1
|
Guo X, He L, Sun J, Ye H, Yin C, Zhang W, Han H, Jin W. Exploring the Potential of Anthocyanins for Repairing Photoaged Skin: A Comprehensive Review. Foods 2024; 13:3506. [PMID: 39517290 PMCID: PMC11545459 DOI: 10.3390/foods13213506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Long-term exposure to ultraviolet (UV) rays can result in skin photoaging, which is primarily characterized by dryness, roughness, pigmentation, and a loss of elasticity. However, the clinical drugs commonly employed to treat photoaged skin often induce adverse effects on the skin. Anthocyanins (ACNs) are water-soluble pigments occurring abundantly in various flowers, fruits, vegetables, and grains and exhibiting a range of biological activities. Studies have demonstrated that ACNs contribute to the repair of photoaged skin due to their diverse biological characteristics and minimal side effects. Evidence suggests that the stability of ACNs can be enhanced through encapsulation or combination with other substances to improve their bioavailability and permeability, ultimately augmenting their efficacy in repairing photoaged skin. A growing body of research utilizing cell lines, animal models, and clinical studies has produced compelling data demonstrating that ACNs mitigate skin photoaging by reducing oxidative stress, alleviating the inflammatory response, improving collagen synthesis, alleviating DNA damage, and inhibiting pigmentation. This review introduces sources of ACNs while systematically summarizing their application forms as well as mechanisms for repairing photoaged skin. Additionally, it explores the potential role of ACNs in developing functional foods. These findings may provide valuable insight into using ACNs as promising candidates for developing functional products aimed at repairing photoaged skin.
Collapse
Affiliation(s)
- Xinmiao Guo
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Linlin He
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Jiaqiang Sun
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Hua Ye
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Cuiyuan Yin
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Weiping Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
| | - Hao Han
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Black Organic Food Engineering Center, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wengang Jin
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
2
|
Kukula-Koch W, Dycha N, Lechwar P, Lasota M, Okoń E, Szczeblewski P, Wawruszak A, Tarabasz D, Hubert J, Wilkołek P, Halabalaki M, Gaweł-Bęben K. Vaccinium Species-Unexplored Sources of Active Constituents for Cosmeceuticals. Biomolecules 2024; 14:1110. [PMID: 39334876 PMCID: PMC11430151 DOI: 10.3390/biom14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The genus Vaccinium is represented by shrubs growing in a temperate climate that have been used for ages as traditional remedies in the treatment of digestive problems, in diabetes, renal stones or as antiseptics due to the presence of polyphenols (anthocyanins, flavonoids and tannins) in their fruits and leaves. Recent studies confirm their marked potential in the treatment of skin disorders and as skin care cosmetics. The aim of this review is to present the role of Vaccinium spp. as cosmetic products, highlight their potential and prove the biological properties exerted by the extracts from different species that can be useful for the preparation of innovative cosmetics. In the manuscript both skin care and therapeutic applications of the representatives of this gender will be discussed that include the antioxidant, skin lightening, UV-protective, antimicrobial, anti-inflammatory, and chemopreventive properties to shed new light on these underestimated plants.
Collapse
Affiliation(s)
- Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | - Natalia Dycha
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | - Paulina Lechwar
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| | - Magdalena Lasota
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| | - Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Paweł Szczeblewski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland;
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Dominik Tarabasz
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | | | - Piotr Wilkołek
- Department of Clinical Diagnostics and Veterinary Dermatology, University of Life Sciences in Lublin, 32 Gleboka Str., 20-612 Lublin, Poland
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| |
Collapse
|
3
|
Zhong X, Deng Y, Yang H, Du X, Liu P, Du Y. Role of autophagy in skin photoaging: A narrative review. Medicine (Baltimore) 2024; 103:e37178. [PMID: 38394552 PMCID: PMC11309671 DOI: 10.1097/md.0000000000037178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
As the largest organ of the human body, the skin serves as the primary barrier against external damage. The continuous increase in human activities and environmental pollution has resulted in the ongoing depletion of the ozone layer. Excessive exposure to ultraviolet (UV) radiation enhances the impact of external factors on the skin, leading to photoaging. Photoaging causes physical and psychological damage to the human body. The prevention and management of photoaging have attracted increased attention in recent years. Despite significant progress in understanding and mitigating UV-induced photoaging, the precise mechanisms through which autophagy contributes to the prevention of photoaging remain unclear. Given the important role of autophagy in repairing UV-induced DNA damage and scavenging oxidized lipids, autophagy is considered a novel strategy for preventing the occurrence of photoaging and other UV light-induced skin diseases. This review aims to elucidate the biochemical and clinical features of photoaging, the relationship of skin photoaging and chronological aging, the mechanisms underlying skin photoaging and autophagy, and the role of autophagy in skin photoaging.
Collapse
Affiliation(s)
- Xiaojiao Zhong
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ying Deng
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongqiu Yang
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoshuang Du
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ping Liu
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yu Du
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Alsadi N, Yasavoli-Sharahi H, Mueller R, Cuenin C, Chung F, Herceg Z, Matar C. Protective Mechanisms of Polyphenol-Enriched Blueberry Preparation in Preventing Inflammation in the Skin against UVB-Induced Damage in an Animal Model. Antioxidants (Basel) 2023; 13:25. [PMID: 38275645 PMCID: PMC10812677 DOI: 10.3390/antiox13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
UVB significantly impacts the occurrence of cutaneous disorders, ranging from inflammatory to neoplastic diseases. Polyphenols derived from plants have been found to exhibit photoprotective effects against various factors that contribute to skin cancer. During the fermentation of the polyphenol-enriched blueberry preparation (PEBP), small oligomers of polyphenols were released, thus enhancing their photoprotective effects. This study aimed to investigate the protective effects of PEBP on UVB-induced skin inflammation. Topical preparations of polyphenols were applied to the skin of dorsally shaved mice. Mice were subsequently exposed to UVB and were sacrificed 90 min after UVB exposure. This study revealed that pretreatment with PEBP significantly inhibited UVB-induced recruitment of mast and neutrophil cells and prevented the loss of skin thickness. Furthermore, the findings show that PEBP treatment resulted in the downregulation of miR-210, 146a, and 155 and the upregulation of miR-200c and miR-205 compared to the UVB-irradiated mice. Additionally, PEBP was found to reduce the expression of IL-6, IL-1β, and TNFα, inhibiting COX-2 and increasing IL-10 after UVB exposure. Moreover, DNA methylation analysis indicated that PEBP might potentially reduce the activation of inflammation-related pathways such as MAPK, Wnt, Notch, and PI3K-AKT signaling. Our finding suggests that topical application of PEBP treatment may effectively prevent UVB-induced skin damage by inhibiting inflammation.
Collapse
Affiliation(s)
- Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
| | - Rudolf Mueller
- Pathology and Laboratory Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
| | - Felicia Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan University, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Kotb EA, El-Shiekh RA, Abd-Elsalam WH, El Sayed NSED, El Tanbouly N, El Senousy AS. Protective potential of frankincense essential oil and its loaded solid lipid nanoparticles against UVB-induced photodamage in rats via MAPK and PI3K/AKT signaling pathways; A promising anti-aging therapy. PLoS One 2023; 18:e0294067. [PMID: 38127865 PMCID: PMC10735031 DOI: 10.1371/journal.pone.0294067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023] Open
Abstract
Frankincense oil has gained increased popularity in skin care, yet its anti-aging effect remains unclear. The current study aimed to investigate the anti-photoaging effect of frankincense (Boswellia papyrifera (Del.) Hochst., Family Burseraceae) essential oil in an in vivo model. The oil was initially extracted by two methods: hydro-distillation (HD) and microwave-assisted hydro-distillation (MAHD). GC/MS analysis revealed the dominance of n-octyl acetate, along with other marker compounds of B. papyrifera including octanol and diterpene components (verticilla 4(20) 7, 11-triene and incensole acetate). Thereafter, preliminary investigation of the anti-collagenase and anti-elastase activities of the extracted oils revealed the superior anti-aging effect of HD-extracted oil (FO), comparable to epigallocatechin gallate. FO was subsequently formulated into solid lipid nanoparticles (FO-SLNs) via high shear homogenization to improve its solubility and skin penetration characteristics prior to in vivo testing. The optimimal formulation prepared with 0.5% FO, and 4% Tween® 80, demonstrated nanosized spherical particles with high entrapment efficiency percentage and sustained release for 8 hours. The anti-photoaging effect of FO and FO-SLNs was then evaluated in UVB-irradiated hairless rats, compared to Vitamin A palmitate as a positive standard. FO and FO-SLNs restored the antioxidant capacity (SOD and CAT) and prohibited inflammatory markers (IL6, NFκB p65) in UVB-irradiated rats via downregulation of MAPK (pERK, pJNK, and pp38) and PI3K/AKT signaling pathways, alongside upregulating TGF-β expression. Subsequently, our treatments induced Procollagen I synthesis and downregulation of MMPs (MMP1, MMP9), where FO-SLNs exhibited superior anti-photoaging effect, compared to FO and Vitamin A, highlighting the use of SLNs as a promising nanocarrier for FO. In particular, FO-SLNs revealed normal epidermal and dermal histological structures, protected against UVβ-induced epidermal thickness and dermal collagen degradation. Our results indicated the potential use of FO-SLNs as a promising topical anti-aging therapy.
Collapse
Affiliation(s)
- Eman A. Kotb
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Wessam H. Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Nebal El Tanbouly
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | |
Collapse
|
6
|
Fan Z, Zhou Y, Gan B, Li Y, Chen H, Peng X, Zhou Y. Collagen-EGCG Combination Synergistically Prevents UVB-Induced Skin Photoaging in Nude Mice. Macromol Biosci 2023; 23:e2300251. [PMID: 37863121 DOI: 10.1002/mabi.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Ultraviolet (UV) radiation is a major cause of skin photoaging through generating excessive oxidative stress and inflammation. One of the strategies is to use photo-chemoprotectors, such as natural products with antioxidant and anti-inflammatory properties, to protect the skin from photo damage. The present study investigates the photoprotective potentials of topical administration of unhydrolyzed collagen, epigallocatechin gallate (EGCG), and their combination against ultraviolet B (UVB)-induced photoaging in nude mice. It is found that both the solo and combined pretreatments could recover UVB-induced depletion of antioxidative enzymes, including superoxide dismutase and glutathione peroxidase (GSH-Px), as well as an increase of lipid peroxide malondialdehyde and inflammatory tumor necrosis factor-α. Meanwhile, the UVB-stimulated skin collagen degradation is attenuated significantly with drug treatments, which is evidenced by expression analysis of matrix metalloproteinase-1 and hydroxyproline. Additionally, the mouse skin histology shows that the drug-pretreated groups possess decreased epidermis thickness and normal collagen fiber structure of the dermis layer. These results demonstrate that both EGCG and collagen can protect the skin against UVB-induced skin photoaging. Synergistically, the combination of them shows the maximum prevention to skin damage, showing its potential in the application of anti-photoaging formulation products.
Collapse
Affiliation(s)
- Zhiqiang Fan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Dongguan Key Laboratory of Drug Design and Formulation Technology, and Biomedical Innovation Center, Guangdong Medical University, 523808, Dongguan, P. R. China
- Pharmacy Department, Zhongshan Second People's Hospital, 528447, Zhongshan, P. R. China
| | - Yubin Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Dongguan Key Laboratory of Drug Design and Formulation Technology, and Biomedical Innovation Center, Guangdong Medical University, 523808, Dongguan, P. R. China
| | - Bin Gan
- The Third Affiliated Hospital of Guangdong Medical University, 528000, Foshan, P. R. China
| | - Yuling Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Dongguan Key Laboratory of Drug Design and Formulation Technology, and Biomedical Innovation Center, Guangdong Medical University, 523808, Dongguan, P. R. China
| | - Huizhi Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Dongguan Key Laboratory of Drug Design and Formulation Technology, and Biomedical Innovation Center, Guangdong Medical University, 523808, Dongguan, P. R. China
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Dongguan Key Laboratory of Drug Design and Formulation Technology, and Biomedical Innovation Center, Guangdong Medical University, 523808, Dongguan, P. R. China
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, P. R. China
| | - Yanfang Zhou
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, P. R. China
- Department of Pathophysiology, Guangdong Medical University, 523808, Dongguan, P. R. China
| |
Collapse
|
7
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
8
|
Chou LC, Tsai CC. Assessing the Effectiveness of Fermented Banana Peel Extracts for the Biosorption and Removal of Cadmium to Mitigate Inflammation and Oxidative Stress. Foods 2023; 12:2632. [PMID: 37444370 DOI: 10.3390/foods12132632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
This study identified 11 lactic acid bacteria (LAB) strains that exhibited tolerance to heavy metal cadmium concentrations above 50 ppm for 48 h. Among these strains, T126-1 and T40-1 displayed the highest tolerance, enduring cadmium concentrations up to 500 ppm while still inhibiting bacterial growth by 50%. Moreover, the fermentation of banana peel using LAB significantly enhanced the clearance rate of cadmium (p < 0.05) compared to nonfermented banana peel. Additionally, the LAB-fermented banana peel exhibited higher 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and reduced power values. Strain T40-1 exhibited a significant improvement in its ability to chelate ferrous ions (p < 0.05). Regarding antibiotic resistance, both the T40-1 and TH3 strains demonstrated high resistance with a third-level inhibition rate against ampicillin and tetracycline. Cell viability tests revealed that incubation with the T40-1 and TH3 strains for a duration of 24 h did not result in any cellular damage. Moreover, these LAB strains effectively mitigated oxidative stress markers, such as reactive oxygen species (ROS), glutathione (GSH), and lactate dehydrogenase (LDH), caused by 2 ppm cadmium on cells. Furthermore, the LAB strains were able to reduce the inflammatory response, as evidenced by a decrease in interleukin-8 (IL-8) levels (p < 0.05). The use of Fourier transform infrared (FT-IR) spectroscopy analysis provided valuable insight into the interaction between metal ions and the organic functional groups present on the cell wall of fermented banana peel. In summary, this study highlights the potential of the LAB strains T40-1 and TH3 in terms of their tolerance to the cadmium, ability to enhance cadmium clearance rates, and their beneficial effects on oxidative stress, inflammation, and cell viability.
Collapse
Affiliation(s)
- Lan-Chun Chou
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan
| | - Cheng-Chih Tsai
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan
| |
Collapse
|
9
|
Kaźmierczak T, Bonarska-Kujawa D, Męczarska K, Cyboran-Mikołajczyk S, Oszmiański J, Kapusta I. Analysis of the Polyphenolic Composition of Vaccinium L. Extracts and Their Protective Effect on Red Blood Cell Membranes. MEMBRANES 2023; 13:589. [PMID: 37367793 DOI: 10.3390/membranes13060589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The blueberry fruit of the genus Vaccinium, including high blueberry, low blueberry, and wild bilberry, is consumed for its flavor and medicinal properties. The purpose of the experiments was to investigate the protective effect and mechanism of the interaction of blueberry fruit polyphenol extracts with the erythrocytes and their membranes. The content of polyphenolic compounds in the extracts was determined using the chromatographic UPLC-ESI-MS method. The effects of the extracts on red blood cell shape changes, hemolysis and osmotic resistance were examined. Changes in the order of packing and fluidity of the erythrocyte membrane and the lipid membrane model caused by the extracts were identified using fluorimetric methods. Erythrocyte membrane oxidation was induced by two agents: AAPH compound and UVC radiation. The results show that the tested extracts are a rich source of low molecular weight polyphenols that bind to the polar groups of the erythrocyte membrane, changing the properties of its hydrophilic area. However, they practically do not penetrate the hydrophobic part of the membrane and do not damage its structure. Research results suggest that the components of the extracts can defend the organism against oxidative stress if they are delivered to the organism in the form of dietary supplements.
Collapse
Affiliation(s)
- Teresa Kaźmierczak
- Department of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Męczarska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Ireneusz Kapusta
- Institute of Food Technology and Nutrition, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów, Poland
| |
Collapse
|
10
|
Acar A, Singh D. Monitoring genotoxic, biochemical and morphotoxic potential of penoxsulam and the protective role of European blueberry (Vaccinium myrtillus L.) extract. Sci Rep 2023; 13:6787. [PMID: 37101000 PMCID: PMC10133280 DOI: 10.1038/s41598-023-34068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
The present study aimed at exploring to explore the penoxsulam toxicity and protective effects of blueberry extract in roots of Allium cepa L. The effective concentration (EC50) of penoxsulam was determined at 20 µg/L by the root growth inhibition test as the concentration reducing the root length by 50%. The bulbs of A. cepa L. were treated with tap water, blueberry extracts (25 and 50 mg/L), penoxsulam (20 µg/L) and combination of blueberry extracts (25 and 50 mg/L) with penoxsulam (20 µg/L) for 96 h. The results revealed that penoxsulam exposure inhibited cell division, rooting percentage, growth rate, root length and weight gain in the roots of A. cepa L. In addition, it induced chromosomal anomalies such as sticky chromosome, fragment, unequal distribution of chromatin, bridge, vagrant chromosome and c-mitosis and DNA strand breaks. Further, penoxsulam treatment enhanced malondialdehyde content and SOD, CAT and GR antioxidant enzyme activities. Molecular docking results supported the up-regulation of antioxidant enzyme SOD, CAT and GR. Against all these toxicity, blueberry extracts reduced penoxsulam toxicity in a concentration-dependent manner. The highest amount of recovery for cytological, morphological and oxidative stress parameters was observed when using blueberry extract at a concentration of 50 mg/L. In addition, blueberry extracts application showed a positive correlation with weight gain, root length, mitotic index and rooting percentage whereas a negative correlation with micronucleus formation, DNA damage, chromosomal aberrations, antioxidant enzymes activities and lipid peroxidation indicating its protecting effects. As a result, it has been seen that the blueberry extract can tolerate all these toxic effects of penoxsulam depending on the concentration, and it has been understood that it is a good protective natural product against such chemical exposures.
Collapse
Affiliation(s)
- Ali Acar
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Turkey.
| | - Divya Singh
- Central Sericultural Research and Training Institute, Mysore, India
| |
Collapse
|
11
|
Cvetković S, Vuletić S, Vunduk J, Klaus A, Mitić-Ćulafić D, Nikolić B. The role of Gentiana lutea extracts in reducing UV-induced DNA damage. Mutagenesis 2023; 38:71-80. [PMID: 35253882 DOI: 10.1093/mutage/geac006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet (UV) radiation can result in DNA damage, mainly through direct formation of pyrimidine dimers and generation of reactive oxygen species, which can lead to the skin disorders including cancer. In accordance with this, the use of natural antigenotoxins and/or antioxidants could contribute to human health protection. Considering that plants are rich in both, the aim of this study was to investigate UV-protective and antioxidative properties of yellow gentian (Gentiana lutea), being well established in pharmacopeias and traditional medicine. Tested extracts were derived from root and shoot of the in vitro cultivated plants. Prescreening of the genotoxic properties of UVC, UVA, and the extracts, as well as the extracts' antigenotoxicity were estimated by applying alkaline comet assay on normal fetal lung fibroblast (MRC-5) and human melanoma cells (Hs 294T). Antioxidant potential was tested in ferrous ions chelating ferric reducing antioxidant power and cupric reducing antioxidant capacity assays. Genotoxicity testing, which revealed moderate DNA-damaging potential of root extract on MRC-5 cells and high genotoxicity of shoot extract on both cell lines, pointed out nongenotoxic concentrations that could be used in antigenotoxicity assay. Doses of 63 and 3 J/cm2 for UVC and UVA, respectively, were established for antigenotoxicity study, since they induced sufficient DNA damage without notable cytotoxicity. Results of antigenotoxicity revealed strong protective effect of both extracts against UVC (the highest inhibitions 58% and 47%) and UVA (the highest inhibitions 69% and 60%), in Hs 294T and MRC-5 cells, respectively. Study of the antioxidative properties demonstrated stronger activity of shoot extract. Results obtained proved to be encouraging but further research of the UV-protective role of Gentiana lutea extracts and underlying molecular mechanisms is recommended.
Collapse
Affiliation(s)
- Stefana Cvetković
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Stefana Vuletić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11000 Belgrade, Serbia
| | - Anita Klaus
- Faculty of Agriculture, Institute for Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Dragana Mitić-Ćulafić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
XIE Y, Wang J, Li Z, Luan Y, Li M, Peng X, Xiao S, Zhang S. Damage prevention effect of milk-derived peptides on UVB irradiated human foreskin fibroblasts and regulation of photoaging related indicators. Food Res Int 2022; 161:111798. [DOI: 10.1016/j.foodres.2022.111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/07/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
13
|
Cvetković M, Kočić M, Dabić Zagorac D, Ćirić I, Natić M, Hajder Đ, Životić A, Fotirić Akšić M. When Is the Right Moment to Pick Blueberries? Variation in Agronomic and Chemical Properties of Blueberry (Vaccinium corymbosum) Cultivars at Different Harvest Times. Metabolites 2022; 12:metabo12090798. [PMID: 36144202 PMCID: PMC9502264 DOI: 10.3390/metabo12090798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Blueberries, which are recognized by their colored fruits and exquisite flavor and taste, are a great source of bioactive substances with potential functional properties. For the purpose of this study, the blueberry cultivars ‘Duke’, ‘Chandler’ and ‘Bluecrop’ were picked at four different times. The aim of the study was to compare the cultivars and determine the best time for picking fruits for table consumption and to produce berries that can be used as functional foods with elevated levels of bioactive compounds. According to principal component analysis (PCA), the most influential traits for distinguishing different times of harvest in the ‘Duke’ cultivar were sorbitol, glucose, sucrose, and turanose; for the cultivar ‘Chandler’, they were caffeic acid, aesculetin, and quercetin; for the ‘Bluecrop’, they were fructose, maltose, radical scavenging activity, and quercetin. Blueberry fruits aimed for table consumption were those harvested in the first two pickings of the cultivar ‘Duke’, in the first and third of the ‘Bluecrop’, and in the third picking time of the cultivar ‘Chandler’, due to the highest fruit size and very high level of sugar (mostly glucose and fructose). ‘Duke’ berries from the second and third harvest (high level of total phenolic content, radical scavenging activity, total anthocyanins, aesculin, quercetin, and isorhamnetin), ‘Chandler’ from the first and third (the highest p-hydroxybenzoic acid, aesculetin, caffeic acid, phloridzin, kaempferol, kaempferol 3-O-glucoside, quercetin 3-O-rhamnoside, rutin, and quercetin) and ‘Bluecrop’ from the third harvest (highest level of total phenolics, radical scavenging activity, quercetin, rutin, quercetin 3-O-glucoside, kaempferol, quercetin 3-O-rhamnoside, kaempferol 3-O-glucoside, and isorhamnetin) had the highest levels of health-promoting compounds.
Collapse
Affiliation(s)
- Miljan Cvetković
- Faculty of Agriculture, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Milana Kočić
- Faculty of Agriculture, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Dragana Dabić Zagorac
- Innovation Centre of Faculty of Chemistry Ltd., University of Belgrade, 11000 Belgrade, Serbia
| | - Ivanka Ćirić
- Innovation Centre of Faculty of Chemistry Ltd., University of Belgrade, 11000 Belgrade, Serbia
| | - Maja Natić
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Đurađ Hajder
- Faculty of Agriculture, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Aleksandar Životić
- Faculty of Agriculture, University in Bijeljina, 56000 Bijeljina, Bosnia and Herzegovina
| | - Milica Fotirić Akšić
- Department of Fruit Science and Viticulture, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
14
|
Vaneková Z, Rollinger JM. Bilberries: Curative and Miraculous – A Review on Bioactive Constituents and Clinical Research. Front Pharmacol 2022; 13:909914. [PMID: 35847049 PMCID: PMC9277355 DOI: 10.3389/fphar.2022.909914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bilberry (Vaccinium myrtillus L.) fruits are an important part of local diets in many countries and are used as a medicinal herb to treat various disorders. Extracts from fruits are often a part of eye health-promoting supplements, whereas extracts from leaves are advertised for type 2 diabetes mellitus and glycemic control. This review provides an overview of the current knowledge of the phytochemical contents of bilberry fruits and leaves and their bioactivities, critically summarizes origins of the health claims and the outcome of clinical trials, with special attention towards those published in the past 10 years. Overall, the three most referenced indications, which are type 2 diabetes mellitus, vision disorders and circulatory diseases, all include contradictory results with no clear conclusion as to the benefits and recommended dosages. Moreover, the indications for vision disorders and diabetes originate from unproven or false claims that have been repeated in research since the 20th century without consistent fact-checking. Beneficial clinical results have been attested for the treatment of dyslipidemia and chronic inflammatory disorders when applied as dietary supplementation of fresh bilberries or as anthocyanin-rich bilberry fruit extracts. However, there is a general lack of double-blinded controlled research with larger sample sizes.
Collapse
Affiliation(s)
- Zuzana Vaneková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
- *Correspondence: Zuzana Vaneková,
| | - Judith M. Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Zeng X, Yi X, Chen L, Zhang H, Zhou R, Wu J, Chen Y, Huang W, Zhang L, Zheng J, Xiao Y, Yang F. Characterization and bioassays of extracellular vesicles extracted by tangential flow filtration. Regen Med 2022; 17:141-154. [PMID: 35073731 DOI: 10.2217/rme-2021-0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim: To evaluate the efficiency of tangential flow filtration (TFF) in improving the yield of human umbilical cord mesenchymal stem cell (MSC)-derived extracellular vesicles (hucMSC-EVs) while promoting cell regeneration under oxidative stress. Methods: HucMSC-EVs were extracted from supernatants by ultracentrifugation (UC-EVs) and TFF (TFF-EVs), followed by feature characterization and bioactivity assays. Results: The yield of TFF-EVs increased 18-times compared with that of UC-EVs. TFF-EVs displayed proliferation-promoting ability similar to that of UC-EVs in the damaged HaCaT cell model with ultraviolet radiation B (UVB) and H2O2. Furthermore, the antiapoptotic effects of TFF-EVs were improved, whereby the apoptosis rate exhibited a 3.7-fold decrease. Conclusion: HucMSC-EVs extracted by TFF show a higher yield and rejuvenate the damaged HaCaT cells induced by oxidative stress.
Collapse
Affiliation(s)
- Xiaoli Zeng
- Translational Medicine Research Laboratory, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, 510602, China.,Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Xuerui Yi
- Central Research Laboratory, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, 510602, China
| | - Lixuan Chen
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Haisong Zhang
- Central Research Laboratory, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, 510602, China
| | - Rongcheng Zhou
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Jiwei Wu
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Yuguang Chen
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Wanyi Huang
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Linyan Zhang
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Jie Zheng
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China
| | - Yang Xiao
- Guangzhou Dude Biotechnology Co., Ltd., Guangzhou, 510320, China.,Stem Cell Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Fuqiang Yang
- Translational Medicine Research Laboratory, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, 510602, China
| |
Collapse
|
16
|
Ruscinc N, Morocho-Jácome AL, Martinez RM, Magalhães WV, Escudeiro CC, Giarolla J, Rosado C, Velasco MVR, Baby AR. Vaccinium myrtillus L. extract associated with octocrylene, bisoctrizole and titanium dioxide: in vitro and in vivo tests to evaluate safety and efficacy. J Cosmet Dermatol 2022; 21:4765-4774. [PMID: 35029052 DOI: 10.1111/jocd.14779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The harmful effects induced by ultraviolet exposition and the significant increment in skin cancer diagnosis confirm the necessity to develop effective and safe sunscreens. Limited efficacy and cutaneous adverse reactions of traditional formulations drove the incorporation of natural extracts into multifunctional sunscreens. Vaccinium myrtillus L. extract (VME), that contains anthocyanins and flavonoids, is a potential candidate for such systems. METHODS Considering that, we performed in vitro and in vivo tests to evaluate the sun protection factor (SPF), photostability and safety of sunscreen samples containing VME. RESULTS As main results, the SPF was reduced in both in vitro and in vivo evaluation in the presence of VME, nonetheless, the samples were photostable and safe. CONCLUSION Further investigation is required to better understand the unexpected effects of VME over photoprotection, decreasing the SPF value. As a conclusion, even with interesting findings, we highlight the importance of case-by-case investigations to develop multifunctional bioactive sunscreens.
Collapse
Affiliation(s)
- Nadia Ruscinc
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Lucía Morocho-Jácome
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Catarina Rosado
- CBIOS - Universidade Lusófona's Research Center for Biosciences and Health Technologies, Lisbon, Portugal
| | | | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Juncan AM, Moisă DG, Santini A, Morgovan C, Rus LL, Vonica-Țincu AL, Loghin F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021; 26:molecules26154429. [PMID: 34361586 PMCID: PMC8347214 DOI: 10.3390/molecules26154429] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
This study proposes a review on hyaluronic acid (HA) known as hyaluronan or hyaluronate and its derivates and their application in cosmetic formulations. HA is a glycosaminoglycan constituted from two disaccharides (N-acetylglucosamine and D-glucuronic acid), isolated initially from the vitreous humour of the eye, and subsequently discovered in different tissues or fluids (especially in the articular cartilage and the synovial fluid). It is ubiquitous in vertebrates, including humans, and it is involved in diverse biological processes, such as cell differentiation, embryological development, inflammation, wound healing, etc. HA has many qualities that recommend it over other substances used in skin regeneration, with moisturizing and anti-ageing effects. HA molecular weight influences its penetration into the skin and its biological activity. Considering that, nowadays, hyaluronic acid has a wide use and a multitude of applications (in ophthalmology, arthrology, pneumology, rhinology, aesthetic medicine, oncology, nutrition, and cosmetics), the present study describes the main aspects related to its use in cosmetology. The biological effect of HA on the skin level and its potential adverse effects are discussed. Some available cosmetic products containing HA have been identified from the brand portfolio of most known manufacturers and their composition was evaluated. Further, additional biological effects due to the other active ingredients (plant extracts, vitamins, amino acids, peptides, proteins, saccharides, probiotics, etc.) are presented, as well as a description of their possible toxic effects.
Collapse
Affiliation(s)
- Anca Maria Juncan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
- SC Aviva Cosmetics SRL, 71A Kövari Str., 400217 Cluj-Napoca, Romania
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Dana Georgiana Moisă
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Luca-Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Andreea Loredana Vonica-Țincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
18
|
Dini I, Laneri S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021; 26:molecules26133921. [PMID: 34206931 PMCID: PMC8271805 DOI: 10.3390/molecules26133921] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
Nowadays, much attention is paid to issues such as ecology and sustainability. Many consumers choose “green cosmetics”, which are environmentally friendly creams, makeup, and beauty products, hoping that they are not harmful to health and reduce pollution. Moreover, the repeated mini-lock downs during the COVID-19 pandemic have fueled the awareness that body beauty is linked to well-being, both external and internal. As a result, consumer preferences for makeup have declined, while those for skincare products have increased. Nutricosmetics, which combines the benefits derived from food supplementation with the advantages of cosmetic treatments to improve the beauty of our body, respond to the new market demands. Food chemistry and cosmetic chemistry come together to promote both inside and outside well-being. A nutricosmetic optimizes the intake of nutritional microelements to meet the needs of the skin and skin appendages, improving their conditions and delaying aging, thus helping to protect the skin from the aging action of environmental factors. Numerous studies in the literature show a significant correlation between the adequate intake of these supplements, improved skin quality (both aesthetic and histological), and the acceleration of wound-healing. This review revised the main foods and bioactive molecules used in nutricosmetic formulations, their cosmetic effects, and the analytical techniques that allow the dosage of the active ingredients in the food.
Collapse
|
19
|
Chan SW, Chu TTW, Choi SW, Benzie IFF, Tomlinson B. Impact of short-term bilberry supplementation on glycemic control, cardiovascular disease risk factors, and antioxidant status in Chinese patients with type 2 diabetes. Phytother Res 2021; 35:3236-3245. [PMID: 33599340 DOI: 10.1002/ptr.7038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/18/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Bilberry (Vaccinium myrtillus L.) is one of the richest natural sources of anthocyanins which are powerful antioxidants and reported to have antiinflammatory, antidyslipidemic, antihypertensive, and hypoglycemic effects. The objective of this study was to assess the effect of bilberry supplementation on biomarkers of glycemic control, lipid profile, antioxidant, and inflammatory status in patients with type 2 diabetes in a randomized, double-blind, placebo-controlled cross-over study. Twenty patients were randomized to receive either bilberry supplementation (1.4 g/day of extract) daily for 4 weeks followed by 6 weeks of washout and then an additional 4 weeks of matching placebo or vice versa. Blood pressure, metabolic parameters, antioxidant status, and oxidative stress were measured before and after each period. Results showed no effect on body weight, blood pressure, or lipid profile. HbA1c was reduced by 0.31 ± 0.58% during bilberry supplementation, but this change was not significantly different from that with placebo. Antioxidant status, oxidative stress, and inflammatory status showed no significant differences across treatments. This short-term study of bilberry supplementation did not show significant effects on cardiovascular risk factors or antioxidant status, but the tendency for improved glycemic control may suggest a longer treatment period may be effective in diabetic patients.
Collapse
Affiliation(s)
- Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong SAR, China
| | - Tanya T W Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Siu Wai Choi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.,Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Iris F F Benzie
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
20
|
Kong CS, Lee J, Oh J, Karadeniz F, Park S, Kim H, Jo H, Jung K, Jeon BJ. Lentinula edodes extract inhibits matrix metalloproteinase expression and increases type I procollagen expression via the p38 MAPK/c-Fos signaling pathway in ultraviolet A and B-irradiated HaCaT keratinocytes. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.310203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction. Antioxidants (Basel) 2020; 9:antiox9121195. [PMID: 33261112 PMCID: PMC7760773 DOI: 10.3390/antiox9121195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023] Open
Abstract
The agri-food industry is currently one of the main engines of economic development worldwide. The region of Murcia is a reference area in Europe for the cultivation of fruits and vegetables and produces the bulk of Spanish exports of broccoli (Brassica oleracea var. italica). The processing of fresh produce generates a huge number of by-products that represent an important economic and environmental problem when discarded. In this work, an advanced extraction technique using environmentally friendly solvents was applied to assess the revalorization of broccoli by-products, by performing a comparative analysis with conventional extraction. To achieve this goal, supercritical fluid extraction based on response surface methodology was performed using CO2 and ethanol as solvents. The results obtained showed that the supercritical fluid extracts were rich in β-carotene, phenolic compounds, chlorophylls and phytosterols. Moreover, in bioactivity assays, the supercritical fluid extracts exhibited a high antioxidant activity and a cytoprotective effect in a non-tumorigenic keratinocyte cell line exposed to ultraviolet B light. The results indicate that supercritical fluid extracts from broccoli by-products could potentially serve as an ingredient for cosmetic purposes.
Collapse
|
22
|
Photoprotective Potential of the Natural Artocarpin against In Vitro UVB-Induced Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1042451. [PMID: 33014267 PMCID: PMC7520682 DOI: 10.1155/2020/1042451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 11/26/2022]
Abstract
Apoptosis, a well-known pattern of programmed cell death, occurs in multicellular organisms not only for controlling tissue homeostasis but also for getting rid of severely damaged cells in order to protect the redundant growth of abnormal cells undergoing cancerous cells. The epidermis of the human skin, composed largely of keratinocytes (KCs), is renewed continuously. Therefore, KCs apoptosis plays a critical role in the maintenance of epidermis structure and function. However, regulated cell death can be disturbed by environmental factors especially ultraviolet radiation (UV) B, leading to the formation of sunburn cells (KCs undergoing UVB-induced apoptosis) and impairing the skin integrity. In the present study, we firstly reported the potential of the natural artocarpin (NAR) to regulate UVB-induced human KCs apoptosis. The NAR showed antilipid peroxidation with an IC50 value of 18.2 ± 1.6 μg/mL, according to TBARS assay while the IC50 value of trolox, a well-known antioxidant, was 7.3 ± 0.8 μg/mL. For cell-based studies, KCs were pretreated with 3.1 μg/mL of the NAR for 24 hr and then exposed to UVB at 55 mJ/cm2. Our data indicated that the NAR pretreatment reduces UVB-induced oxidative stress by scavenging free radicals and nitric oxide and therefore prevents reactive oxygen species (ROS) and reactive nitrogen species- (RNS-) mediated apoptosis. The NAR pretreatment has been shown also to reduce the UVB-induced cyclobutane pyrimidine dimer (CPD) lesions by absorbing UVB radiation and regulating the cell cycle phase. Additionally, the NAR pretreatment was found to modulate the expression of cleaved caspases-3 and 8 that trigger different signalling cascades leading to apoptosis. Thus, these results provide a basis for the investigation of the photoprotective effect of the NAR isolated from A. altilis heartwood and suggest that it can be potentially used as an agent against UVB-induced skin damages.
Collapse
|
23
|
A Review of the Potential Benefits of Plants Producing Berries in Skin Disorders. Antioxidants (Basel) 2020; 9:antiox9060542. [PMID: 32575730 PMCID: PMC7346205 DOI: 10.3390/antiox9060542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
During the last 30 years, berries have gained great attention as functional food against several risk factors in chronic diseases. The number of related publications on Pubmed rose from 1000 items in 1990 to more than 11,000 in 2019. Despite the fact that a common and clear definition of "berries" is not shared among different scientific areas, the phytochemical pattern of these fruits is mainly characterized by anthocyanins, flavanols, flavonols, and tannins, which showed antioxidant and anti-inflammatory properties in humans. Skin insults, like wounds, UV rays, and excessive inflammatory responses, may lead to chronic dermatological disorders, conditions often characterized by long-term treatments. The application of berries for skin protection is sustained by long traditional use, but many observations still require a clear pharmacological validation. This review summarizes the scientific evidence, published on EMBASE, MEDLINE, and Scholar, to identify extraction methods, way of administration, dose, and mechanism of action of berries for potential dermatological treatments. Promising in vitro and in vivo evidence of Punica granatum L. and Vitis vinifera L. supports wound healing and photoprotection, while Schisandra chinensis (Turcz.) Baill. and Vaccinium spp. showed clear immunomodulatory effects. Oral or topical administrations of these berries justify the evaluation of new translational studies to validate their efficacy in humans.
Collapse
|
24
|
Dias R, Oliveira H, Fernandes I, Simal-Gandara J, Perez-Gregorio R. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Crit Rev Food Sci Nutr 2020; 61:1130-1151. [PMID: 32338035 DOI: 10.1080/10408398.2020.1754162] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phenolic compounds in plants are essential components of human nutrition, which provide various health benefits. However, some missing links became the research in phenolic compounds structures and potential applications in a challenging work. Despite universal extraction methods with mixtures of different organic solvents are generally adopted in the analysis of phenolic compounds, a need for establish a specific procedure is still open. The great heterogeneity in food and food by-products matrices and the lack of standardized methods which combine chromatographic with spectrophotometric techniques to calculate the amount of phenolic compounds joined with the absence of specific standards hamper to accurate know the real amount of phenolic compounds. Indeed, the high complexity in nature and chemistry of phenolic compounds clearly difficult to establish a daily intake to obtain certain healthy outcomes. Hence, despite the potential of phenolic compounds to use them in cosmetic and healthy applications have been widely analyzed, some concerns must be considered. The chemical complexity, the interactions between phenolic compounds and other food components and the structural changes induced by food processing joined with the lack in the understanding of phenolic compounds metabolism and bioavailability undergo the need to conduct a comprehensive review of each factors influencing the final activity of phenolic compounds. This paper summarizes the potential of phenolic compounds for disease prevention and cosmetics production, as well as their many other uses derived from their antioxidant activity. This paper illustrates the potential of phenolic compounds for disease prevention and cosmetics production, as well as their many other uses derived from their antioxidant activity.
Collapse
Affiliation(s)
- Ricardo Dias
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Helder Oliveira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Rosa Perez-Gregorio
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Kong YH, Xu SP. Juglanin administration protects skin against UVB‑induced injury by reducing Nrf2‑dependent ROS generation. Int J Mol Med 2020; 46:67-82. [PMID: 32377697 PMCID: PMC7255487 DOI: 10.3892/ijmm.2020.4589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/04/2019] [Indexed: 12/13/2022] Open
Abstract
Extensive solar ultraviolet B (UVB) exposure of the skin results in inflammation and oxidative stress, which may contribute to skin cancer. Natural products have attracted attention for their role in the effective treatment of cutaneous neoplasia. Juglanin is purified from the crude extract of Polygonum aviculare, exhibiting anti-oxidant, anti-inflammatory and anti-cancer activities. Jugalanin was used in the current study to investigate whether it may ameliorate UVB irradiation-induced skin damage by reducing oxidative stress and suppressing the inflammatory response in vivo and in vitro. In the present study, hairless mice were exposed to UVB irradiation in the absence or presence of juglanin administration for 10 weeks. The findings indicated that juglanin inhibited UVB-induced hyperplasia and decreased infiltration in the skin of mice. UVB exposure-induced oxidative stress in mice and cells was inhibited by juglanin via enhancing anti-oxidant activity. Additionally, juglanin markedly reduced pro-inflammatory cytokine release, including cyclic oxidase 2, interleukin-1β and tumor necrosis factor-α, triggered by chronic UVB irradiation. Juglanin-ameliorated skin damage was associated with its suppression of mitogen activated protein kinases (MAPKs), including p38, extracellular signal regulated 1/2, and c-Jun N-terminal kinases, as well as nuclear factor (NF)-κB signaling pathways, which was dependent on nuclear factor-E2-related factor 2 (Nrf2)-modulated reactive oxygen species generation. Taken together, these data indicate that juglanin protected against UVB-triggered oxidative stress and inflammatory responses by suppressing MAPK and NF-κB activation via enhancing Nrf2 activity.
Collapse
Affiliation(s)
- Ying-Hui Kong
- Department of Dermatology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Su-Ping Xu
- Department of Dermatology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
26
|
Chan SW, Tomlinson B. Effects of Bilberry Supplementation on Metabolic and Cardiovascular Disease Risk. Molecules 2020; 25:E1653. [PMID: 32260262 PMCID: PMC7180827 DOI: 10.3390/molecules25071653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is a cluster of interrelated conditions that is associated with an increased risk of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Oxidative stress may impair normal physiological functions, leading to various illnesses. T2DM is considered to be associated with increased oxidative stress, inflammation, and dyslipidemia, which may play a significant role in the development of cardiovascular complications, cancer and vision loss through cataracts and retinopathy. While conventional therapies are a cornerstone for the management of the major risk factors of metabolic syndrome, increasing antioxidant defense by increasing intake of antioxidant-rich foods may improve long term prospects in CVD, obesity and T2DM. Bilberry (Vaccinium myrtillus L.) is one of the richest natural sources of anthocyanins which give berries their red/purple/blue coloration. Anthocyanins are powerful antioxidants and are reported to play an important role in the prevention of metabolic disease and CVD as well as cancer and other conditions. This review focuses on the potential effects of bilberry supplementation on metabolic and cardiovascular risk factors. Although there is evidence to support the use of bilberry supplementation as part of a healthy diet, the potential benefits from the use of bilberry supplementation in patients with T2DM or CVD needs to be clarified in large clinical trials.
Collapse
Affiliation(s)
- Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong SAR 999077, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau 853, China
| |
Collapse
|
27
|
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:1-22. [PMID: 32188958 DOI: 10.5507/bp.2020.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.
Collapse
Affiliation(s)
- Denisa Skarupova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Alena Rajnochova Svobodova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
28
|
Debnath SC, Goyali JC. In Vitro Propagation and Variation of Antioxidant Properties in Micropropagated Vaccinium Berry Plants-A Review. Molecules 2020; 25:molecules25040788. [PMID: 32059466 PMCID: PMC7070298 DOI: 10.3390/molecules25040788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
The berry crops in genus Vacciniun L. are the richest sources of antioxidant metabolites which have high potential to reduce the incidence of several degenerative diseases. In vitro propagation or micropropagation has been attractive to researchers for its incredible potential for mass production of a selected genotype in a short time, all year round. Propagation techniques affect the antioxidant activity in fruits and leaves. Total antioxidant activity was higher in the fruit of in vitro propagated plants compare to the plants grown ex vivo. This review provides critical information for better understanding the micropropagation and conventional propagation methods, and their effects on antioxidant properties and morphological differentiation in Vaccinium species, and fills an existing gap in the literature.
Collapse
Affiliation(s)
- Samir C. Debnath
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, St. John’s, Bldg. 25, 308 Brookfield Road, St. John’s, NL A1E 0B2, Canada
- Correspondence: ; Tel.: +1-709-793-3324
| | - Juran C. Goyali
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada;
| |
Collapse
|
29
|
Fotirić Akšić M, Dabić Zagorac D, Sredojević M, Milivojević J, Gašić U, Meland M, Natić M. Chemometric Characterization of Strawberries and Blueberries according to Their Phenolic Profile: Combined Effect of Cultivar and Cultivation System. Molecules 2019; 24:molecules24234310. [PMID: 31779117 PMCID: PMC6930459 DOI: 10.3390/molecules24234310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022] Open
Abstract
Chemical characterizations of leaves and fruits that were obtained from organically and integrally produced strawberries ('Favette', 'Alba', and 'Clery') and blueberries ('Bluecrop', 'Duke', and 'Nui') from western Serbia were undertaken in this study. Phenolic analysis was done while using ultra-high performance liquid chromatography coupled to a linear ion trap-Orbitrap hybrid mass analyzer, while total phenolic content (TPC), total anthocyanin content (TAC), and radical-scavenging activity (RSA) by spectrophotometry. In general, leaves and fruits from blueberry showed higher levels of TPC and TAC as compared to strawberry. These chemical traits were larger in organic grown fruits and larger in leaves than fruits. The most abundant phenolics in leaves and fruits of blueberry was 5-O-caffeoylquinic acid, followed by quercetin 3-O-galactoside, while catechin, quercetin, and kaempferol 3-O-glucosid were dominant in the leaves and fruits of strawberry. cis, trans-Abscisic acid was detected in all fruit samples, but not in leaves. Blueberries (both fruits and leaves) were separated from strawberries, but only organic blueberry fruits were distinguished from integrated fruits, according to principal component analysis. Quercetin, kaempferol, 5-O-caffeoylquinic acid, ferulic acid, caffeic acid, catechin, p-coumaric acid, and p-hydroxybenzoic acid were the most influential phenolic compounds for the separation. Much higher contents of TPC, RSA, TAC, quercetin 3-O-galactoside, and quercetin were found in fruits and TPC, RSA, catechin, p-hydroxybenzoicacid, p-coumaricacid, and ferulic acid in leaves in all three blueberry cultivars and the strawberry cultivar 'Clery'. These phenolic compounds are good sources of antioxidant compounds with potentially high beneficial effects on human health.
Collapse
Affiliation(s)
- Milica Fotirić Akšić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia;
- Correspondence: ; Tel.: +381-64-2612710
| | - Dragana Dabić Zagorac
- Innovation Center, University of Belgrade-Faculty of Chemistry, P.O. Box 51, 11158 Belgrade, Serbia; (D.D.Z.); (M.S.)
| | - Milica Sredojević
- Innovation Center, University of Belgrade-Faculty of Chemistry, P.O. Box 51, 11158 Belgrade, Serbia; (D.D.Z.); (M.S.)
| | | | - Uroš Gašić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia;
| | - Mekjell Meland
- Norwegian Institute of Bioeconomy Research-NIBIO Ullensvang, NO-5781 Lofthus, Norway;
| | - Maja Natić
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11158 Belgrade, Serbia;
| |
Collapse
|
30
|
Comparison of Sugar Profile between Leaves and Fruits of Blueberry and Strawberry Cultivars Grown in Organic and Integrated Production System. PLANTS 2019; 8:plants8070205. [PMID: 31277368 PMCID: PMC6681319 DOI: 10.3390/plants8070205] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
Abstract
The objective of this study was to determine and compare the sugar profile, distribution in fruits and leaves and sink-source relationship in three strawberry (‘Favette’, ‘Alba’ and ‘Clery’) and three blueberry cultivars (‘Bluecrop’, ‘Duke’ and ‘Nui’) grown in organic (OP) and integrated production systems (IP). Sugar analysis was done using high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD). The results showed that monosaccharide glucose and fructose and disaccharide sucrose were the most important sugars in strawberry, while monosaccharide glucose, fructose, and galactose were the most important in blueberry. Source-sink relationship was different in strawberry compared to blueberry, having a much higher quantity of sugars in its fruits in relation to leaves. According to principal component analysis (PCA), galactose, arabinose, and melibiose were the most important sugars in separating the fruits of strawberries from blueberries, while panose, ribose, stachyose, galactose, maltose, rhamnose, and raffinose were the most important sugar component in leaves recognition. Galactitol, melibiose, and gentiobiose were the key sugars that split out strawberry fruits and leaves, while galactose, maltotriose, raffinose, fructose, and glucose divided blueberry fruits and leaves in two groups. PCA was difficult to distinguish between OP and IP, because the stress-specific responses of the studied plants were highly variable due to the different sensitivity levels and defense strategies of each cultivar, which directly affected the sugar distribution. Due to its high content of sugars, especially fructose, the strawberry cultivar ‘Clery’ and the blueberry cultivars ‘Bluecrop’ and ‘Nui’ could be singled out in this study as being the most suitable cultivars for OP.
Collapse
|
31
|
Santhakumaran I, Kesavan SS, Arumugam G. Asperyellone pretreatment protects HaCaT cells from UVB irradiation induced oxidative damages: Assessment under in vitro and in vivo conditions and at molecular level. J Cell Biochem 2019; 120:10715-10725. [PMID: 30693585 DOI: 10.1002/jcb.28363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022]
Abstract
The present study explores the UVB protective role of Asperyellone (AY), a secondary metabolite of Aspergillus niger strain AN01. The in vitro UVB protective efficacy of AY was studied using the Human Epidermal keratinocytes cells (HaCaT) cell line. The results suggest the appreciable scavenging of UVB-induced reactive oxygen species in the AY-pretreated cells compared with UVB control. Experimental results on the antioxidant enzymes (Catalase, SOD, LPO, and GPx) profile, histochemical, and molecular analyses support the UVB protective effect of AY in HaCaT cells. Further, the in vivo UVB protective efficacy of AY was studied using animal models and compared with that of commercially available UVB protective agents. Physical, biochemical, and molecular analyses of skin samples emphasized the UVB protective role of AY. Thus, the important beneficial effects of AY have been explored in the present study.
Collapse
|
32
|
Li L, Huang T, Lan C, Ding H, Yan C, Dou Y. Protective effect of polysaccharide from Sophora japonica L. flower buds against UVB radiation in a human keratinocyte cell line (HaCaT cells). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:135-142. [PMID: 30639995 DOI: 10.1016/j.jphotobiol.2018.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
Natured botanical extract has attracted considerable attention recently in the field of skin anti-ultraviolet (UV) radiation. As a medicinal herb, Sophora japonica flower buds contained several components such as flavonoids, isoflavonoids, triterpenes, alkaloids and polysaccharides, which have multiple pharmacological properties except hemostatic agents which have been used in China and Korea for centuries. The purpose of our study was to investigate whether polysaccharide extracted from Sophora japonica L. flower buds (PS) was able to attenuate UVB-induced damage using a human keratinocyte cell line (HaCaT cells). HaCaT cells were pretreated with PS in a serum-free medium for 2 h and then irradiated with different doses of UVB rays. The results showed that the PS attenuated UVB-induced cytotoxicity which was verified by MTT method and morphology feature assay. UVB exposure (30-120 mJ/cm2) reduced HaCaT cells viability significantly following with the increased irradiation dose 24 h later, while pretreatment with PS (0.25-2.0 mg/mL) attenuated UVB-induced cytotoxicity significantly and increased cell viability in a dose-dependent manner except 30 mJ/cm2 group. The PS reduced the ROS generation, down-regulated the expression of phosphor-JNK and phosphor-p38 MAPK proteins significantly through MAPK pathway in UVB-irradiated HaCaT cells. It also decreased the apoptosis rate at low dose of UVB ray and protected the cells from apoptosis which had been identified by the down-regulated level of active-caspase3 in UVB-irradiated HaCaT cells. In conclusion, PS pretreatment protected HaCaT keratinocytes from UVB irradiation-induced skin injuries effectively, and the underlying mechanism may involve MAPK signaling pathway which contribute to apoptotic cell death. However, further studies especially whose using human systems are needed to determine efficacy of PS in vivo.
Collapse
Affiliation(s)
- Liyan Li
- Medical School, Huanghe Science & Technology University, Zhengzhou 450063, PR China; College of Medicine, Zhengzhou University, Zhengzhou 450001, PR China; Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Huanghe Science & Technology University, Zhengzhou 450063, PR China
| | - Tao Huang
- Medical School, Huanghe Science & Technology University, Zhengzhou 450063, PR China.
| | - Chong Lan
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Huanghe Science & Technology University, Zhengzhou 450063, PR China
| | - Hui Ding
- Medical School, Huanghe Science & Technology University, Zhengzhou 450063, PR China
| | - Chunsheng Yan
- Medical School, Huanghe Science & Technology University, Zhengzhou 450063, PR China
| | - Yanli Dou
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Huanghe Science & Technology University, Zhengzhou 450063, PR China
| |
Collapse
|
33
|
Seo SA, Park B, Hwang E, Park SY, Yi TH. Borago officinalis L. attenuates UVB-induced skin photodamage via regulation of AP-1 and Nrf2/ARE pathway in normal human dermal fibroblasts and promotion of collagen synthesis in hairless mice. Exp Gerontol 2018; 107:178-186. [DOI: 10.1016/j.exger.2018.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/01/2017] [Accepted: 02/15/2018] [Indexed: 11/16/2022]
|
34
|
Fernandes A, Mazzei J, Evangelista H, Marques M, Ferraz E, Felzenszwalb I. Protection against UV-induced oxidative stress and DNA damage by Amazon moss extracts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:331-341. [PMID: 29758545 DOI: 10.1016/j.jphotobiol.2018.04.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/20/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
Amazon mosses, such as Holomitriopsis laevifolia and Leucobryum sp. are naturally exposed to high levels of solar ultraviolet (UV) radiation. Theoretically, under environmental stress conditions these mosses have developed protective chemical and metabolic strategies against UV damage, by way of biosynthesis of secondary metabolites, such as flavonoids. The present paper aimed to evaluate the free-radical scavenging activity, and the photoprotective, mutagenic and photomutagenic potencies of the methanolic (ME), aqueous (AE), hydroalcoholic (HE), ethanolic (EE) extracts of H. laevifolia and Leucobryum sp. The phenolic contents were evaluated by spectrophotometry and by High-Performance Liquid Chromatography (HPLC). The present findings showed that the AE and HE of H. laevifolia and the AE of Leucobryum sp. presented the highest phenolic contents. The HPLC analysis indicated the presence mainly of phenolic and cinnamic acids, flavonols, flavones and flavanones. The AE and EE of H. laevifolia and the AE and HE of Leucobryum sp. efficiently scavenged the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical. All extracts showed significant values of in vitro Sun Protection Factor alone, and HE of Leucobryum sp. showed a synergistic effect in association with benzophenone-3. None of the extracts induced mutagenicity in the auxotrophic strains for histidine of Salmonella typhimurium, and photomutagenicity of the TA102 and TA104 strains was not detected after exposure to UV-A radiation. Besides, all extracts showed photoprotective activity against UV-A radiation for the TA104 strain, including synergistic protection in association with BP-3. Thus, the constituents in H. Laevifolia and Leucobryum sp. could be good candidates for cosmetic and dermatological applications, particularly in association with synthetic UV filters, since the concentration of the filters in the final product could be reduced.
Collapse
|
35
|
Botchway BO, Moore MK, Akinleye FO, Iyer IC, Fang M. Nutrition: Review on the Possible Treatment for Alzheimer’s Disease. J Alzheimers Dis 2018; 61:867-883. [DOI: 10.3233/jad-170874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Benson O.A. Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Masania K. Moore
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Faith O. Akinleye
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Ishwari C. Iyer
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Photochemoprotective effect of a fraction of a partially purified extract of Byrsonima crassifolia leaves against UVB-induced oxidative stress in fibroblasts and hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:53-60. [DOI: 10.1016/j.jphotobiol.2017.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
|
37
|
Metral E, Rachidi W, Damour O, Demarne F, Bechetoille N. Long-term Genoprotection Effect of Sechium edule
Fruit Extract Against UVA Irradiation in Keratinocytes. Photochem Photobiol 2017; 94:343-350. [DOI: 10.1111/php.12854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Elodie Metral
- R&D Department; Gattefossé; Saint-Priest France
- CEA/INAC/SyMMES/CIBEST; University of Grenoble Alpes; Grenoble France
- BTC/LSC HCL de Lyon; Lyon France
| | - Walid Rachidi
- CEA/INAC/SyMMES/CIBEST; University of Grenoble Alpes; Grenoble France
| | | | | | | |
Collapse
|
38
|
Comparison and screening of bioactive phenolic compounds in different blueberry cultivars: Evaluation of anti-oxidation and α-glucosidase inhibition effect. Food Res Int 2017; 100:312-324. [DOI: 10.1016/j.foodres.2017.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 01/01/2023]
|
39
|
Cho YH, Bahuguna A, Kim HH, Kim DI, Kim HJ, Yu JM, Jung HG, Jang JY, Kwak JH, Park GH, Kwon OJ, Cho YJ, An JY, Jo C, Kang SC, An BJ. Potential effect of compounds isolated from Coffea arabica against UV-B induced skin damage by protecting fibroblast cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:323-332. [DOI: 10.1016/j.jphotobiol.2017.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022]
|
40
|
Amigo-Benavent M, Wang S, Mateos R, Sarriá B, Bravo L. Antiproliferative and cytotoxic effects of green coffee and yerba mate extracts, their main hydroxycinnamic acids, methylxanthine and metabolites in different human cell lines. Food Chem Toxicol 2017; 106:125-138. [PMID: 28506698 DOI: 10.1016/j.fct.2017.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/28/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
This work aimed at studying the effects of green coffee bean (GCBE) and yerba mate (YME) extracts, their main phenolic components (5-caffeoylquinic acid, 5-CQA; 3,5-dicaffeoylquinic acid, 3,5-DCQA) and metabolites (ferulic acid, FA; caffeic acid, CA; dihydrocaffeic acid, DHCA; and dihydroferulic acid, DHFA) along with caffeine (CAF) on the viability and proliferation of different human cell lines. Extracts (10-1000 μg/mL) and standards (10-1000 μM) were assayed in colon (Caco-2), lung (A549), oesophageal (OE-33), urinary bladder (T24) human carcinoma cells, and a non-cancer cell line (CCD-18Co). YME significantly reduced viability of cancer cells at all assayed concentrations, the higher doses also reducing cell proliferation. GCBE effects on cell viability were more effective at 100 and 1000 μg/mL, showing modest effects on cell proliferation. The highest doses of 5-CQA and 3,5-DCQA reduced cell viability and proliferation in all cell lines, whereas FA, DHCA and DHFA had lower and variable effects. Caffeine had no effect. Dietary-attainable concentrations (0.1, 1 and 10 μg/mL) of YME were tested for cytotoxicity and reactive oxygen species generation, showing no cytotoxic effect. Low concentrations of all tested compounds were non-cytotoxic to CCD-18Co cells. CONCLUSION YME and to a lower degree GCBE, their phenolic components and metabolites may decrease cancer cell viability and proliferation.
Collapse
Affiliation(s)
- M Amigo-Benavent
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/ Jose Antonio Nováis 10, 28040 Madrid, Spain
| | - S Wang
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/ Jose Antonio Nováis 10, 28040 Madrid, Spain
| | - R Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/ Jose Antonio Nováis 10, 28040 Madrid, Spain
| | - B Sarriá
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/ Jose Antonio Nováis 10, 28040 Madrid, Spain.
| | - L Bravo
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/ Jose Antonio Nováis 10, 28040 Madrid, Spain.
| |
Collapse
|
41
|
Protective effects of silkworm hemolymph extract and its fractions on UV-induced photoaging. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0588-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Izquierdo-Vega JA, Morales-González JA, SánchezGutiérrez M, Betanzos-Cabrera G, Sosa-Delgado SM, Sumaya-Martínez MT, Morales-González Á, Paniagua-Pérez R, Madrigal-Bujaidar E, Madrigal-Santillán E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 1: Fruits and Polysaccharides. Nutrients 2017; 9:nu9020102. [PMID: 28157162 PMCID: PMC5331533 DOI: 10.3390/nu9020102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of deaths worldwide. The agents capable of causing damage to genetic material are known as genotoxins and, according to their mode of action, are classified into mutagens, carcinogens or teratogens. Genotoxins are involved in the pathogenesis of several chronic degenerative diseases including hepatic, neurodegenerative and cardiovascular disorders, diabetes, arthritis, cancer, chronic inflammation and ageing. In recent decades, researchers have found novel bioactive phytocompounds able to counteract the effects of physical and chemical mutagens. Several studies have shown potential antigenotoxicity in a variety of fruits. In this review (Part 1), we present an overview of research conducted on some fruits (grapefruit, cranberries, pomegranate, guava, pineapple, and mango) which are frequentl consumed by humans, as well as the analysis of some phytochemicals extracted from fruits and yeasts which have demonstrated antigenotoxic capacity in various tests, including the Ames assay, sister chromatid exchange, chromosomal aberrations, micronucleus and comet assay.
Collapse
Affiliation(s)
- Jeannett Alejandra Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - José Antonio Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| | - Manuel SánchezGutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - Gabriel Betanzos-Cabrera
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - Sara M Sosa-Delgado
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| | - María Teresa Sumaya-Martínez
- Secretaría de Investigación y Estudios de Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo. Boulevard Tepic-Xalisco s/n, Tepic 28000, Nayarit, México.
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad A. López Mateos, Av. Juan de Dios Bátiz. Col., Lindavista, México D.F. 07738, Mexico.
| | - Rogelio Paniagua-Pérez
- Laboratorio de Bioquímica Muscular, Instituto Nacional de Rehabilitación, Av. México-Xochimilco. Col., Arenal de Guadalupe, México D.F. 14389, México.
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Unidad A. López-Mateos, Av. Wilfrido Massieu s/n, Lindavista, México D.F. 07738, México.
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| |
Collapse
|
43
|
Thiesen LC, Baccarin T, Fischer-Muller AF, Meyre-Silva C, Couto AG, Bresolin TMB, Santin JR. Photochemoprotective effects against UVA and UVB irradiation and photosafety assessment of Litchi chinensis leaves extract. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:200-207. [DOI: 10.1016/j.jphotobiol.2016.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
|
44
|
Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015. Photochem Photobiol Sci 2016; 15:141-74. [PMID: 26822392 DOI: 10.1039/c6pp90004f] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change.
Collapse
|
45
|
Liang JY, Wu JY, Yang MY, Hu A, Chen LY. Photo-catalytic polymerization of catechin molecules in alkaline aqueous. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:115-120. [PMID: 27776259 DOI: 10.1016/j.jphotobiol.2016.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
Polyphenols are associated with a wide range of physiological properties. Catechin is a flavan-3-ol with five phenolic hydroxyl groups. After blue light illumination, the transparent solution of catechin became yellowish. The effects of visible light illumination (400-800nm) were investigated on molecular structures and antioxidant capacities of catechin. Under the neutral or alkaline aqueous with the illumination of blue light, the photolysis and polymerization of catechin were observed in this study. A chromogenic catechin dimer was separated and identified as a proanthocyanidin by the chromatographic technique and mass spectrometry. For quantitative evaluation, the signal intensities of the catechin and the photochemical product show a negative correlation in the liquid chromatograms. The oligomer of flavan-3-ols (catechin dimer) is suggested as a dimeric B type proanthocyanidin, which has the molecular formula C30H26O12 and 578.14g/mol in exact mass. The mass spectrum of catechin dimer had characteristic ion signals in m/z 577, 560, 439Da. However, the total phenolic contents and scavenging O2- activity of catechin treated by blue light illumination are not changed significantly at the neutral or alkaline aqueous. Our results of photocatalytic oligomers of catechin provide a novel way to explain the sensory changes of green tea and a biochemical mechanism under the irradiation environments.
Collapse
Affiliation(s)
- Ji-Yuan Liang
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 33343, Taiwan
| | - Jun-Yun Wu
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 33343, Taiwan
| | - Ming-Yeh Yang
- Institute of Medical Biotechnology, Tzu-Chi University, Hualien 97004, Taiwan
| | - Anren Hu
- Institute of Medical Biotechnology, Tzu-Chi University, Hualien 97004, Taiwan
| | - Liang-Yü Chen
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 33343, Taiwan.
| |
Collapse
|
46
|
Radice M, Manfredini S, Ziosi P, Dissette V, Buso P, Fallacara A, Vertuani S. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia 2016; 114:144-162. [PMID: 27642040 DOI: 10.1016/j.fitote.2016.09.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
Besides the unquestionable positive effects of solar exposure for human health, UV rays have been widely investigated for toxicology aspects related to excessive UVB and UVA doses, which involve sunburns, skin aging, DNA skin damage and tumorigenesis. At present, synthetic and mineral sunscreens are used to protect against these damages but several natural molecules can provide UV protection, including also synergic effect or enhanced photo stability. Although a large number of herbal extracts and plant origin molecules can deserve potential applications, most of the study reported utilizes different method and different strategies of investigation, making thus difficult to understand the real versus claimed potential. This is possibly one of the reasons why, beside the large body of literature there are no officially approved natural commercial sun-filter but a consistent number of commercially available solar products (sunscreen) on the market that contain herbal derivatives. In this review we have evaluated the papers appeared in the last 15years and we have critically collected the most significant data. Several databases, namely Scifinder, Pubmed, Google Scholar, ISI-Web of Science and Scopus, were used as literature sources; excluding patents and symposium or congress papers. Only articles in the English language have been selected. New formulation, new skin delivery systems, skin penetration enhancers and boosters are most likely the next frontier of investigation in order to better understand the role of whole herbal extracts in exerting their photo protective activity.
Collapse
Affiliation(s)
- Matteo Radice
- Universidad Estatal Amazónica, Km 2 ½ Via Napo (paso lateral), Puyo, Pastaza, Ecuador
| | - Stefano Manfredini
- School of Pharmacy and Health Products, Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; Ambrosialab Srl, Via Mortara 171, 44121 Ferrara, Italy.
| | - Paola Ziosi
- Ambrosialab Srl, Via Mortara 171, 44121 Ferrara, Italy
| | - Valeria Dissette
- School of Pharmacy and Health Products, Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Piergiacomo Buso
- School of Pharmacy and Health Products, Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Arianna Fallacara
- School of Pharmacy and Health Products, Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Silvia Vertuani
- School of Pharmacy and Health Products, Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; Ambrosialab Srl, Via Mortara 171, 44121 Ferrara, Italy
| |
Collapse
|
47
|
Cornaghi L, Arnaboldi F, Calò R, Landoni F, Baruffaldi Preis WF, Marabini L, Donetti E. Effects of UV Rays and Thymol/Thymus vulgaris L. Extract in an ex vivo Human Skin Model: Morphological and Genotoxicological Assessment. Cells Tissues Organs 2016; 201:180-92. [PMID: 27023828 DOI: 10.1159/000444361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 11/19/2022] Open
Abstract
Ultraviolet (UV) radiation is the major environmental factor affecting functions of the skin. Compounds rich in polyphenols, such as Thymus vulgaris leaf extract and thymol, have been proposed for the prevention of UV-induced skin damage. We compared the acute effects induced by UVA and UVB rays on epidermal morphology and proliferation, cytotoxicity, and genotoxicity. Normal human skin explants were obtained from young healthy women (n = 7) after informed consent and cultured at the air-liquid interface overnight. After 24 h, the samples were divided in 2 groups: the former exposed to UVA (16 or 24 J/cm2) and the latter irradiated with UVB (0.24 or 0.72 J/cm2). One hour after the end of irradiation, supernatants were collected for evaluation of the lactate dehydrogenase activity. Twenty-four hours after UVB exposure, biopsies were processed for light and transmission electron microscopy analysis, proliferation, cytotoxicity, and genotoxicity. UVB and UVA rays induced early inhibition of cell proliferation and DNA damage compared to controls. In particular, UVB rays were always more cytotoxic and genotoxic than UVA ones. For this reason, we evaluated the effect of either T. vulgaris L. extract (1.82 µg/ml) or thymol (1 µg/ml) on all samples treated for 1 h before UVB irradiation. While Thymus had a protective action for all of the endpoints evaluated, the action of the extract was less pronounced on epidermal proliferation and morphological features. The results presented in this study could be the basis for investigating the mechanism of thymol and T. vulgaris L. extract against the damage induced by UV radiation.
Collapse
|
48
|
Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int J Mol Sci 2015; 16:24673-706. [PMID: 26501271 PMCID: PMC4632771 DOI: 10.3390/ijms161024673] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/12/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.
Collapse
Affiliation(s)
- Sona Skrovankova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic.
| | - Daniela Sumczynski
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic.
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic.
| | - Tunde Jurikova
- Institut for Teacher Training, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Drazovska 4, Nitra SK-949 74, Slovakia.
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic.
| |
Collapse
|
49
|
Passaglia Schuch A, Dos Santos MB, Mendes Lipinski V, Vaz Peres L, Dos Santos CP, Zanini Cechin S, Jorge Schuch N, Kirsh Pinheiro D, da Silva Loreto EL. Identification of influential events concerning the Antarctic ozone hole over southern Brazil and the biological effects induced by UVB and UVA radiation in an endemic treefrog species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 118:190-198. [PMID: 25957080 DOI: 10.1016/j.ecoenv.2015.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/06/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
The increased incidence of solar ultraviolet radiation (UV) due to ozone depletion has been affecting both terrestrial and aquatic ecosystems and it may help to explain the enigmatic decline of amphibian populations in specific localities. In this work, influential events concerning the Antarctic ozone hole were identified in a dataset containing 35 years of ozone measurements over southern Brazil. The effects of environmental doses of UVB and UVA radiation were addressed on the morphology and development of Hypsiboas pulchellus tadpole (Anura: Hylidae), as well as on the induction of malformation after the conclusion of metamorphosis. These analyzes were complemented by the detection of micronucleus formation in blood cells. 72 ozone depletion events were identified from 1979 to 2013. Surprisingly, their yearly frequency increased three-fold during the last 17 years. The results clearly show that H. pulchellus tadpole are much more sensitive to UVB than UVA light, which reduces their survival and developmental rates. Additionally, the rates of micronucleus formation by UVB were considerably higher compared to UVA even after the activation of photolyases enzymes by a further photoreactivation treatment. Consequently, a higher occurrence of malformation was observed in UVB-irradiated individuals. These results demonstrate the severe genotoxic impact of UVB radiation on this treefrog species and its importance for further studies aimed to assess the impact of the increased levels of solar UVB radiation on declining species of the Hylidae family.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Federal University of Santa Maria, RS, Brazil; Southern Regional Space Research Center, CRS/INPE-MCTI, Santa Maria, RS, Brazil
| | | | | | - Lucas Vaz Peres
- Federal University of Santa Maria, RS, Brazil; Southern Regional Space Research Center, CRS/INPE-MCTI, Santa Maria, RS, Brazil
| | | | | | - Nelson Jorge Schuch
- Southern Regional Space Research Center, CRS/INPE-MCTI, Santa Maria, RS, Brazil
| | - Damaris Kirsh Pinheiro
- Federal University of Santa Maria, RS, Brazil; Southern Regional Space Research Center, CRS/INPE-MCTI, Santa Maria, RS, Brazil
| | | |
Collapse
|
50
|
Almeida I, Pinto A, Monteiro C, Monteiro H, Belo L, Fernandes J, Bento A, Duarte T, Garrido J, Bahia M, Sousa Lobo J, Costa P. Protective effect of C. sativa leaf extract against UV mediated-DNA damage in a human keratinocyte cell line. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 144:28-34. [DOI: 10.1016/j.jphotobiol.2015.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/05/2015] [Accepted: 01/19/2015] [Indexed: 11/30/2022]
|