1
|
Sharma A, Sur S, Tripathi V, Kumar V. Genetic Control of Avian Migration: Insights from Studies in Latitudinal Passerine Migrants. Genes (Basel) 2023; 14:1191. [PMID: 37372370 DOI: 10.3390/genes14061191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Twice-a-year, large-scale movement of billions of birds across latitudinal gradients is one of the most fascinating behavioral phenomena seen among animals. These seasonal voyages in autumn southwards and in spring northwards occur within a discrete time window and, as part of an overall annual itinerary, involve close interaction of the endogenous rhythm at several levels with prevailing photoperiod and temperature. The overall success of seasonal migrations thus depends on their close coupling with the other annual sub-cycles, namely those of the breeding, post-breeding recovery, molt and non-migratory periods. There are striking alterations in the daily behavior and physiology with the onset and end of the migratory period, as shown by the phase inversions in behavioral (a diurnal passerine bird becomes nocturnal and flies at night) and neural activities. Interestingly, there are also differences in the behavior, physiology and regulatory strategies between autumn and spring (vernal) migrations. Concurrent molecular changes occur in regulatory (brain) and metabolic (liver, flight muscle) tissues, as shown in the expression of genes particularly associated with 24 h timekeeping, fat accumulation and the overall metabolism. Here, we present insights into the genetic basis of migratory behavior based on studies using both candidate and global gene expression approaches in passerine migrants, with special reference to Palearctic-Indian migratory blackheaded and redheaded buntings.
Collapse
Affiliation(s)
- Aakansha Sharma
- IndoUS Center in Chronobiology, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Sayantan Sur
- IndoUS Center in Chronobiology, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi 110003, India
| | - Vinod Kumar
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
2
|
Singh O, Singh D, Mitra S, Kumar A, Lechan RM, Singru PS. TRH and NPY Interact to Regulate Dynamic Changes in Energy Balance in the Male Zebra Finch. Endocrinology 2023; 164:6845693. [PMID: 36423209 DOI: 10.1210/endocr/bqac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
In contrast to mammals, birds have a higher basal metabolic rate and undertake wide range of energy-demanding activities. As a consequence, food deprivation for birds, even for a short period, poses major energy challenge. The energy-regulating hypothalamic homeostatic mechanisms, although extensively studied in mammals, are far from clear in the case of birds. We focus on the interplay between neuropeptide Y (NPY) and thyrotropin-releasing hormone (TRH), 2 of the most important hypothalamic signaling agents, in modulating the energy balance in a bird model, the zebra finch, Taeniopygia guttata. TRH neurons were confined to a few nuclei in the preoptic area and hypothalamus, and fibers widely distributed. The majority of TRH neurons in the hypothalamic paraventricular nucleus (PVN) whose axons terminate in median eminence were contacted by NPY-containing axons. Compared to fed animals, fasting significantly reduced body weight, PVN pro-TRH messenger RNA (mRNA) and TRH immunoreactivity, but increased NPY mRNA and NPY immunoreactivity in the infundibular nucleus (IN, avian homologue of mammalian arcuate nucleus) and PVN. Refeeding for a short duration restored PVN pro-TRH and IN NPY mRNA, and PVN NPY innervation to fed levels. Compared to control tissues, treatment of the hypothalamic superfused slices with NPY or an NPY-Y1 receptor agonist significantly reduced TRH immunoreactivity, a response blocked by treatment with a Y1-receptor antagonist. We describe a detailed neuroanatomical map of TRH-equipped elements, identify new TRH-producing neuronal groups in the avian brain, and demonstrate rapid restoration of the fasting-induced suppression of PVN TRH following refeeding. We further show that NPY via Y1 receptors may regulate PVN TRH neurons to control energy balance in T. guttata.
Collapse
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Devraj Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Anal Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
3
|
Sharma A, Tripathi V, Kumar V. Control and adaptability of seasonal changes in behavior and physiology of latitudinal avian migrants: Insights from laboratory studies in Palearctic-Indian migratory buntings. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:902-918. [PMID: 35677956 DOI: 10.1002/jez.2631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Twice-a-year migrations, one in autumn and the other in spring, occur within a discrete time window with striking alterations in the behavior and physiology, as regulated by the interaction of endogenous rhythms with prevailing photoperiod. These seasonal voyages are not isolated events; rather, they are part of an overall annual itinerary and remain closely coupled to the other annual subcycles, called seasonal life history states (LHSs). The success of migration depends on appropriate timing of the initiation and termination of each LHS, for example, reproduction, molt, summer nonmigratory, preautumn migratory (fattening and weight gain), autumn migratory, winter nonmigratory (wnM), prevernal (spring) migratory (fattening and weight gain), and spring migratory LHSs. Migration-linked photoperiod-induced changes include the body fattening and weight gain, nocturnal Zugunruhe (migratory restlessness), elevated triglycerides and free fatty acids, triiodothyronine and corticosterone levels. Hypothalamic expression of the thyroid hormone-responsive dio2 and dio3, light-responsive per2, cry1, and adcyap1 and th (tyrosine hydroxylase, involved in dopamine biosynthesis) genes also show significant changes with transition from wnM to the vernal migratory LHS. Concurrent changes in the expression of genes associated with lipid metabolism and its transport also occur in the liver and flight muscles, respectively. Interestingly, there are clear differences in the behavioral and physiological phenotypes, and associated molecular changes, between the autumn and vernal migrations. In this review, we discuss seasonal changes in the behavior and physiology, and present molecular insights into the development of migratory phenotypes in latitudinal avian migrants, with special reference to Palearctic-Indian migratory buntings.
Collapse
Affiliation(s)
- Aakansha Sharma
- Department of Zoology, IndoUS Center in Chronobiology, University of Delhi, Delhi, India
| | - Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | - Vinod Kumar
- Department of Zoology, IndoUS Center in Chronobiology, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Kumar V, Sharma A, Tripathi V, Bhardwaj SK. Differential regulatory strategies for spring and autumn migrations in Palearctic-Indian songbird migrants. Front Physiol 2022; 13:1031922. [PMID: 36246129 PMCID: PMC9557072 DOI: 10.3389/fphys.2022.1031922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Vinod Kumar
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, India
- *Correspondence: Vinod Kumar, ; Sanjay Kumar Bhardwaj,
| | - Aakansha Sharma
- IndoUS Center in Chronobiology, Department of Zoology, University of Lucknow, Lucknow, India
| | - Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | - Sanjay Kumar Bhardwaj
- Department of Zoology, CCS University, Meerut, India
- *Correspondence: Vinod Kumar, ; Sanjay Kumar Bhardwaj,
| |
Collapse
|
5
|
Alaasam VJ, Liu X, Niu Y, Habibian JS, Pieraut S, Ferguson BS, Zhang Y, Ouyang JQ. Effects of dim artificial light at night on locomotor activity, cardiovascular physiology, and circadian clock genes in a diurnal songbird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117036. [PMID: 33838441 PMCID: PMC8184626 DOI: 10.1016/j.envpol.2021.117036] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 03/28/2021] [Indexed: 05/17/2023]
Abstract
Artificial light is transforming the nighttime environment and quickly becoming one of the most pervasive pollutants on earth. Across taxa, light entrains endogenous circadian clocks that function to synchronize behavioral and physiological rhythms with natural photoperiod. Artificial light at night (ALAN) disrupts these photoperiodic cues and has consequences for humans and wildlife including sleep disruption, physiological stress and increased risk of cardiovascular disease. However, the mechanisms underlying organismal responses to dim ALAN, resembling light pollution, remain elusive. Light pollution exists in the environment at lower levels (<5 lux) than tested in many laboratory studies that link ALAN to circadian rhythm disruption. Few studies have linked dim ALAN to both the upstream regulators of circadian rhythms and downstream behavioral and physiological consequences. We exposed zebra finches (Taeniopygia gutatta) to dim ALAN (1.5 lux) and measured circadian expression of five pacemaker genes in central and peripheral tissues, plasma melatonin, locomotor activity, and biomarkers of cardiovascular health. ALAN caused an increase in nighttime activity and, for males, cardiac hypertrophy. Moreover, downstream effects were detectable after just short duration exposure (10 days) and at dim levels that mimic the intensity of environmental light pollution. However, ALAN did not affect circulating melatonin nor oscillations of circadian gene expression in the central clock (brain) or liver. These findings suggest that dim ALAN can alter behavior and physiology without strong shifts in the rhythmic expression of molecular circadian pacemakers. Approaches that focus on ecologically-relevant ALAN and link complex biological pathways are necessary to understand the mechanisms underlying vertebrate responses to light pollution.
Collapse
Affiliation(s)
- Valentina J Alaasam
- Department of Biology, University of Nevada, Reno, Reno, NV, USA; Program of Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Reno, NV, USA.
| | - Xu Liu
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Ye Niu
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Justine S Habibian
- Department of Nutrition, University of Nevada, Reno, Reno, NV, USA; Program of Cellular and Molecular Biology, University of Nevada, Reno, Reno, NV, USA
| | - Simon Pieraut
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Brad S Ferguson
- Department of Nutrition, University of Nevada, Reno, Reno, NV, USA; Center for Biomedical Research Excellence in Molecular and Cellular Signal Transduction in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
6
|
Prabhat A, Malik I, Jha NA, Bhardwaj SK, Kumar V. Developmental effects of constant light on circadian behaviour and gene expressions in zebra finches: Insights into mechanisms of metabolic adaptation to aperiodic environment in diurnal animals. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 211:111995. [PMID: 32836050 DOI: 10.1016/j.jphotobiol.2020.111995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023]
Abstract
A most crucial feature of biological adaptation is the maintenance of a close temporal relationship of behaviour and physiology with prevailing 24-h light-dark environment, which is rapidly changing with increasing nighttime illumination. This study investigated developmental effects of the loss of night on circadian behaviour, metabolism and gene expressions in diurnal zebra finches born and raised under LL, with controls on 12L:12D. Birds under LD were entrained, and showed normal body mass and a significant 24-h rhythm in both activity-rest pattern and mRNA expression of candidate genes that we measured. But, under LL, birds gained weight and accumulated lipid in the liver. Intriguingly, at the end of the experiment, the majority (4/5th) of birds under LL were rhythmic in activity despite arrhythmic expression in the hypothalamus of c-Fos (neuronal activity), Rhodopsin and Mel1-a genes (light perception), and clock genes (Bmal1, Per2 and Rev-erb β). In peripheral tissues, LL induced variable clock gene expressions. Whereas 24-h mRNA rhythm was abolished for Bmal1 in both liver and gut, it persisted for Per2 and Rev-erb β in liver, and for Per2 in gut. Further, we found under LL, the loss of 24-h rhythm in hepatic expression of Fasn and Cd36/Fat (biosynthesis and its uptake), and gut expression of Sglt1, Glut5, Cd36 and Pept1 (nutrient absorption) genes. As compared to LD, baseline mRNA levels of Fasn and Cd36 genes were attenuated under LL. Among major transporter genes, Sglt1 (glucose) and Cd36 (fat) genes were arrhythmic, while Glut5 (glucose) and Pept1 (protein) genes were rhythmic but with phase differences under LL, compared to LD. These results demonstrate dissociation of circadian behaviour from clock gene rhythms, and provide molecular insights into possible mechanisms at different levels (behaviour and physiology) that diurnal animals might employ in order to adapt to an emerging overly illuminated-night urban environment.
Collapse
Affiliation(s)
- Abhilash Prabhat
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Indu Malik
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Neelu Anand Jha
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
7
|
Kumar V, Sharma A. Common features of circadian timekeeping in diverse organisms. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Mishra I, Singh D, Kumar V. Temporal Expression of c-fos and Genes Coding for Neuropeptides and Enzymes of Amino Acid and Amine Neurotransmitter Biosynthesis in Retina, Pineal and Hypothalamus of a Migratory Songbird: Evidence for Circadian Rhythm-Dependent Seasonal Responses. Neuroscience 2017; 371:309-324. [PMID: 29273324 DOI: 10.1016/j.neuroscience.2017.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
This study investigated whether, in photoperiodic songbirds, the circadian pacemaker system (CPS) connects to the seasonal photoperiodic responses, by changes at transcriptional level in the level and 24-h rhythm of its constituent neurotransmitters. We used black-headed buntings (Emberiza melanocephala), which exhibit distinct seasonal states in captivity under appropriate photoperiods and hence served as a useful model system. Under short days, buntings remain in the photosensitive state (Pse) (winter phenotype: non-migratory, non-breeding). Under long days, however, buntings undergo through early-photostimulated (spring phenotype: pre-migratory, pre-breeding), late photostimulated (summer phenotype: migratory, breeding) and photorefractory (autumn phenotype: post-breeding) states. During all four seasonal states, we measured in the retina, pineal and hypothalamus, which together form avian CPS, 4-hourly mRNA expression of c-fos (a neuronal-activity marker) and of genes coding for neuropeptides (vasoactive intestinal peptide, vip; somatostatin, sst; neuropeptide Y, npy) and for intermediary enzymes of amino acid (glutamate: glutaminase, gls and glutamic-oxaloacetic transaminase 2, got2; GABA: glutamic acid decarboxylase, gad65) and amine (dopamine: tyrosine hydroxylase, th) neurotransmitters biosynthetic pathway. There was a significant alteration in level and 24-h pattern of mRNA expression, albeit with seasonal differences in presence, waveform parameters and phase relationship of 24-h rhythm, of different genes. Particularly, mRNA expression of all candidate genes (except hypothalamic vip, pineal gls and retinal th) was arrhythmic in late photostimulated state. These results underscore that circadian rhythm of peptide, amino acid and amine neurotransmitter biosynthesis in CPS plays a critical role in the photoperiodic regulation of seasonal states in birds.
Collapse
Affiliation(s)
- Ila Mishra
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Devraj Singh
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Vinod Kumar
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|