
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
- * E-mail:
| |
Collapse
|
32
|
An HC, Bae JH, Kwon ON, Park HG, Park JC. Changes in the growth and biochemical composition of Chaetoceros calcitrans cultures using light-emitting diodes. ACTA ACUST UNITED AC 2014. [DOI: 10.3796/ksft.2014.50.4.447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Jungandreas A, Schellenberger Costa B, Jakob T, von Bergen M, Baumann S, Wilhelm C. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern. PLoS One 2014; 9:e99727. [PMID: 25111046 PMCID: PMC4128583 DOI: 10.1371/journal.pone.0099727] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Diatoms are major contributors to the aquatic primary productivity and show an efficient acclimation ability to changing light intensities. Here, we investigated the acclimation of Phaeodactylum tricornutum to different light quality with respect to growth rate, photosynthesis rate, macromolecular composition and the metabolic profile by shifting the light quality from red light (RL) to blue light (BL) and vice versa. Our results show that cultures pre-acclimated to BL and RL exhibited similar growth performance, photosynthesis rates and metabolite profiles. However, light shift experiments revealed rapid and severe changes in the metabolite profile within 15 min as the initial reaction of light acclimation. Thus, during the shift from RL to BL, increased concentrations of amino acids and TCA cycle intermediates were observed whereas during the BL to RL shift the levels of amino acids were decreased and intermediates of glycolysis accumulated. Accordingly, on the time scale of hours the RL to BL shift led to a redirection of carbon into the synthesis of proteins, whereas during the BL to RL shift an accumulation of carbohydrates occurred. Thus, a vast metabolic reorganization of the cells was observed as the initial reaction to changes in light quality. The results are discussed with respect to a putative direct regulation of cellular enzymes by light quality and by transcriptional regulation. Interestingly, the short-term changes in the metabolome were accompanied by changes in the degree of reduction of the plastoquinone pool. Surprisingly, the RL to BL shift led to a severe inhibition of growth within the first 48 h which was not observed during the BL to RL shift. Furthermore, during the phase of growth arrest the photosynthetic performance did not change. We propose arguments that the growth arrest could have been caused by the reorganization of intracellular carbon partitioning.
Collapse
Affiliation(s)
- Anne Jungandreas
- Department of Plant Physiology, Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Benjamin Schellenberger Costa
- Department of Plant Physiology, Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Torsten Jakob
- Department of Plant Physiology, Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Metabolomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Proteomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Biotechnology, Chemistry and Environmental Engineering, University of Aalborg, Aalborg, Denmark
| | - Sven Baumann
- Department of Metabolomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Christian Wilhelm
- Department of Plant Physiology, Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
34
|
Kotabová E, Jarešová J, Kaňa R, Sobotka R, Bína D, Prášil O. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:734-43. [PMID: 24480388 DOI: 10.1016/j.bbabio.2014.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 02/04/2023]
Abstract
Chromera velia is an alveolate alga associated with scleractinian corals. Here we present detailed work on chromatic adaptation in C. velia cultured under either blue or red light. Growth of C. velia under red light induced the accumulation of a light harvesting antenna complex exhibiting unusual spectroscopic properties with red-shifted absorption and atypical 710nm fluorescence emission at room temperature. Due to these characteristic features the complex was designated "Red-shifted Chromera light harvesting complex" (Red-CLH complex). Its detailed biochemical survey is described in the accompanying paper (Bina et al. 2013, this issue). Here, we show that the accumulation of Red-CLH complex under red light represents a slow acclimation process (days) that is reversible with much faster kinetics (hours) under blue light. This chromatic adaptation allows C. velia to maintain all important parameters of photosynthesis constant under both light colors. We further demonstrated that the C. velia Red-CLH complex is assembled from a 17kDa antenna protein and is functionally connected to photosystem II as it shows variability of chlorophyll fluorescence. Red-CLH also serves as an additional locus for non-photochemical quenching. Although overall rates of oxygen evolution and carbon fixation were similar for both blue and red light conditions, the presence of Red-CLH in C. velia cells increases the light harvesting potential of photosystem II, which manifested as a doubled oxygen evolution rate at illumination above 695nm. This data demonstrates a remarkable long-term remodeling of C. velia light-harvesting system according to light quality and suggests physiological significance of 'red' antenna complexes.
Collapse
Affiliation(s)
- Eva Kotabová
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Jana Jarešová
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Radek Kaňa
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Roman Sobotka
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - David Bína
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Ondřej Prášil
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
35
|
Brunet C, Chandrasekaran R, Barra L, Giovagnetti V, Corato F, Ruban AV. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata. PLoS One 2014; 9:e87015. [PMID: 24475212 PMCID: PMC3901731 DOI: 10.1371/journal.pone.0087015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
Phytoplankton, such as diatoms, experience great variations of photon flux density (PFD) and light spectrum along the marine water column. Diatoms have developed some rapidly-regulated photoprotective mechanisms, such as the xanthophyll cycle activation (XC) and the non-photochemical chlorophyll fluorescence quenching (NPQ), to protect themselves from photooxidative damages caused by excess PFD. In this study, we investigate the role of blue fluence rate in combination with red radiation in shaping photoacclimative and protective responses in the coastal diatom Pseudo-nitzschia multistriata. This diatom was acclimated to four spectral light conditions (blue, red, blue-red, blue-red-green), each of them provided with low and high PFD. Our results reveal that the increase in the XC pool size and the amplitude of NPQ is determined by the blue fluence rate experienced by cells, while cells require sensing red radiation to allow the development of these processes. Variations in the light spectrum and in the blue versus red radiation modulate either the photoprotective capacity, such as the activation of the diadinoxanthin-diatoxanthin xanthophyll cycle, the diadinoxanthin de-epoxidation rate and the capacity of non-photochemical quenching, or the pigment composition of this diatom. We propose that spectral composition of light has a key role on the ability of diatoms to finely balance light harvesting and photoprotective capacity.
Collapse
Affiliation(s)
- Christophe Brunet
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
- * E-mail:
| | - Raghu Chandrasekaran
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Lucia Barra
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Vasco Giovagnetti
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Federico Corato
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, United Kingdom
| |
Collapse
|
36
|
Abiusi F, Sampietro G, Marturano G, Biondi N, Rodolfi L, D'Ottavio M, Tredici MR. Growth, photosynthetic efficiency, and biochemical composition ofTetraselmis suecicaF&M-M33 grown with LEDs of different colors. Biotechnol Bioeng 2013; 111:956-64. [DOI: 10.1002/bit.25014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/04/2013] [Accepted: 07/26/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Fabian Abiusi
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente-Sezione di Microbiologia Agraria; Università degli Studi di Firenze; Piazzale delle Cascine 24 50144 Firenze Italy
| | - Giacomo Sampietro
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente-Sezione di Microbiologia Agraria; Università degli Studi di Firenze; Piazzale delle Cascine 24 50144 Firenze Italy
| | - Giovanni Marturano
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente-Sezione di Microbiologia Agraria; Università degli Studi di Firenze; Piazzale delle Cascine 24 50144 Firenze Italy
| | - Natascia Biondi
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente-Sezione di Microbiologia Agraria; Università degli Studi di Firenze; Piazzale delle Cascine 24 50144 Firenze Italy
| | - Liliana Rodolfi
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente-Sezione di Microbiologia Agraria; Università degli Studi di Firenze; Piazzale delle Cascine 24 50144 Firenze Italy
| | - Massimo D'Ottavio
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente-Sezione di Microbiologia Agraria; Università degli Studi di Firenze; Piazzale delle Cascine 24 50144 Firenze Italy
- Centro di Servizi di Spettrometria di Massa (CISM); Sesto Fiorentino Italy
| | - Mario R. Tredici
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente-Sezione di Microbiologia Agraria; Università degli Studi di Firenze; Piazzale delle Cascine 24 50144 Firenze Italy
| |
Collapse
|
37
|
Cao S, Wang J, Chen D. Settlement and cell division of diatomNaviculacan be influenced by light of various qualities and intensities. J Basic Microbiol 2013; 53:884-94. [DOI: 10.1002/jobm.201200315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/14/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Shan Cao
- State Key Laboratory of Tribology; Tsinghua University; Beijing, P.R. China
| | - Jiadao Wang
- State Key Laboratory of Tribology; Tsinghua University; Beijing, P.R. China
| | - Darong Chen
- State Key Laboratory of Tribology; Tsinghua University; Beijing, P.R. China
| |
Collapse
|
38
|
Lehmann N, Rischer H, Eibl D, Eibl R. Wave-Mixed and Orbitally Shaken Single-Use Photobioreactors for Diatom Algae Propagation. CHEM-ING-TECH 2012. [DOI: 10.1002/cite.201200137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Miao H, Sun L, Tian Q, Wang S, Wang J. Study on the Effect of Monochromatic Light on the Growth of the Red Tide Diatom <i>Skeletonema Costatum</i>. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/opj.2012.23022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Tian J, Yu J. Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 97:152-60. [PMID: 19818642 DOI: 10.1016/j.jphotobiol.2009.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/06/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
Because of depletion of the stratospheric ozone layer, levels of solar ultraviolet-B (UV-B) radiation (280-315 nm), which penetrates the water column to an ecologically-significant depth, are increasing. In order to assess changes in ultrastructure and responses of antioxidant systems of algae during acclimation to enhanced ultraviolet-B radiation, Dunaliella salina was treated with higher dose of UV-B radiation (13.2 kJm(-2) d(-1) dose) in this study. As compared to the control panel (8.8 kJm(-2) d(-1)), the treatment D. salina had many changes in ultrastructures: (1) thylakoids became swelled, and some of them penetrated into the pyrenoid; (2) lipid globules accumulated; (3) the amounts of starch grains increased; (4) cristae of mitochondria disintegrated; (5) inclusions in vacuoles reduced; and (6) cisternae of Golgi dictyosomes became loose and swollen. Enhanced UV-B irradiation also induced different responses of the antioxidant systems in D. salina: (1) contents of TBARS (thiobarbituric acid reacting substance) and H(2)O(2) increased significantly (p<0.05); (2) levels of MAAs (mycosporine-like amino acids) increased at the beginning and subsequently decreased, and finally they leveled off at lower values; (3) there were not apparent variations for carotenoid contents, and contents of chlorophyll a presented a trend of initial increase and ultimate decrease; (4) both ascorbate and glutathione contents increased significantly (p<0.05); and (5) for the enzyme activities, POD activities increased remarkably (p<0.05), and SOD activities declined apparently (p<0.05), and CAT activity in D. salina had slight variations (p>0.05). In addition, growth curve displayed that enhanced UV-B radiation prominently inhibited increase of cell concentration when compared with control panel (p<0.05). Our results indicated that enhanced UV-B radiation caused ultrastructural changes of D. salina and induced different responses of antioxidant systems in D. salina.
Collapse
Affiliation(s)
- Jiyuan Tian
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | | |
Collapse
|
41
|
Terasaki M, Hirose A, Narayan B, Baba Y, Kawagoe C, Yasui H, Saga N, Hosokawa M, Miyashita K. EVALUATION OF RECOVERABLE FUNCTIONAL LIPID COMPONENTS OF SEVERAL BROWN SEAWEEDS (PHAEOPHYTA) FROM JAPAN WITH SPECIAL REFERENCE TO FUCOXANTHIN AND FUCOSTEROL CONTENTS(1). JOURNAL OF PHYCOLOGY 2009; 45:974-980. [PMID: 27034228 DOI: 10.1111/j.1529-8817.2009.00706.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fucoxanthin (Fx) and fucosterol (Fs) are characteristic lipid components of brown seaweeds that afford several health benefits to humans. This article describes the quantitative evaluation of lipids of 15 species of brown seaweeds with specific reference to Fx, Fs, and functional long-chain omega-6/omega-3 polyunsaturated fatty acids (PUFAs). In addition, fatty-acid composition of selected species was also accomplished in the study. Major omega-3 PUFAs in the brown seaweeds analyzed were α-linolenic acid (18:3n-3), octadecatetraenoic acid (18:4n-3), arachidonic acid (20:4n-6), and eicosapentaenoic acid (20:5n-3). Both Fx (mg · g(-1) dry weight [dwt]) and Fs (mg · g(-1) dwt) were determined to be relatively abundant in Sargassum horneri (Turner) C. Agardh (Fx, 3.7 ± 1.6; Fs, 13.4 ± 4.4) and Cystoseira hakodatensis (Yendo) Fensholt (Fx, 2.4 ± 0.9; Fs, 8.9 ± 2.0), as compared with other brown seaweed species. Studies related to seasonal variation in Fx, Fs, and total lipids of six brown algae [S. horneri, C. hakodatensis, Sargassum fusiforme (Harv.) Setch., Sargassum thunbergii (Mertens ex Roth) Kuntze, Analipus japonicus (Harv.) M. J. Wynne, and Melanosiphon intestinalis (D. A. Saunders) M. J. Wynne] indicated that these functional lipid components reached maximum during the period between January and March. The functional lipid components present in these seaweeds have the potential for application as nutraceuticals and novel functional ingredients after their recovery.
Collapse
Affiliation(s)
- Masaru Terasaki
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanAlgatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Atsushi Hirose
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanAlgatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Bhaskar Narayan
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanAlgatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Yuta Baba
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanAlgatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Chikara Kawagoe
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanAlgatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Hajime Yasui
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanAlgatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Naotsune Saga
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanAlgatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Masashi Hosokawa
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanAlgatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Kazuo Miyashita
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanAlgatech Kyowa, Kyowa Concrete Industry Co. Ltd., Hakodate, Hokkaido 040-0051, JapanLaboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 Hokkaido, JapanLaboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
42
|
Saraswathy A, Jayasree R, Baiju K, Gupta AK, Pillai VM. Optimum Wavelength for the Differentiation of Brain Tumor Tissue Using Autofluorescence Spectroscopy. Photomed Laser Surg 2009; 27:425-33. [DOI: 10.1089/pho.2008.2316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ariya Saraswathy
- Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum, Kerala, India
| | - R.S. Jayasree
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - K.V. Baiju
- Department of Statistics, University of Kerala, Kariavattom, Trivandrum, Kerala, India
| | - Arun Kumar Gupta
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - V.P. Mahadevan Pillai
- Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum, Kerala, India
| |
Collapse
|
43
|
Mouget JL, Gastineau R, Davidovich O, Gaudin P, Davidovich NA. Light is a key factor in triggering sexual reproduction in the pennate diatom Haslea ostrearia. FEMS Microbiol Ecol 2009; 69:194-201. [PMID: 19486155 DOI: 10.1111/j.1574-6941.2009.00700.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Sexual reproduction is an obligatory phase in the life cycle of most diatoms, as cell size decreases with successive vegetative divisions and the maximal cell size is only restored by a specialized cell, the auxospore, which follows zygote formation as a result of sexual reproduction. While in pennate diatoms the induction of sexual reproduction depends primarily on cell-cell interactions, the importance of different external factors for the induction of sexual reproduction is less well known. Here, we investigated the effects of light on sexualization in the marine benthic pennate diatom Haslea ostrearia (Gaillon) R. Simonsen. Compatible clones were crossed and exposed to different combinations of light levels, qualities, and photoperiods. Light was found to be a key factor for sexualization, and to a certain extent, to control auxosporulation in H. ostrearia. The light conditions most favorable for sexual reproduction were low irradiances (<50 micromolphotons m(-2) s(-1)) and short photoperiods (6-10 h), conditions that prevail during winter, and to a lesser extent, the higher irradiances and longer photoperiods that correspond to the spring and fall, when blooms of this organism form in the natural environment. Auxospore formation was very rare in continuous light, and maximum in presence of red radiation, while it was never observed in darkness or in radiation other than red.
Collapse
Affiliation(s)
- Jean-Luc Mouget
- Laboratoire de Physiologie, Université du Maine, Le Mans, France.
| | | | | | | | | |
Collapse
|
44
|
Cepák V, Pribyl P, Vítová M. The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal alga Scenedesmus obliquus. Folia Microbiol (Praha) 2006; 51:342-8. [PMID: 17007440 DOI: 10.1007/bf02931828] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The color of light (white, red, blue, and green) had a significant effect on the growth and reproductive processes (both in the nucleocytoplasmic and chloroplast compartment of the cells) in synchronous cultures of Scenedesmus obliquus. This effect decreased in the order red > white > blue > green. In the same order, the light phase of the cell cycle (time when first autospores started to be released) was prolonged. The length of dark phase (time when 100 % of daughters were allowed to release from mothers) was not influenced and was the same for all colors. Critical cell size for cell division in green light was shifted to a smaller size (compared with cells grown in other lights) and so was the size of released daughters. The nuclear cycle was slowed in blue and even in green light, contrary to cells grown in red and white light. At the beginning of the cell cycle, one-nucleus daughters possess approximately 10 nucleoids; during the cell cycle their number doubled in all variants before the division of nuclei. Both events were delayed in cultures grown more slowly most markedly in green light. Smaller daughters in the green variant possessed a lower number of nucleoids. Motile cells released in continuous green or blue lights but not in red one were rarely observed.
Collapse
Affiliation(s)
- V Cepák
- Center of Phycology, Institute of Botany, Academy of Sciences of the Czech Republic, Trebon, Czechia.
| | | | | |
Collapse
|