1
|
Yang Y, Han W, Zhang H, Qiao H, Zhang Y, Zhang Z, Wang J. Insights into interaction of triazine herbicides with three kinds of different alkyl groups (simetryne, ametryn and terbutryn) with human serum albumin via multi-spectral analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105895. [PMID: 38685222 DOI: 10.1016/j.pestbp.2024.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
In this study, the interaction of triazine herbicides with three kinds of different alkyl groups (simetryne, ametryn and terbutryn) with human serum albumin (HSA) are investigated through UV-vis, fluorescence, and circular dichroism (CD) spectra. The mechanisms on the fluorescence quenching of HSA initiated by triazine herbicides are obtained using Stern-Volmer, Lineweaver-Burk and Double logarithm equations. The quenching rate constant (Kq), Stern-Volmer quenching constant (Ksv), binding constant (KA), thermodynamic parameters such as enthalpy change (∆H), entropy change (∆S) and Gibbs free energy (∆G) and number of binding site (n) are calculated and compared. The variations in the microenvironment of amino acid residues are studied by synchronous fluorescence spectroscopy. The binding sites and subdomains are identified using warfarin and ibuprofen as site probes. The conformational changes of HSA are measured using CD spectra. The results reveal that the triazine herbicides with different alkyl groups can interact with HSA by static quenching. The combination of the three herbicides and HSA are equally proportional, and the binding processes are spontaneous. Hydrophobic interaction forces play important roles in simetryne-HSA and ametryn-HSA, while the interaction of terbutryn-HSA is Van der Waals forces and hydrogen bonding. Moreover, the three herbicides can bind to HSA at site I (sub-domain IIA) more than site II (subdomain IIIA), and combine with tryptophan (Trp) more easily than tyrosine (Tyr) residues, respectively. By comparison, the order of interaction strength is terbutryn-HSA > ametryn-HSA > simetryne-HSA. Terbutryn can destroy the secondary structure of HSA more than simetryne and ametryn, and the potential toxicity of terbutryn is higher. It is expected that the interactions of triazine herbicides with HSA via multi-spectral analysis can offer some valuable information for studying the toxicity and the harm of triazine herbicides on human health at molecular level in life science.
Collapse
Affiliation(s)
- Ying Yang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Wenhui Han
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Honglu Zhang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Heng Qiao
- Qingdao ECH Testing Limited Company, Qingdao 266109, China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhaohong Zhang
- School of Environment, Liaoning University, Shenyang 110036, China.
| | - Jun Wang
- School of Chemistry, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
2
|
Jiang SL, Hu L, Wu M, Li L, Shi JH. Assessment on binding characteristics of ethiprole and a model protein bovine serum albumin (BSA) through various spectroscopic techniques integrated with computer simulation. J Biomol Struct Dyn 2023; 41:7862-7873. [PMID: 36152999 DOI: 10.1080/07391102.2022.2126398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
To investigate the binding characteristics of pesticide ethiprole (ETP) with serum albumin is of great significance for pathological analysis of pesticide poisoning, gene mutation, and clinical detection. In present work, the binding characteristics of ETP with a model protein BSA has been estimated by means of multi-spectroscopic approaches integrated with computer simulation. The outcomes testified that the intrinsic fluorescence of BSA was mainly quenched by ETP in a static quenching mode and the stable ETP-BSA complex with the stoichiometry of 1:1 and the binding constant of 6.81 × 103 M-1 (298 K) was produced. The outcomes revealed that ETP combined preferentially to the subdomain IIA (Site I) of BSA and caused the decline in the content of α-helix of BSA and the enhancement in the hydrophobicity of environment centered on Trp residues. The outcomes of experimental and theoretical studies provide the sufficient evidence about the driving forces for the complexation of ETP with BSA, which included van der Waals forces (vdW), hydrogen bonding (H-bonding) interaction, and hydrophobicity. Simultaneously, the theoretical calculation results also confirmed the existence of the significant changes in the physicochemical natures of ETP including molecular conformation, dipole moment, frontier orbital energy, and the atomic charge distribution, which was a responsible for the complexation with BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Lu Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Meng Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Li Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Zhu M, Fei X, Gong D, Zhang G. Effects of Processing Conditions and Simulated Digestion In Vitro on the Antioxidant Activity, Inhibition of Xanthine Oxidase and Bioaccessibility of Epicatechin Gallate. Foods 2023; 12:2807. [PMID: 37509901 PMCID: PMC10378779 DOI: 10.3390/foods12142807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/18/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
The bioactivity and gastrointestinal stability of epicatechin gallate (ECG) may be affected by processing conditions. Results showed that the antioxidant ability and inhibitory activity on xanthine oxidase (XO) of ECG were higher at low pH values. Appropriate microwave and heating treatments improved the antioxidant (the scavenging rate increased from 71.75% to 92.71% and 80.88% under the microwave and heating treatments) and XO inhibitory activity (the inhibitory rate increased from 47.11% to 56.89% and 51.85% at the microwave and heating treatments) of ECG. The treated ECG led to a more compact structure of XO. Moreover, there may be synergistic antioxidant and inhibitory effects between ECG and its degradation products. The bioaccessibility of ECG after simulated digestion was untreated > microwave > heating, and the microwave-treated ECG still had good XO inhibitory activity after digestion. These findings may provide some significant information for the development of functional foods enriched in catechins.
Collapse
Affiliation(s)
- Miao Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyun Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
Jiang SL, Hu ZY, Wang WJ, Hu L, Li L, Kou SB, Shi JH. Investigation on the binding behavior of human α1-acid glycoprotein with Janus Kinase inhibitor baricitinib: Multi-spectroscopic and molecular simulation methodologies. Int J Biol Macromol 2023:125096. [PMID: 37285878 DOI: 10.1016/j.ijbiomac.2023.125096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
Baricitinib is a Janus Kinase (JAK) inhibitor that is primarily used to treat moderately to severely active rheumatoid arthritis in adults and has recently been reported for the treatment of patients with severe COVID-19. This paper describes the investigation of the binding behavior of baricitinib to human α1-acid glycoprotein (HAG) employing a variety of spectroscopic techniques, molecular docking and dynamics simulations. Baricitinib can quench the fluorescence from amino acids in HAG through a mix of dynamic and static quenching, according to steady-state fluorescence and UV spectra observations, but it is mainly static quenching at low concentration. The binding constant (Kb) of baricitinib to HAG at 298 K was at the level of 104 M-1, indicating a moderate affinity of baricitinib to HAG. Hydrogen bonding and hydrophobic interactions conducted the main effect, according to thermodynamic characteristics, competition studies between ANS and sucrose, and molecular dynamics simulations. For the change in HAG conformation, the results of multiple spectra showed that baricitinib was able to alter the secondary structure of HAG as well as increase the polarity of the microenvironment around the Trp amino acid. Furthermore, the binding behavior of baricitinib to HAG was investigated by molecular docking and molecular dynamics simulations, which validated experimental results. Also explored is the influence of K+, Co2+, Ni2+, Ca2+, Fe3+, Zn2+, Mg2+ and Cu2+plasma on binding affinity.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Zhe-Ying Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wan-Jun Wang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lu Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Li Li
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Song-Bo Kou
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
5
|
Bai J, Sun X, Geng B, Ma X. Interaction mechanism of Cu +/Cu 2+ on bovine serum albumin: Vitro simulation experiments by spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122491. [PMID: 36801739 DOI: 10.1016/j.saa.2023.122491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Copper (Cu) is an essential trace element for organisms, while excessive concentration of Cu is toxic. In order to assess the toxicity risk of copper in different valences, FTIR, fluorescence, and UV-vis absorption techniques were conducted to study the interactions between either Cu+ or Cu2+ and bovine serum albumin (BSA) under vitro simulated physiological condition. The spectroscopic analysis demonstrated that the intrinsic fluorescence emitted by BSA could be quenched by Cu+/Cu2+ via static quenching with binding sites 0.88 and 1.12 for Cu+ and Cu2+, respectively. On the other hand, the constants of Cu+ and Cu2+ are 1.14 × 103 L/mol and 2.08 × 104 L/mol respectively. ΔH is negative whereas ΔS is positive, showing that the interaction between BSA and Cu+/Cu2+ was mainly driven by electrostatic force. In accordance with Föster's energy transfer theory, the binding distance r showed that the transition of energy from BSA to Cu+/Cu2+ is highly likely to happen. BSA conformation analyses indicated that the interactions between Cu+/Cu2+ and BSA could alter the secondary structure of proteins. Current study provides more information of the interaction between Cu+/Cu2+ and BSA, and reveals the potential toxicological effect of different speciation of copper at molecular level.
Collapse
Affiliation(s)
- Jie Bai
- College of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Xuekai Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Bing Geng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiping Ma
- College of Environmental Science, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
6
|
Song J, Chen M, Meng F, Chen J, Wang Z, Zhang Y, Cui J, Wang J, Shi D. Studies on the interaction mechanism between xanthine oxidase and osmundacetone: Molecular docking, multi-spectroscopy and dynamical simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122861. [PMID: 37209475 DOI: 10.1016/j.saa.2023.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Xanthine oxidase (XO) is a key enzyme in uric acid production, and its molybdopterin (Mo-Pt) domain is an important catalytic center when xanthine and hypoxanthine are oxidated. It is found that the extract of Inonotus obliquus has an inhibitory effect on XO. In this study, five key chemical compounds were initially identified using liquid chromatography-mass spectrometry (LC-MS), and two compounds, osmundacetone ((3E)-4-(3,4-dihydroxyphenyl)-3-buten-2-one) and protocatechuic aldehyde (3,4-dihydroxybenzaldehyde), were screened as the XO inhibitors by ultrafiltration technology. Osmundacetone bound XO strongly and competitively inhibited XO with a half-maximal inhibitory concentration of 129.08 ± 1.71 μM, and its inhibition mechanism, was investigated. Osmundacetone and XO via static quenching and spontaneously bound with XO with high affinity, primarily via hydrophobic interactions and hydrogen bonds. Molecular docking studies showed that osmundacetone was inserted into the Mo-Pt center and interacted with hydrophobic residues of Phe911, Gly913, Phe914, Ser1008, Phe1009, Thr1010, Val1011, and Ala1079 of XO. In summary, these findings suggest that provide theoretical basis for the research and development of XO inhibitors from Inonotus obliquus.
Collapse
Affiliation(s)
- Jiling Song
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Minghui Chen
- The College of Life Science, Changchun Normal University, Changchun 130032, China
| | - Fanlei Meng
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jiahui Chen
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zhanwei Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Zhang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China; Nanguan Middle School, Honghua Gang District, Zunyi 563000, China
| | - Jing Cui
- The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China
| | - Jing Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China; The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China.
| | - Dongfang Shi
- The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
7
|
Song J, Wang Z, Chi Y, Zhang Y, Fang C, Shu Y, Cui J, Bai H, Wang J. Anti-gout activity and the interaction mechanisms between Sanghuangporus vaninii active components and xanthine oxidase. Bioorg Chem 2023; 133:106394. [PMID: 36801789 DOI: 10.1016/j.bioorg.2023.106394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/13/2023]
Abstract
Xanthine oxidase (XO) plays a critical role in the progression of gout. We showed in a previous study that Sanghuangporus vaninii (S. vaninii), a perennial, medicinal, and edible fungus traditionally used to treat various symptoms, contains XO inhibitors. In the current study, we isolated an active component of S. vaninii using high performance countercurrent chromatography and identified it as davallialactone using mass spectrometry with 97.726 % purity. A microplate reader showed that davallialactone had mixed inhibition of XO activity with a half-inhibitory concentration value of 90.07 ± 2.12 μM. In addition, the collision between davallialactone and XO led to fluorescence quenching and conformational changes in XO, which were mainly driven by hydrophobicity and hydrogen bonding. Molecular simulations further showed that davallialactone was located at the center of the molybdopterin (Mo-Pt) of XO and interacted with amino acid residues Phe798, Arg912, Met1038, Ala1078, Ala1079, Gln1194, and Gly1260, suggesting that entering the enzyme-catalyzed reaction was unfavorable for the substrate. We also observed face-to-face π-π interactions between the aryl ring of davallialactone and Phe914. Cell biology experiments indicated that davallialactone reduced the expression of the inflammatory factors, tumor necrosis factor alpha and interleukin-1 beta (P < 0.05), can effectively alleviate cellular oxidative stress. This study showed that davallialactone significantly inhibits XO and has the potential to be developed into a novel medicine to prevent hyperuricemia and treat gout.
Collapse
Affiliation(s)
- Jiling Song
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zhanwei Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yu Chi
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Zhang
- The Central Laboratory, Changchun Normal University, Changchun 130032, China; Nanguan Middle School, Honghua Gang District, Zunyi 563000, China
| | - Chenyi Fang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yuting Shu
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Jing Cui
- The Central Laboratory, Changchun Normal University, Changchun 130032, China
| | - Helong Bai
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Jing Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China; The Central Laboratory, Changchun Normal University, Changchun 130032, China.
| |
Collapse
|
8
|
Mulla K, Morin J. Probing the Interactions Between Anthanthrene Derivatives and Bovine Serum Albumin (BSA) Through Aggregation Induced Emission. ChemistrySelect 2023. [DOI: 10.1002/slct.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Kou SB, Li L, Zhang RJ, Shi JH, Jiang SL. Elucidation of the interaction mechanism of olmutinib with human α-1 acid glycoprotein: insights from spectroscopic and molecular modeling studies. J Biomol Struct Dyn 2023; 41:525-537. [PMID: 34844510 DOI: 10.1080/07391102.2021.2009373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Olmutinib, the third-generation tyrosine kinase inhibitor, is applied in treating non-small cell lung cancer (NSCLC). The aim of this study is to elucidate the interaction mechanism of olmutinib with human α-1 acid glycoprotein (HAG), an important carrier protein, by mean of multi-spectroscopic and molecular simulation techniques. Fluorescence spectral results confirmed that the fluorescence of this carrier protein can be quenched by olmutinib in the static quenching mode, and this anticancer drug possesses a moderate binding affinity on HAG. The evidence from thermodynamic analysis, replacement interaction with ANS and sucrose, and computational simulation results showed that hydrogen bonding, hydrophobic interactions, and van der Waals forces involved the olmutinib-HAG complexation process. The results from UV-vis, 3D fluorescence and synchronous fluorescence spectroscopy proved that binding anticancer drug olmutinib caused the alteration in the microenvironment around Trp residues. And, circular dichroism spectral results provided the support for the conformational alterations in the carrier protein. The data also proved that olmutinib preferably bound to the hydrophobic cavity of HAG and the binding distance between the two was 2.21 nm. In addition, it can be found that the presence of some metal ions such as Zn2+, Ca2+, Ni2+ and Cu2+ would exert a certain extent effect on the olmutinib-HAG complexation process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Song-Bo Kou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Li Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Rong-Juan Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Shao-Liang Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
10
|
Jiang SL, Li L, Hu L, Kou SB, Shi JH. Comprehending binding features between ibrutinib and Human Alpha-1 acid glycoprotein: Combined experimental approaches and theoretical simulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121834. [PMID: 36116409 DOI: 10.1016/j.saa.2022.121834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Human alpha-1 acidic glycoprotein (HAG) is one of the proteins widely present in the blood, and the level of HAG in patients with cancer and inflammation is significantly increased. As one of transport proteins in the blood, the ability of HAG to bind with a drug, especially alkaline drugs, affects significantly the drug content at the target site, which in turn affects the efficacy of the drug. In this study, the interaction mechanism between HAG and the first generation Bruton's tyrosine kinase (BTK) inhibitor namely ibrutinib was explored by a combination of multi-spectroscopic techniques and theoretical calculations. The findings revealed that the quenching and binding constants of the HAG-ibrutinib system both reduced as the temperature rose, demonstrating that ibrutinib quenched the intrinsic fluorescence of HAG in a static manner. It was confirmed that HAG and ibrutinib formed a 1:1 complex with moderate affinity due to the binding constant of around 105 M-1 and accompanied by Förster resonance energy transfer. It was verified by thermodynamic parameter analysis and competition assays as well as molecular simulation that the existence of hydrogen bonds, van der Waals forces, and hydrophobic forces in the complexation of HAG and ibrutinib.The findings from theoretical calculations including molecular docking and theoretical calculation simulation confirmed that ibrutinib bound to the barrel hydrophobic pocket of HAG with a binding energy of -41.9 kJ∙mol-1, and the the binding constant of around 105 M-1 and the contribution of each residue in the complexation of ibrutinib and HAG. Additionally, it can be confirmed that metal ions affected the binding interaction of ibrutinib with HAG, among them, some promoted binding while others inhibited it.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Li Li
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lu Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Song-Bo Kou
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
11
|
Sapmaz H, Erkmen C, Kabır MZ, Tayyab H, Mohamad SB, Uslu B. Spectrofluorometric and computational approaches for the interaction studies of aclonifen and bifenox with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121772. [PMID: 36030670 DOI: 10.1016/j.saa.2022.121772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Interaction of two broadly used herbicides, aclonifen (ACF) and bifenox (BIF) with the major transporter in human circulation, human serum albumin (HSA) were examined using fluorescence and absorption spectral measurements combined with in silico analyses. Assessment of the fluorescence and absorption spectral results affirmed the complexation between ACF/BIF and HSA. Increase in the KSV value with temperature characterized the ACF/BIF-induced quenching of the protein fluorescence as dynamic quenching. The moderate binding affinities (Kf = 1.74×104 - 1.95×106 M-1 for ACF-HSA complex; Kf = 2.00×103 - 1.02×106 M-1 for BIF-HSA complex) were pointed out between ACF/BIF and HSA, showing a relatively higher binding constant values with increasing temperatures. Quantitative evaluation of thermodynamic data (ΔS = +0.86 kJ mol-1 K-1 and ΔH = +225.43 kJ mol-1 for ACF-HSA complex; ΔS = +1.11 kJ mol-1 K-1 and ΔH = +304.63 kJ mol-1 for BIF-HSA complex) predicted the contribution of hydrophobic interactions in the ACF-HSA and BIF-HSA association processes, which were well supported by our molecular docking results. In silico analyses were made to acquire insight details into the ACF and BIF binding to HSA at the binding sites and suggested the locations of ACF and BIF binding sites as both subdomain IIA (site I) and subdomain IIIA (site II) of HSA, showing more preference toward site I.
Collapse
Affiliation(s)
- Hilal Sapmaz
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey; Ankara University, The Graduate School of Health Sciences, Forensic Pharmacy, 06110 Ankara, Turkey
| | - Cem Erkmen
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
| | - Md Zahirul Kabır
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
| | - Hafsa Tayyab
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey.
| |
Collapse
|
12
|
Xiao Q, Tu X, Cao H, Luo H, Li B, Liu J, Liu Y, Huang S. Interaction thermodynamics investigation of bovine serum albumin with black phosphorus quantum dots via spectroscopic and molecular simulation techniques. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Exploring binding interaction of baricitinib with bovine serum albumin (BSA): multi-spectroscopic approaches combined with theoretical calculation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Nagtilak M, Pawar S, Labade S, Khilare C, Sawant S. Study of the binding interaction between bovine serum albumin and carbofuran insecticide: Multispectroscopic and molecular docking techniques. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Zhao G, Zhu L, Yin P, Liu J, Pan Y, Wang S, Yang L, Ma T, Liu H, Liu X. Mechanism of interactions between soyasaponins and soybean 7S/11S proteins. Food Chem 2022; 368:130857. [PMID: 34425341 DOI: 10.1016/j.foodchem.2021.130857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/02/2023]
Abstract
In this study, the proteins glycinin (11S) and β-conglycinin (7S) were mixed with soyasaponin (Ssa) Ab/Bb to form a composite system. We used fluorescence and synchronous fluorescence spectra to demonstrate the changes in the surrounding environment and the structure of the proteins. Dynamic interface behavior analysis showed the possible interface behavior induced by the composite system. The interactions between Ssa and the proteins, along with the mode of action, were analyzed by molecular docking. The interactions between Ssa and soy protein increased with the change in concentration. The interactions between the two proteins were mediated by tryptophan (Trp) and primarily involved hydrogen bonds, which changed the microenvironment and loosened the protein structure. These results helped in understanding the mechanism underlying the interactions between Ssa Ab/Bb and 7S/11S. Furthermore, these results highlighted the theoretical fundamentals for the future applications of composite systems as surfactants in the food industry.
Collapse
Affiliation(s)
- Guoxiu Zhao
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Lijie Zhu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Peng Yin
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co., Ltd, Yucheng, Shandong 253000, China
| | - Yueying Pan
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Tao Ma
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xiuying Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
16
|
Song K, Wang H, Jiao Z, Qu G, Chen W, Wang G, Wang T, Zhang Z, Ling F. Inactivation efficacy and mechanism of pulsed corona discharge plasma on virus in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126906. [PMID: 34416696 DOI: 10.1016/j.jhazmat.2021.126906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The presence of viruses in water is a major risk for human and animal health due to their high resistance to disinfection. Pulsed corona discharge plasma (PCDP) efficiently inactivates bacteria by causing damage to biological macromolecules, but its effect on waterborne virus has not been reported. This study evaluated the inactivation efficacy of PCDP to viruses using spring viremia of carp virus (SVCV) as a model. The results showed that 4-log10 reduction of SVCV infectivity in cells was reached after 120 s treatment, and there was no significant difference in survival of fish infected with SVCV inactivated by PCDP for 240 s or more longer compared to the control fish without virus challenge, thus confirming the feasibility of PCDP to waterborne virus inactivation. Moreover, the high input energy density caused by voltage significantly improved the inactivation efficiency. The further research indicated that reactive species (RS) generated by pulsed corona discharge firstly reacted with phosphoprotein (P) and polymerase complex proteins (L) through penetration into the SVCV virions, and then caused the loss of viral infectivity by damage to genome and other structural proteins. This study has significant implications for waterborne virus removal and development of novel disinfection technologies.
Collapse
Affiliation(s)
- Kaige Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hui Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhi Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Weichao Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
17
|
John R, Mathew J, Mathew A, Aravindakumar CT, Aravind UK. Probing the Role of Cu(II) Ions on Protein Aggregation Using Two Model Proteins. ACS OMEGA 2021; 6:35559-35571. [PMID: 34984287 PMCID: PMC8717569 DOI: 10.1021/acsomega.1c05119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Copper is an essential trace element for human biology where its metal dyshomeostasis accounts for an increased level of serum copper, which accelerates protein aggregation. Protein aggregation is a notable feature for many neurodegenerative disorders. Herein, we report an experimental study using two model proteins, bovine serum albumin (BSA) and human serum albumin (HSA), to elucidate the mechanistic pathway by which serum albumins get converted from a fully folded globular protein to a fibril and an amorphous aggregate upon interaction with copper. Steady-state fluorescence, time-resolved fluorescence studies, and Raman spectroscopy were used to monitor the unfolding of serum albumin with increasing copper concentrations. Steady-state fluorescence studies have revealed that the fluorescence quenching of BSA/HSA by Cu(II) has occurred through a static quenching mechanism, and we have evaluated both the quenching constants individually. The binding constants of BSA-Cu(II) and HSA-Cu(II) were found to be 2.42 × 104 and 0.05 × 104 M-1, respectively. Further nanoscale morphological changes of BSA mediated by oligomers to fibril and HSA to amorphous aggregate formation were studied using atomic force microscopy. This aggregation process correlates with the Stern-Volmer plots in the absence of discernible lag phase. Raman spectroscopy results obtained are in good agreement with the increase in antiparallel β-sheet structures formed during the aggregation of BSA in the presence of Cu(II) ions. However, an increase in α-helical fractions is observed for the amorphous aggregate formed from HSA.
Collapse
Affiliation(s)
- Reshmi John
- Inter
University Instrumentation Centre, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
- Research
Department of Chemistry, S. B. College,
Assumption College, Changanacherry, Kottayam 686101, Kerala, India
| | - Jissy Mathew
- Research
Department of Chemistry, S. B. College,
Assumption College, Changanacherry, Kottayam 686101, Kerala, India
| | - Anu Mathew
- Sophisticated
Analytical Instrument Facility, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
| | - Charuvila T. Aravindakumar
- Inter
University Instrumentation Centre, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
- Sophisticated
Analytical Instrument Facility, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
- School
of Environmental Sciences, Mahatma Gandhi
University, Kottayam 686560, Kerala, India
| | - Usha K. Aravind
- School
of Environmental Studies, Cochin University
of Science and Technology (CUSAT), Kochi 682022, Kerala, India
| |
Collapse
|
18
|
Radisavljević S, Scheurer A, Bockfeld D, Ćoćić D, Puchta R, Senft L, Pešić M, Damljanović I, Petrović B. New mononuclear gold(III) complexes: Synthesis, characterization, kinetic, mechanistic, DNA/BSA/HSA binding, DFT and molecular docking studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Girmatsion M, Adhanom A, Gebremedhin H, Mahmud A, Xie Y, Cheng Y, Yu H, Yao W, Guo Y, Qian H. Ultrasensitive and selective detection of Hg 2+ using fluorescent phycocyanin in an aqueous system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:886-895. [PMID: 34129421 DOI: 10.1080/10934529.2021.1935600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Hg2+ toxicity is one of the most common chemical poisonings that occurs mainly from drinking polluted water. In the current work, Phycocyanin (PC) was exploited as a fluorescent sensor for sensitive and selective detection of Hg2+ in an aqueous system. PC-Hg2+ interaction was monitored using a spectro-fluorometer under different buffered solutions at pH values of 6,7,8,9, or 10 above the isoelectric point of PC (5.18). A remarkable decrease of PC fluorescence intensity was observed under Tris-buffer at pH 6 upon the addition of increasing Hg2+ concentrations (1-120 nM). Under the maintained experimental conditions, the current sensor showed a good linear relationship with R2 = 0.9971 and a limit of detection as low as 0.7 nM was achieved. In addition, a notable selectivity of Hg2+ over other nine heavy metals (Cu2+, Zn2+, Pb2+, Mg2+, Mn4+, Li+, Fe3+, Co2+, and Al3+) was achieved in the presence of 120 nM of each metal. Moreover, the current fluorescent detection assay was also tested in real samples of pond water, and recoveries as well as relative standard deviations within the acceptable limits were recorded.
Collapse
Affiliation(s)
- Mogos Girmatsion
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technology, Massawa, Eritrea
| | - Awet Adhanom
- Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technology, Massawa, Eritrea
- Ministry of Marine Resources, Quality control laboratory, Massawa, Eritrea
| | - Henok Gebremedhin
- Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technology, Massawa, Eritrea
- Ministry of Marine Resources, Quality control laboratory, Massawa, Eritrea
| | - Abdu Mahmud
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technology, Massawa, Eritrea
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Kou SB, Lin ZY, Wang BL, Shi JH, Liu YX. Evaluation of the interaction of novel tyrosine kinase inhibitor apatinib mesylate with bovine serum albumin using spectroscopies and theoretical calculation approaches. J Biomol Struct Dyn 2020; 39:4795-4806. [PMID: 32568635 DOI: 10.1080/07391102.2020.1782767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Apatinib mesylate (APM), a novel tyrosine kinase inhibitor, has been applied in treating various cancers. In the present study, the binding mechanism of APM with bovine serum albumin (BSA) was studied by making use of various spectroscopic and theoretical calculation approaches to provide theoretical support for further studying its pharmacokinetics and metabolism. The results from fluorescence experiments showed that the quenching mechanism of BSA induced by APM was static quenching and the APM-BSA complex with the stoichiometry of 1:1 was formed during binding reaction. Moreover, the findings also showed that the binding process of APM to BSA was spontaneous and enthalpy-driven, and the mainly driving forces were hydrogen bonding, van der Waals as well as hydrophobic interactions. From the outcomes of the competitive experiments, it can be found that the binding site was primarily nestled in sub-domain IIIA of BSA (site II) which was in line with the results of molecular docking. An appreciable decline in α-helix content of BSA can be observed from the FT-IR data, meaning that the conformational change of BSA occurred after binding with APM, this phenomenon can be corroborated by the results of UV-vis, synchronous fluorescence and 3D fluorescence studies. Furthermore, the effect of some metal ions (e.g. K+, Co2+, Ni2+, Fe3+) on the binding constant of APM to BSA was explored.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Song-Bo Kou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhen-Yi Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Bao-Li Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Ying-Xin Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Azoulay‐Ginsburg S, Trobiani L, Setini A, Favaloro FL, Giorda E, Jacob A, Hauschner H, Levy L, Cestra G, De Jaco A, Gruzman A. A Lipophilic 4‐Phenylbutyric Acid Derivative That Prevents Aggregation and Retention of Misfolded Proteins. Chemistry 2020; 26:1834-1845. [DOI: 10.1002/chem.201904292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
| | - Laura Trobiani
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Andrea Setini
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Flores Lietta Favaloro
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Ezio Giorda
- Ospedale Pediatrico Bambin Gesù-Rome Piazza di Sant'Onofrio 4 Rome 00165 Italy
| | - Avi Jacob
- Faculty of Life SciencesBar-Ilan University Ramat-Gan 5290002 Israel
| | - Hagit Hauschner
- Faculty of Life SciencesBar-Ilan University Ramat-Gan 5290002 Israel
| | - Laura Levy
- Department of ChemistryBar-Ilan University Ramat-Gan 5290002 Israel
| | - Gianluca Cestra
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
- Institute of Molecular Biology and Pathology—National Research CouncilSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Arie Gruzman
- Department of ChemistryBar-Ilan University Ramat-Gan 5290002 Israel
| |
Collapse
|
22
|
Wang Y, Xiong C, Wu Z, Liu Y, Qiu Y, Cheng X, Zhou G. Synthesis, Characterization of a Baicalin‐Strontium(II) Complex and Its BSA‐Binding Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201902739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
- School of Chemical and Environmental EngineeringWuhan Polytechnic University Wuhan 430023 China
| | - Chunhong Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| | - Xianzhong Cheng
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| | - Guoqing Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed ScienceHubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic University Wuhan 430023 China
| |
Collapse
|
23
|
Naik R, Jaldappagari S. Spectral and computational attributes: Binding of a potent anticancer agent, dasatinib to a transport protein. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Feng J, Wu M, Wang B, Kou S, Lin Z, Shi J. In Vitro Investigation on Behavior of Pyriproxyfen Binding onto Bovine Serum Albumin by Mean of Various Spectroscopic Methodologies and In Silico. ChemistrySelect 2019. [DOI: 10.1002/slct.201902688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jia‐Fei Feng
- College of Pharmaceutical ScienceZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Meng Wu
- College of Pharmaceutical ScienceZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Bao‐Li Wang
- College of Pharmaceutical ScienceZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Song‐Bo Kou
- College of Pharmaceutical ScienceZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Zhen‐Yi Lin
- College of Pharmaceutical ScienceZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Jie‐Hua Shi
- College of Pharmaceutical ScienceZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| |
Collapse
|
25
|
Comparison of the Quenching Effects of Two Main Components of Ziziphi Spinosae Semen on Serum Albumin Fluorescence. J Fluoresc 2019; 29:1113-1123. [PMID: 31396829 DOI: 10.1007/s10895-019-02422-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Swertisin (6-glucosyl flavonoid) and spinosin (2″-β-O-glucopyranosyl swertisin) are two main components from Ziziphi Spinosae Semen, with anti-anxiety and hypnosis effects. The paper aims to compare the differences between the two compounds binding with serum albumins (BSA and HSA). Swertisin and spinosin statically quench intrinsic fluorescence of serum proteins by binding to proteins to form complexes. The fluorescence quenching rates of BSA induced by swertisin or spinosin are faster than those of HSA resulted by swertisin or spinosin, respectively. Each serum protein has only one binding site respectively accessible to the two compounds. Hydrophobic force and hydrogen bond play the important roles during the biding process of swertisin with proteins, but van der Waals force and hydrogen bond are major driving forces for spinosin binding to proteins. Synchronous fluorescence data show that spinosin binds to BSA and HSA and thus changes Tyr and Trp residue microenvironments, and has a greater effect on the latter. Compared with swertisin, spinosin has a stronger effect on the α-helix of proteins. But the distance between swertisin and proteins is slightly closer than spinosin. These findings will contribute to further understand the reaction of Ziziphi Spinosae Semen in the liver phase I oxidation, intestinal hydrolysis and deparaffin metabolism.
Collapse
|
26
|
Agrawal R, Siddiqi MK, Thakur Y, Tripathi M, Asatkar AK, Khan RH, Pande R. Explication of bovine serum albumin binding with naphthyl hydroxamic acids using a multispectroscopic and molecular docking approach along with its antioxidant activity. LUMINESCENCE 2019; 34:628-643. [PMID: 31190435 DOI: 10.1002/bio.3645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
In the present investigation, the protein-binding properties of naphthyl-based hydroxamic acids (HAs), N-1-naphthyllaurohydroxamic acid (1) and N-1-naphthyl-p-methylbenzohydroxamic acid (2) were studied using bovine serum albumin (BSA) and UV-visible spectroscopy, fluorescence spectroscopy, diffuse reflectance spectroscopy-Fourier transform infrared (DRS-FTIR), circular dichroism (CD), and cyclic voltammetry along with computational approaches, i.e. molecular docking. Alteration in the antioxidant activities of compound 1 and compound 2 during interaction with BSA was also studied. From the fluorescence studies, thermodynamic parameters such as Gibb's free energy (ΔG), entropy change (ΔS) and enthalpy change (ΔH) were calculated at five different temperatures (viz., 298, 303, 308, 313 or 318 K) for the HAs-BSA interaction. The results suggested that the binding process was enthalpy driven with dominating hydrogen bonds and van der Waals' interactions for both compounds. Warfarin (WF) and ibuprofen (IB) were used for competitive site-specific marker binding interaction and revealed that compound 1 and compound 2 were located in subdomain IIA (Sudlow's site I) on the BSA molecule. Conclusions based on above-applied techniques signify that various non-covalent forces were involved during the HAs-BSA interaction. Therefore the resulted HAs-BSA interaction manifested its effect in transportation, distribution and metabolism for the drug in the blood circulation system, therefore establishing HAs as a drug-like molecule.
Collapse
Affiliation(s)
- Rainy Agrawal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | | | - Yamini Thakur
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | | | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
27
|
Yu J, Chen Y, Xiong L, Zhang X, Zheng Y. Conductance Changes in Bovine Serum Albumin Caused by Drug-Binding Triggered Structural Transitions. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1022. [PMID: 30925667 PMCID: PMC6479529 DOI: 10.3390/ma12071022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
Proteins, due to their binding selectivity, are promising candidates for fabricating nanoscale bio-sensors. However, the influence of structural change on protein conductance caused by specific protein-ligand interactions and disease-induced degeneration still remains unknown. Here, we excavated the relationship between circular dichroism (CD) spectroscopy and conductive atomic force microscopy (CAFM) to reveal the effect of the protein secondary structures changes on conductance. The secondary structure of bovine serum albumin (BSA) was altered by the binding of drugs, like amoxicillin (Amox), cephalexin (Cefa), and azithromycin (Azit). The CD spectroscopy shows that the α-helical and β-sheet content of BSA, which varied according to the molar ratio between the drug and BSA, changed by up to 6%. The conductance of BSA monolayers in varying drug concentrations was further characterized via CAFM. We found that BSA conductance has a monotonic relation with α-helical content. Moreover, BSA conductance seems to be in connection with the binding ability of drugs and proteins. This work elucidates that protein conductance variations caused by secondary structure transitions are triggered by drug-binding and indicate that electrical methods are of potential application in protein secondary structure analysis.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
- Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
- Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
| | - Liqun Xiong
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
- Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiaoyue Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
- Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Yue Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
- Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
Pawar SK, Jaldappagari S. Interaction of repaglinide with bovine serum albumin: Spectroscopic and molecular docking approaches. J Pharm Anal 2019; 9:274-283. [PMID: 31452966 PMCID: PMC6702422 DOI: 10.1016/j.jpha.2019.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/28/2023] Open
Abstract
Repaglinide (RPG) regulates the amount of glucose by stimulating the pancreas to release insulin in the blood. In view of its biological importance, we have examined the interaction between RPG and a model protein, bovine serum albumin (BSA) employing various spectroscopic, electrochemical and molecular docking methods. Fluorescence spectra of BSA were recorded in the presence and absence of RPG in phosphate buffer of pH 7.4. Fluorescence intensity of BSA was decreased upon the addition of increased concentrations of RPG, indicating the interaction between RPG and BSA. Stern-Volmer quenching analysis results revealed that RPG quenched the intensity of BSA through dynamic quenching mechanism. This was further confirmed from the time-resolved fluorescence measurements. The binding constant as calculated from the spectroscopic and voltammetric results was observed to be in the order of 104 M−1 at 298 K, suggesting the moderate binding affinity between RPG and BSA. Competitive experimental results revealed that the primary binding site for RPG on BSA was site II. Absorption and circular dichroism studies indicated the changes in the secondary structure of BSA upon its interaction with RPG. Molecular simulation studies pointed out that RPG was bound to BSA in the hydrophobic pocket of site II. Dynamic mode of quenching mechanism was noticed in RPG-BSA interaction. RPG was bound to BSA at the Sudlow’s site II and the resultant RPG-BSA complex was mainly stabilized by hydrophobic forces. The binding constant of RPG-BSA of the order of 104 M−1 at 298 K indicated the non-covalent interactions. Secondary structural changes in BSA upon binding to RPG were evident from absorption and circular dichroism studies. The influence of β-cyclodextrin and metal ions on RPG-BSA binding affinity was examined.
Collapse
Affiliation(s)
- Suma K Pawar
- Department of Chemistry, Karnatak University, Dharwad 580 003, India
| | | |
Collapse
|
29
|
Santos JCN, da Silva IM, Braga TC, de Fátima Â, Figueiredo IM, Santos JCC. Thimerosal changes protein conformation and increase the rate of fibrillation in physiological conditions: Spectroscopic studies using bovine serum albumin (BSA). Int J Biol Macromol 2018; 113:1032-1040. [DOI: 10.1016/j.ijbiomac.2018.02.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 11/28/2022]
|
30
|
Exploring the effect of 5-Fluorouracil on conformation, stability and activity of lysozyme by combined approach of spectroscopic and theoretical studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:23-31. [DOI: 10.1016/j.jphotobiol.2017.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023]
|
31
|
Shi JH, Lou YY, Zhou KL, Pan DQ. Elucidation of intermolecular interaction of bovine serum albumin with Fenhexamid: A biophysical prospect. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:125-133. [PMID: 29413695 DOI: 10.1016/j.jphotobiol.2018.01.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 11/18/2022]
Abstract
Fenhexamid, as a hydroxyanilide, is widely applied to control Botrytis cinerea for protecting crops and fruits. But it could adversely affect human and animals health due to accumulation of residues in food production. Here, the affinity characteristics of fenhexamid on bovine serum albumin (BSA) was studied via a series of spectroscopic methods such as steady-state fluorescence spectroscopy, ultraviolet spectroscopy (UV), synchronous fluorescence spectroscopy (SFS), 3D fluorescence spectroscopy, and fourier transform infrared spectroscopy (FT-IR). The experimental results illustrated that the fluorescence quenching mechanism of BSA induced by fenhexamid was a static quenching. The binding constant (Kb) of fenhexamid with BSA was 2.399 × 104 M-1 at 298 K and the combination ratio was about 1:1. The competitive experiment demonstrated that fenhexamid was binding on the BSA at site II (subdomain IIIA), which was confirmed by the molecular docking studies. The negative values of thermodynamic parameter (ΔH0, ΔS0 and ΔG0) revealed that the reaction of fenhexamid with BSA could proceed spontaneously, the van der Waals force and hydrogen bonding interaction conducted the main effect, and the binding process was enthalpy-driven. What's more, the 8-Anilino-1-naphthalenesulfonate (ANS) and sucrose binding studies were also performed and further verified the binding force between BSA and fenhexamid.
Collapse
Affiliation(s)
- Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dong-Qi Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
32
|
Is the Sudlow site I of human serum albumin more generous to adopt prospective anti-cancer bioorganic compound than that of bovine: A combined spectroscopic and docking simulation approach. Bioorg Chem 2017; 75:332-346. [DOI: 10.1016/j.bioorg.2017.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 11/18/2022]
|
33
|
Pawar SK, Naik RS, Seetharamappa J. Exploring the binding of two potent anticancer drugs bosutinib and imatinib mesylate with bovine serum albumin: spectroscopic and molecular dynamic simulation studies. Anal Bioanal Chem 2017; 409:6325-6335. [DOI: 10.1007/s00216-017-0565-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
|
34
|
Kumar S, Basappa Chidananda VK, Hosakere Doddarevanna R, Hamse Kameshwar V, Kaur M, Jasinski JP. 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino) methyl)-4-chlorophenol; synthesis, characterization, crystal structure, Hirshfeld surface analysis and BSA binding studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Evidence of bovine serum albumin-viologen herbicide binding interaction and associated structural modifications. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Lou YY, Zhou KL, Shi JH, Pan DQ. Characterizing the binding interaction of fungicide boscalid with bovine serum albumin (BSA): A spectroscopic study in combination with molecular docking approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:589-597. [PMID: 28697476 DOI: 10.1016/j.jphotobiol.2017.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/14/2017] [Accepted: 06/24/2017] [Indexed: 11/30/2022]
Abstract
Boscalid, a carboxamide fungicide, is used in the treatment of grey mould and powdery mildew, widely applied to a variety of crops and fruits such as rice, wheat, grapes and pears. It will become a potential risk for health due to its widely application and residue in crops and fruits. In this study, the binding interaction between boscalid and bovine serum albumin (BSA) was characterized using steady-state fluorescence spectroscopy, ultraviolet spectroscopy (UV), synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and molecular docking to ascertain the store, transport and distribution of boscalid in vivo. The experimental results indicated that the fluorescence of BSA was quenched due to the forming the static boscalid-BSA complex with the binding constant of 4.57×103M-1 at 298 K and boscalid bound on the subdomain III A (site II) of BSA through van der Waals force and hydrogen bonding interaction. The binding process of boscalid with BSA was spontaneous and enthalpy-driven process based on ΔG0<0 and |ΔH0|>T|ΔS0| over the studied temperature range. Meanwhile, the obvious change in the conformation of boscalid was observed while the slight change in the conformation of BSA when binding boscalid to the BSA, implying that the flexibility of boscalid contributes to increasing the stability of the boscalid-BSA complex.
Collapse
Affiliation(s)
- Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Dong-Qi Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
37
|
Cao H, Yi Y. Study on the interaction of chromate with bovine serum albumin by spectroscopic method. Biometals 2017; 30:529-539. [PMID: 28523598 DOI: 10.1007/s10534-017-0022-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022]
Abstract
The interaction between two chromates [sodium chromate (Na2CrO4) and potassium chromate K2CrO4)] and bovine serum albumin (BSA) in physiological buffer (pH 7.4) was investigated by the fluorescence quenching technique. The results of fluorescence titration revealed that two chromates could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The apparent binding constants K and number of binding sites n of chromate with BSA were obtained by the fluorescence quenching method. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) were negative, indicating that the interaction of two chromates with BSA was driven mainly by van der Waals forces and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance r between donor (BSA) and acceptor (chromate) was calculated based on Forster's non-radiative energy transfer theory. The results of UV-Vis absorption, synchronous fluorescence, three-dimensional fluorescence and circular dichroism (CD) spectra showed that two chromates induced conformational changes of BSA.
Collapse
Affiliation(s)
- Hongguang Cao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanli Yi
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
38
|
Bijari N, Ghobadi S, Derakhshandeh K. Irinotecan binds to the internal cavity of beta-lactoglobulin: A multi-spectroscopic and computational investigation. J Pharm Biomed Anal 2017; 139:109-115. [DOI: 10.1016/j.jpba.2017.02.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|
39
|
Study of the Binding between Camptothecin Analogs and FTO by Spectroscopy and Molecular Docking. J Fluoresc 2017; 27:1467-1477. [DOI: 10.1007/s10895-017-2086-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
|
40
|
Spectroscopic and molecular docking approaches for investigating conformation and binding characteristics of clonazepam with bovine serum albumin (BSA). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:158-167. [DOI: 10.1016/j.jphotobiol.2016.12.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022]
|