1
|
Ambardar S, Howell MC, Mayilsamy K, McGill A, Green R, Mohapatra S, Voronine DV, Mohapatra SS. Ultrafast-UV laser integrating cavity device for inactivation of SARS-CoV-2 and other viruses. Sci Rep 2022; 12:11935. [PMID: 35831374 PMCID: PMC9279343 DOI: 10.1038/s41598-022-13670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
Ultraviolet (UV) irradiation-based methods used for viral inactivation have provided an important avenue targeting severe acute respiratory-syndrome coronavirus-2 (SARS-CoV-2) virus. A major problem with state-of-the-art UV inactivation technology is that it is based on UV lamps, which have limited efficiency, require high power, large doses, and long irradiation times. These drawbacks limit the use of UV lamps in air filtering systems and other applications. To address these limitations, herein we report on the fabrication of a device comprising a pulsed nanosecond 266 nm UV laser coupled to an integrating cavity (LIC) composed of a UV reflective material, polytetrafluoroethylene. Previous UV lamp inactivation cavities were based on polished walls with specular reflections, but the diffuse reflective UV ICs were not thoroughly explored for virus inactivation. Our results show that LIC device can inactivate several respiratory viruses including SARS-CoV-2, at ~ 1 ms effective irradiation time, with > 2 orders of magnitude higher efficiency compared to UV lamps. The demonstrated 3 orders of magnitude cavity enhancement relative to direct exposure is crucial for the development of efficient real-time UV air and water purification systems. To the best of our knowledge this is the first demonstration of LIC application for broad viral inactivation with high efficiency.
Collapse
Affiliation(s)
- Sharad Ambardar
- Department of Medical Engineering, University of South Florida, USF Cherry Drive ISA 6049, Tampa, FL, 33620, USA
| | - Mark C Howell
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2511, Tampa, FL, 33612, USA
| | - Karthick Mayilsamy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2525, Tampa, FL, 33612, USA
| | - Andrew McGill
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2511, Tampa, FL, 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2525, Tampa, FL, 33612, USA
| | - Ryan Green
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2511, Tampa, FL, 33612, USA
| | - Subhra Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA.
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2525, Tampa, FL, 33612, USA.
| | - Dmitri V Voronine
- Department of Medical Engineering, University of South Florida, USF Cherry Drive ISA 6049, Tampa, FL, 33620, USA.
- Department of Physics, University of South Florida, Tampa, FL, 33612, USA.
| | - Shyam S Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA.
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2511, Tampa, FL, 33612, USA.
| |
Collapse
|
2
|
Evaluation of Ultraviolet Type C Radiation in Inactivating Relevant Veterinary Viruses on Experimentally Contaminated Surfaces. Pathogens 2022; 11:pathogens11060686. [PMID: 35745540 PMCID: PMC9231353 DOI: 10.3390/pathogens11060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Many swine farms employ UVC treatment in employees' personal belongings and small tools entering farms as part of the biosecurity protocol to decrease the risk of pathogen introduction into the operation. However, the UVC efficacy in some veterinary viruses is not fully evaluated. This study evaluated the efficacy of ultraviolet type C (UVC) radiation in inactivating seven relevant veterinary viruses: Swine Poxvirus (SwPV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Porcine Epidemic Diarrhea Virus (PEDV), Swine Influenza Virus (SIV), Bovine Viral Diarrhea Virus (BVDV), Porcine Parvovirus (PPV), and Senecavirus A (SVA). The experimentally contaminated materials included polystyrene and filter paper. The samples were exposed to UVC for 5 min (total dose of 360 mJ/cm2). The UVC treatment caused a decrease over 4 log10 in SwPV titer on the polystyrene surface, whereas it consistently reduced about 5 log10 in PPV and SVA samples. No viable virus was recovered from PRRSV, PEDV, SIV, and BVDV samples. In filter paper, conversely, the efficacy was reduced. This study provides essential information on the inactivation effectiveness of a specific dose of UVC on important veterinary viruses, further supporting the rational application and strategic guidance for UVC radiation use to disinfect materials.
Collapse
|
3
|
Bhardwaj SK, Singh H, Deep A, Khatri M, Bhaumik J, Kim KH, Bhardwaj N. UVC-based photoinactivation as an efficient tool to control the transmission of coronaviruses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148548. [PMID: 34465056 PMCID: PMC8238411 DOI: 10.1016/j.scitotenv.2021.148548] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 05/04/2023]
Abstract
The ongoing COVID-19 pandemic made us re-realize the importance of environmental disinfection and sanitation in indoor areas, hospitals, and clinical rooms. UVC irradiation of high energy and short wavelengths, especially in the 200-290-nm range possesses the great potential for germicidal disinfection. These properties of UVC allow to damage or destruct the nucleic acids (DNA/RNA) in diverse microbes (e.g., bacteria, fungi, and viruses). UVC light can hence be used as a promising tool for prevention and control of their infection or transmission. The present review offers insights into the historical perspective, mode of action, and recent advancements in the application of UVC-based antiviral therapy against coronaviruses (including SARS CoV-2). Moreover, the application of UVC lights in the sanitization of healthcare units, public places, medical instruments, respirators, and personal protective equipment (PPE) is also discussed. This article, therefore, is expected to deliver a new path for the developments of UVC-based viricidal approach.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Harpreet Singh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Akash Deep
- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
4
|
Minamikawa T, Koma T, Suzuki A, Nagamatsu K, Yasui T, Yasutomo K, Nomaguchi M. Inactivation of SARS-CoV-2 by deep ultraviolet light emitting diode: A review. JAPANESE JOURNAL OF APPLIED PHYSICS 2021; 60:090501. [DOI: 10.35848/1347-4065/ac19d1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Watanabe S, Fukushi S, Harada T, Shimojima M, Yoshikawa T, Kurosu T, Kaku Y, Morikawa S, Saijo M. Effective inactivation of Nipah virus in serum samples for safe processing in low-containment laboratories. Virol J 2020; 17:151. [PMID: 33036623 PMCID: PMC7547523 DOI: 10.1186/s12985-020-01425-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
Background Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe encephalitis and respiratory disease with a high mortality rate in humans. During large outbreaks of the viral disease, serological testing of serum samples could be a useful diagnostic tool, which could provide information on not only the diagnosis of NiV disease but also the history of an individual with previous exposure to the virus, thereby supporting disease control. Therefore, an efficient method for the inactivation of NiV in serum samples is required for serological diagnosis. Methods We determined the optimal conditions for the inactivation of NiV infectivity in human serum using heating and UV treatment. The inactivation method comprised UV irradiation with a cover of aluminum foil for 30 min and heating at 56 °C for 30 min. Results With an optimized protocol for virus inactivation, NiV infectivity in serum samples (containing 6.0 × 105 TCID50) was completely inactivated. Conclusions We developed a recommended protocol for the effective inactivation of NiV. This protocol would enable a regional or local laboratory to safely transport or process samples, including NiV, for serological testing in its biosafety level-2 facility.
Collapse
Affiliation(s)
- Shumpei Watanabe
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan. .,Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan.
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Toshihiko Harada
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan. shimoji-@nih.go.jp
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Yoshihiro Kaku
- Division of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan.,Division of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan. .,Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| |
Collapse
|
6
|
Hadi J, Dunowska M, Wu S, Brightwell G. Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses. Pathogens 2020; 9:E737. [PMID: 32911671 PMCID: PMC7558314 DOI: 10.3390/pathogens9090737] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 is a single-stranded RNA virus classified in the family Coronaviridae. In this review, we summarize the literature on light-based (UV, blue, and red lights) sanitization methods for the inactivation of ssRNA viruses in different matrixes (air, liquid, and solid). The rate of inactivation of ssRNA viruses in liquid was higher than in air, whereas inactivation on solid surfaces varied with the type of surface. The efficacy of light-based inactivation was reduced by the presence of absorptive materials. Several technologies can be used to deliver light, including mercury lamp (conventional UV), excimer lamp (UV), pulsed-light, and light-emitting diode (LED). Pulsed-light technologies could inactivate viruses more quickly than conventional UV-C lamps. Large-scale use of germicidal LED is dependent on future improvements in their energy efficiency. Blue light possesses virucidal potential in the presence of exogenous photosensitizers, although femtosecond laser (ultrashort pulses) can be used to circumvent the need for photosensitizers. Red light can be combined with methylene blue for application in medical settings, especially for sanitization of blood products. Future modelling studies are required to establish clearer parameters for assessing susceptibility of viruses to light-based inactivation. There is considerable scope for improvement in the current germicidal light-based technologies and practices.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand;
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
7
|
Blázquez E, Rodríguez C, Ródenas J, Segalés J, Pujols J, Polo J. Biosafety steps in the manufacturing process of spray-dried plasma: a review with emphasis on the use of ultraviolet irradiation as a redundant biosafety procedure. Porcine Health Manag 2020; 6:16. [PMID: 32690994 PMCID: PMC7363457 DOI: 10.1186/s40813-020-00155-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/22/2020] [Indexed: 01/30/2023] Open
Abstract
Spray dried plasma (SDP) is a functional protein source obtained from blood of healthy animals, approved by the veterinary authorities from animals declared to be fit for slaughter for human consumption. Blood of these animals is collected at the slaughterhouse, treated with an anticoagulant, chilled and transported to industrial facilities in which blood is centrifuged to separate the red blood cells from the plasma fraction. Plasma is then concentrated, and spray dried at high temperatures (80 °C throughout its substance) to convert it in a powder. Such method preserves the biological activity of its proteins, mainly albumins and globulins. SDP is mainly used in pig feed diets to significantly improve daily gain, feed intake, production efficiency, and to reduce post-weaning lag caused by the appearance of post-weaning diarrhea. Although SDP is considered a safe product and its manufacturing process consists of several biosafety steps, the security of the SDP is often questioned due to its nature as raw blood by-product, especially when emergent or re-emergent pathogens appear. This review provides an evaluation and validation of the different safety steps present in the manufacturing process of SDP, with special focus on a new redundant pathogen inactivation step, the UV-C irradiation, that may be implemented in the manufacturing process of the SDP. Overall results showed that the manufacturing process of SDP is safe and the UV-C radiation was effective in inactivating a wide range of bacteria and viruses spiked and naturally present in commercially collected liquid animal plasma and it can be implemented as a redundant biosafety step in the manufacturing process of the SDP.
Collapse
Affiliation(s)
- Elena Blázquez
- APC EUROPE, S.L., Avda, Sant Julià 246-258, Pol. Ind. El Congost, E-08403 Granollers, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona Spain
| | - Carmen Rodríguez
- APC EUROPE, S.L., Avda, Sant Julià 246-258, Pol. Ind. El Congost, E-08403 Granollers, Spain
| | - Jesús Ródenas
- APC EUROPE, S.L., Avda, Sant Julià 246-258, Pol. Ind. El Congost, E-08403 Granollers, Spain
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona Spain
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
| | - Joan Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona Spain
| | - Javier Polo
- APC EUROPE, S.L., Avda, Sant Julià 246-258, Pol. Ind. El Congost, E-08403 Granollers, Spain
- APC LLC, 2425 SE Oak Tree Court, Ankeny, IA 50021 USA
| |
Collapse
|
8
|
Singh N, Bhunia S, Purkayastha P. Silver nanoclusters are probably better and cheaper protecting agents for protein from UVC radiation compared to gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117911. [PMID: 31839581 DOI: 10.1016/j.saa.2019.117911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
It has been shown experimentally that the albumin proteins can be significantly protected by silver nanoclusters (AgNCs) from the adverse effects of UVC radiation. The parameters have been compared with the effects of gold nanoclusters (AuNCs) under similar circumstances. The protection depends on the absorptive power of the metal cluster. Since serum albumin is found in blood and lysozyme in tears, saliva, sweat, and other body fluids, hence these are often vulnerable to attack by the exposure to UV radiation. It is also shown that, the AgNCs provide greater benefits over the application of AuNCs by being more biocompatible and cheap. Au being an expensive material, a cheaper protective option is always viable as the protective mechanism depends on the radiation absorption capability of the metal core. Moreover, it has also been shown that glucose helps in protecting the proteins attached to the AgNCs.
Collapse
Affiliation(s)
- Nripendra Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India
| | - Soumyadip Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India.
| |
Collapse
|
9
|
Harada T, Fukushi S, Kurosu T, Yoshikawa T, Shimojima M, Tanabayashi K, Saijo M. Inactivation of severe fever with thrombocytopenia syndrome virus for improved laboratory safety. JOURNAL OF BIOSAFETY AND BIOSECURITY 2020. [DOI: 10.1016/j.jobb.2020.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Ultraviolet germicidal efficacy as a function of pulsed radiation parameters studied by spore film dosimetry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:69-75. [PMID: 29125984 DOI: 10.1016/j.jphotobiol.2017.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 11/22/2022]
Abstract
Disinfection by pulsed ultraviolet (UV) radiation is a commonly used method, e.g. in industry or medicine and can be carried out either with lasers or broadband UV radiation sources. Detrimental effects to biological materials depending on parameters such as pulse duration τ or pulse repetition frequency fp are well-understood for pulsed coherent UV radiation, however, relatively little is known for its incoherent variant. Therefore, within this work, it is the first time that disinfection rates of pulsed and continuous (cw) incoherent UV radiation studied by means of spore film dosimetry are presented, compared with each other, and in a second step further investigated regarding two pulse parameters. After analyzing the dynamic range of the Bacillus subtilis spore films with variable cw radiant exposures H=5-100Jm-2 a validation of the Bunsen-Roscoe law revealed its restricted applicability and a 28% enhanced detrimental effect of pulsed compared to cw incoherent UV radiation. A radiant exposure H=50Jm-2 and an irradiance E=0.5Wm-2 were found to be suitable parameters for an analysis of the disinfection rate as a function of τ=0.5-10ms and fp=25-500Hz unveiling that shorter pulses and lower frequencies inactivate more spores. Finally, the number of applied pulses as well as the experiment time were considered with regard to spore film disinfection.
Collapse
|
11
|
Meunier SM, Sasges MR, Aucoin MG. Evaluating ultraviolet sensitivity of adventitious agents in biopharmaceutical manufacturing. J Ind Microbiol Biotechnol 2017; 44:893-909. [PMID: 28283956 PMCID: PMC7087614 DOI: 10.1007/s10295-017-1917-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/05/2017] [Indexed: 12/31/2022]
Abstract
Incidents of contamination in biopharmaceutical production have highlighted the need to apply alternative or supplementary disinfection techniques. Ultraviolet (UV) irradiation is a well-established method for inactivating a broad range of microorganisms, and is therefore a good candidate as an orthogonal technique for disinfection. To apply UV as a safeguard against adventitious agents, the UV sensitivity of these target agents must be known so that the appropriate dose of UV may be applied to achieve the desired level of inactivation. This document compiles and reviews experimentally derived 254 nm sensitivities of organisms relevant to biopharmaceutical production. In general, different researchers have found similar sensitivity values despite a lack of uniformity in experimental design or standardized quantification techniques. Still, the lack of consistent methodologies has led to suspicious UV susceptibilities in certain instances, justifying the need to create a robust collection of sensitivity values that can be used in the design and sizing of UV systems for the inactivation of adventitious agents.
Collapse
Affiliation(s)
- Sarah M Meunier
- Trojan Technologies, 3020 Gore Rd., London, ON, N5V 4T7, Canada.,Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Michael R Sasges
- Trojan Technologies, 3020 Gore Rd., London, ON, N5V 4T7, Canada.
| | - Marc G Aucoin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
12
|
Effect of Moderate UVC Irradiation on Bovine Serum Albumin and Complex with Antimetabolite 5-Fluorouracil: Fluorescence Spectroscopic and Molecular Modelling Studies. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/315764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interaction of antimetabolite 5-fluorouracil (5FU) with bovine serum albumin (BSA) under UVC (253.7 nm) irradiation was investigated in the present study using UV-Vis spectroscopy, steady state/time resolved fluorescence spectroscopic techniques. The stability of protein was found to be very strong when BSA gets bind to 5FU and moreover it is compared with the free BSA under UVC irradiation. From the fluorescence spectroscopic study, the stability of the complex was found to acquire 2-fold stronger than free protein. From the molecular modelling studies, we came to know the hydrogen bonds between BSA and antimetabolite 5FU are strong, up to 70.4 J/m2 under UVC irradiation.
Collapse
|
13
|
Rossitto PV, Cullor JS, Crook J, Parko J, Sechi P, Cenci-Goga BT. Effects of UV irradiation in a continuous turbulent flow UV reactor on microbiological and sensory characteristics of cow's milk. J Food Prot 2012; 75:2197-207. [PMID: 23212017 DOI: 10.4315/0362-028x.jfp-12-036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dairy industry under current pasteurization conditions (15 s at 72°C) and sanitary standards achieves a safe product with excellent quality. In an ever-competitive market there is still a need to improve product quality and extend shelf life of dairy products to increase competitiveness and open up new markets. In an attempt to test the effect of UV irradiation on microbiota of fluid milk, a continuous flow UV system at 254 nm was used to treat 3.5 and 2% fat milk at two UV doses (880 and 1,760 J liter(-1)). Milk was obtained from three processors, and two lots from each processor were assessed. To assess the impact on the most descriptive native microbiota in pasteurized milk after UV illumination, the product was held at two storage temperatures (4 and 7°C) and tested weekly for 5 weeks for aerobic plate counts (psychrotrophic and mesophilic bacteria), laboratory pasteurization counts, aerobic sporeformers, coliform organisms, and titratable acidity. Microbial counts for all tested microorganisms were lower in UV-treated milk when compared with control throughout storage at 4 and 7°C in both 3.5 and 2% fat milk. Sensory analysis indicated that there is a sensory defect associated with UV treatment at the wavelength used.
Collapse
Affiliation(s)
- P V Rossitto
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California at Davis, Tulare, CA 93274, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bani-Yaseen AD. Solvatochromic and fluorescence behavior of sulfisoxazole. J Fluoresc 2010; 21:1061-7. [PMID: 21184259 DOI: 10.1007/s10895-010-0778-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 11/23/2010] [Indexed: 11/25/2022]
Abstract
The Fluorescence spectroscopic and solvatochromic behavior of Sulfisoxazole, a sulfa drug with antimicrobial activities, in various pure solvents of different polarity and hydrogen bonding capability is reported. The fluorescence emission spectrum of sulfisoxazole was found to be solvent polarity dependent, where a notable red shift in emission maximum was observed with increasing solvent polarity as well as hydrogen bonding capability. The effects of the latter two solvent parameters were quantitatively investigated using the methods of Lippert-Mataga and solvatochromic comparison method (SCM) that is based on the Kamlet-Taft equation. Particularly, the Lippert-Mataga method was applied to estimate the dipole moment of the excited state (μ(e)) upon plotting Stokes shift versus solvent polarizability (Δf), where a value of 11.54 Debye was obtained. On the other hand, applying the multiple regression analysis to the SCM method revealed that solvent polarizability (π*) and hydrogen-bond donor capability (α) approximately equally stabilize sulfisoxazole in the excited state with minor destabilization contribution by the hydrogen-bond acceptor capability (β). These findings revealed that the excited state of sulfisoxazole is stabilized by polar solvents, indicating that this drug molecules exhibit larger dipole moment in the excited state than in the ground state, which in turn implies that a potential intramolecular charge transfer (ICT) occurs after excitation.
Collapse
Affiliation(s)
- Abdulilah Dawoud Bani-Yaseen
- Department of Chemistry, Faculty of Science, Taibah University, Al-MAdinah Al-Munawarah, P.O. Box 30002, Kingdom of Saudi Arabia.
| |
Collapse
|
15
|
Li J, Hirota K, Yumoto H, Matsuo T, Miyake Y, Ichikawa T. Enhanced germicidal effects of pulsed UV-LED irradiation on biofilms. J Appl Microbiol 2010; 109:2183-90. [DOI: 10.1111/j.1365-2672.2010.04850.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Lu G, Li C, Liu P, Cui H, Xia Y, Wang J. Inactivation of microorganisms in apple juice using an ultraviolet silica-fiber optical device. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 100:167-72. [DOI: 10.1016/j.jphotobiol.2010.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/02/2010] [Accepted: 06/07/2010] [Indexed: 11/16/2022]
|
17
|
Song H, Li J, Shi S, Yan L, Zhuang H, Li K. Thermal stability and inactivation of hepatitis C virus grown in cell culture. Virol J 2010; 7:40. [PMID: 20167059 PMCID: PMC2834657 DOI: 10.1186/1743-422x-7-40] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/18/2010] [Indexed: 12/22/2022] Open
Abstract
Background Hepatitis C virus (HCV) is a blood-borne flavivirus that infects many millions of people worldwide. Relatively little is known, however, concerning the stability of HCV and reliable procedures for inactivating this virus. Methods In the current study, the thermostability of cell culture-derived HCV (HCVcc, JFH-1 strain) under different environmental temperatures (37°C, room temperature, and 4°C) and the ability of heat, UVC light irradiation, and aldehyde and detergent treatments to inactivate HCVcc were evaluated. The infectious titers of treated viral samples were determined by focus-forming unit (FFU) assay using an indirect immunofluorescence assay for HCV NS3 in hepatoma Huh7-25-CD81 cells highly permissive for HCVcc infection. MTT cytotoxicity assay was performed to determine the concentrations of aldehydes or detergents at which they were no longer cytotoxic. Results HCVcc in culture medium was found to survive 37°C and room temperature (RT, 25 ± 2°C) for 2 and 16 days, respectively, while the virus was relatively stable at 4°C without drastic loss of infectivity for at least 6 weeks. HCVcc in culture medium was sensitive to heat and could be inactivated in 8 and 4 min when incubated at 60°C and 65°C, respectively. However, at 56°C, 40 min were required to eliminate HCVcc infectivity. Addition of normal human serum to HCVcc did not significantly alter viral stability at RT or its susceptibility to heat. UVC light irradiation (wavelength = 253.7 nm) with an intensity of 450 μW/cm2 efficiently inactivated HCVcc within 2 min. Exposures to formaldehyde, glutaraldehyde, ionic or nonionic detergents all destroyed HCVcc infectivity effectively, regardless of whether the treatments were conducted in the presence of cell culture medium or human serum. Conclusions The results provide quantitative evidence for the potential use of a variety of approaches for inactivating HCV. The ability of HCVcc to survive ambient temperatures warrants precautions in handling and disposing of objects and materials that may have been contaminated with HCV.
Collapse
Affiliation(s)
- Hongshuo Song
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|