1
|
Wang Z, Zhang L, Wang X. Molecular toxicity and defense mechanisms induced by silver nanoparticles in Drosophila melanogaster. J Environ Sci (China) 2023; 125:616-629. [PMID: 36375944 DOI: 10.1016/j.jes.2021.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/16/2023]
Abstract
The widely use of silver nanoparticles (AgNPs) as antimicrobial agents gives rise to potential environmental risks. AgNPs exposure have been reported to cause toxicity in animals. Nevertheless, the known mechanisms of AgNPs toxicity are still limited. In this study, we systematically investigated the toxicity of AgNPs exposure using Drosophila melanogaster. We show here that AgNPs significantly decreased Drosophila fecundity, the third-instar larvae weight and rates of pupation and eclosion in a dose-dependent manner. AgNPs reduced fat body cell viability in MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. AgNPs caused DNA damage in hemocytes and S2 cells. Interestingly, the mRNA levels of the entire metallothionein gene family were increased under AgNPs exposure as determined by RNA-seq analysis and validated by qRT-PCR, indicating that Drosophila responded to the metal toxicity of AgNPs by producing metallothioneins for detoxification. These findings provide a better understanding of the mechanisms of AgNPs toxicity and may provide clues to effect on other organisms, including humans.
Collapse
Affiliation(s)
- Zhidi Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Liying Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China.
| |
Collapse
|
2
|
Patel A. Metal nanoparticles produced by plants with antibacterial properties against Staphylococcus aureus. BRAZ J BIOL 2023; 82:e268052. [PMID: 36888798 DOI: 10.1590/1519-6984.268052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/15/2022] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic bacteria that causes a variety of potentially fatal infections. The emergence of antibiotic-resistant strains of S. aureus has made treatment even more difficult. In recent years, nanoparticles have been used as an alternative therapeutic agent for S. aureus infections. Among various methods for the synthesis of nanoparticles, the method utilizing plant extracts from different parts of a plant, such as root, stem, leaf, flower, seeds, etc. is gaining widespread usage. Phytochemicals present in plant extract are an inexpensive, eco-friendly, natural material that act as reducing and stabilization agent for the nanoparticle synthesis. The utilization of plant-fabricated nanoparticles against S. aureus is currently in trend. The current review discusses recent findings in the therapeutic application of phytofabricated metal-based nanoparticles against Staphylococcus aureus.
Collapse
Affiliation(s)
- A Patel
- King Khalid University, College of Medicine, Department of Clinical Biochemistry, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Antibacterial, Antioxidant, Larvicidal and Anticancer Activities of Silver Nanoparticles Synthesized Using Extracts from Fruits of Lagerstroemia speciose and Flowers of Couroupita guianensis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227792. [PMID: 36431893 PMCID: PMC9696697 DOI: 10.3390/molecules27227792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The present study aimed to analyze the in vitro antibacterial, antioxidant, larvicidal and cytotoxicity properties of green synthesized silver nanoparticles (Ag NPs) using aqueous extracts from fruits of Lagerstroemia speciosa and flowers of Couropita guinensis. Synthesized Ag NPs were characterized using UV-DRS, FTIR, XRD, DLS, and High-Resolution SEM and TEM analyses. Absorption wavelength was observed at 386 nm by UV-DRS analysis and energy band gap was calculated as 3.24 eV. FTIR analysis showed the existence of various functional groups in the aqueous extract and in the NPs. DLS analysis showed the stability and particle size of the synthesized Ag NPs. SEM analysis revealed that Ag NPs are in a face centered cubic symmetry and spherical shape with a size of 23.9 nm. TEM analysis showed particle size as 29.90 nm. Ag NPs showed antibacterial activity against both Gram-positive and Gram-negative bacteria. DPPH scavenging trait of Ag NPs was ranging from 20.0 ± 0.2% to 62.4 ± 0.3% and observed significant larvicidal activity (LC50 at 0.742 ppm and LC90 at 6.061 ppm) against Culex quinquefasciatus. In vitro cytotoxicity activity of Ag NPs was also tested against human breast cancer (MCF-7) and fibroblast cells (L-929) and found that cells viabilities are ranging (500 to 25 µg/mL) from 52.5 ± 0.4 to 94.0 ± 0.7% and 53.6 ± 0.5 to 90.1 ± 0.8%, respectively. The synthesized Ag NPs have the potential to be used in the various biomedical applications.
Collapse
|
4
|
Ahmad Z, Tahseen S, Wasi A, Ganie IB, Shahzad A, Emamverdian A, Ramakrishnan M, Ding Y. Nanotechnological Interventions in Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2667. [PMID: 35957097 PMCID: PMC9370753 DOI: 10.3390/nano12152667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Agriculture is an important sector that plays an important role in providing food to both humans and animals. In addition, this sector plays an important role in the world economy. Changes in climatic conditions and biotic and abiotic stresses cause significant damage to agricultural production around the world. Therefore, the development of sustainable agricultural techniques is becoming increasingly important keeping in view the growing population and its demands. Nanotechnology provides important tools to different industrial sectors, and nowadays, the use of nanotechnology is focused on achieving a sustainable agricultural system. Great attention has been given to the development and optimization of nanomaterials and their application in the agriculture sector to improve plant growth and development, plant health and protection and overall performance in terms of morphological and physiological activities. The present communication provides up-to-date information on nanotechnological interventions in the agriculture sector. The present review deals with nanoparticles, their types and the role of nanotechnology in plant growth, development, pathogen detection and crop protection, its role in the delivery of genetic material, plant growth regulators and agrochemicals and its role in genetic engineering. Moreover, the role of nanotechnology in stress management is also discussed. Our aim in this review is to aid researchers to learn quickly how to use plant nanotechnology for improving agricultural production.
Collapse
Affiliation(s)
- Zishan Ahmad
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Sabaha Tahseen
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Adla Wasi
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Irfan Bashir Ganie
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Anwar Shahzad
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Abolghassem Emamverdian
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Aceti DM, Filipov E, Angelova L, Sotelo L, Fontanot T, Yousefi P, Christiansen S, Leuchs G, Stanimirov S, Trifonov A, Buchvarov I, Daskalova A. Single-Step Process for Titanium Surface Micro- and Nano-Structuring and In Situ Silver Nanoparticles Formation by Ultra-Short Laser Patterning. MATERIALS 2022; 15:ma15134670. [PMID: 35806794 PMCID: PMC9267125 DOI: 10.3390/ma15134670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023]
Abstract
Ultra-short laser (USL)-induced surface structuring combined with nanoparticles synthesis by multiphoton photoreduction represents a novel single-step approach for commercially pure titanium (cp-Ti) surface enhancement. Such a combination leads to the formation of distinct topographical features covered by nanoparticles. The USL processing of cp-Ti in an aqueous solution of silver nitrate (AgNO3) induces the formation of micron-sized spikes surmounted by silver nanoparticles (AgNPs). The proposed approach combines the structuring and oxidation of the Ti surface and the synthesis of AgNPs in a one-step process, without the use of additional chemicals or a complex apparatus. Such a process is easy to implement, versatile and sustainable compared to alternative methodologies capable of obtaining comparable results. Antimicrobial surfaces on medical devices (e.g., surgical tools or implants), for which titanium is widely used, can be realized due to the simultaneous presence of AgNPs and micro/nano-structured surface topography. The processed surfaces were examined by means of a scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and Raman spectroscopy. The surface morphology and the oxidation, quality and quantity of AgNPs were analyzed in relation to process parameters (laser scanning speed and AgNO3 concentration), as well as the effect of AgNPs on the Raman signal of Titanium oxide.
Collapse
Affiliation(s)
- Dante Maria Aceti
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Lamborghini Sotelo
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
- Innovations-Institut für Nanotechnologie und Korrelative Mikroskopie gGmbH Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Tommaso Fontanot
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Peyman Yousefi
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Silke Christiansen
- Innovations-Institut für Nanotechnologie und Korrelative Mikroskopie gGmbH Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Gerd Leuchs
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
- Max-Planck-Institut für die Physik des Lichts, 91058 Erlangen, Germany
| | - Stanislav Stanimirov
- Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anton Trifonov
- Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Ivan Buchvarov
- Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| |
Collapse
|
6
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
7
|
Vidovic S, Stojkovska J, Stevanovic M, Balanc B, Vukasinovic-Sekulic M, Marinkovic A, Obradovic B. Effects of poly(vinyl alcohol) blending with Ag/alginate solutions to form nanocomposite fibres for potential use as antibacterial wound dressings. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211517. [PMID: 35360353 PMCID: PMC8965402 DOI: 10.1098/rsos.211517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/01/2022] [Indexed: 05/03/2023]
Abstract
In this work, nanocomposite fibres and microfibres based on alginate and poly(vinyl alcohol) (PVA) with silver nanoparticles (AgNPs) were produced and characterized for potential application as antibacterial wound dressings. PVA/Ag/Na-alginate colloid solution was used for the preparation of the fibres by a simple extrusion technique followed by freezing-thawing cycles. UV-Visible spectroscopy confirmed successful preservation of AgNPs in fibres while Fourier transform infrared spectroscopy has shown a balanced combined effect on the Ca-alginate spatial arrangement with the addition of both AgNPs and PVA. The presence of PVA in fibres induced an increase in the swelling degree as compared with that of Ag/Ca-alginate fibres (approx. 28 versus approx. 14). Still, the initially produced PVA/Ca-alginate fibres were mechanically weaker than Ca-alginate fibres, but after drying and rehydration exhibited better mechanical properties. Also, the obtained fibres released AgNPs and/or silver ions at the concentration of approximately 2.6 µg cm-3 leading to bacteriostatic effects against Staphylococcus aureus and Escherichia coli. These results are relevant for practical utilization of the fibres, which could be stored and applied in the dry form with preserved mechanical stability, sorption capacity and antibacterial activity.
Collapse
Affiliation(s)
- Srdjan Vidovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jasmina Stojkovska
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
- Innovation Center of the Faculty of Technology and Metallurgy, 11000 Belgrade, Serbia
| | - Milan Stevanovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Balanc
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
- Innovation Center of the Faculty of Technology and Metallurgy, 11000 Belgrade, Serbia
| | | | - Aleksandar Marinkovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Obradovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Corrêa Carvalho G, Miguel Sábio R, Spósito L, de Jesus Andreoli Pinto T, Chorilli M. An overview of the use of central venous catheters impregnated with drugs or with inorganic nanoparticles as a strategy in preventing infections. Int J Pharm 2022; 615:121518. [DOI: 10.1016/j.ijpharm.2022.121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 10/19/2022]
|
9
|
Pan Y, Li P, Liang F, Zhang J, Yuan J, Yin M. A Nano-Silver Loaded PVA/Keratin Hydrogel With Strong Mechanical Properties Provides Excellent Antibacterial Effect for Delayed Sternal Closure. Front Bioeng Biotechnol 2021; 9:733980. [PMID: 34692656 PMCID: PMC8534296 DOI: 10.3389/fbioe.2021.733980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Delayed chest closure (DSC) is widely performed during the treatment of congenital heart diseases. However, the high prevalence of surgical site infection (SSI) in patients undergoing DSC affects prognosis negatively. Herein, we designed a suturable poly (vinyl alcohol)/keratin film loaded with silver nanoparticles (AgNPs) as an alternative material for DSC, which was named PVA/Keratin/AgNPs. The PVA/Keratin/AgNPs films exhibited significantly enhanced mechanical strength after crosslinking by sodium trimetaphosphate (STMP). These films were non-toxic, and cells proliferated with good morphology after 1 week of culture. In addition, PVA/Keratin/AgNPs films provided superior antibacterial ability, as evidenced by the eradication and lower growth rate of Staphylococcus aureus and Escherichia coli. Finally, the PVA/Keratin/AgNPs films were demonstrated to successfully cover the chest cavity temporarily and protect the chest cavity from bacterial infection. These results indicated that the PVA/Keratin/AgNPs films have great prospects to be further exploited for clinical applications in DSC.
Collapse
Affiliation(s)
- Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Fan W, Liu X, Wu J, Liu Q, Ding L, Liu X. Development of a Novel Silver‐based Sensing Platform for Detecting Superoxide Anion Released from HeLa Cells Directly. ELECTROANAL 2021. [DOI: 10.1002/elan.202100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weizhou Fan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Xiaohong Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Jinsheng Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Qian Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Lan Ding
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| |
Collapse
|
11
|
Manoharadas S, Altaf M, Alrefaei AF, Devasia RM, Badjah Hadj AYM, Abuhasil MSA. Concerted dispersion of Staphylococcus aureus biofilm by bacteriophage and 'green synthesized' silver nanoparticles. RSC Adv 2021; 11:1420-1429. [PMID: 35424119 PMCID: PMC8693614 DOI: 10.1039/d0ra09725j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Staphylococcal biofilms predominantly cause persistent nosocomial infections. The widespread antibiotic resistance followed by its ability to form biofilm in biological and inert surfaces often contributes to major complications in patients and veterinary animals. Strategic importance of bacteriophage therapy against critical staphylococcal infections had been predicted ever since the advent of antibiotic resistant staphylococcal strains. The significance of metal nanoparticles in quenching biofilm associated bacteria was previously reported. In this study, we demonstrate a concerted action of ‘green synthesized’ silver nanoparticles and bacteriophages in removing pre-formed Staphylococcus aureus biofilms from an inert glass surface in a time dependent manner. Our results demonstrate, for the first time, the rapid co-operative dispersion of the bacterial biofilm. In addition, the synergistic activity of the nanoparticles and bacteriophages causes the loss of viability of the biofilm entrapped bacterial cells thus preventing establishment of a new infection and subsequent colonization. This work further opens up a platform for the combinational therapeutic approach with a variety of nanoparticles and bacteriophages against mono or poly bacterial biofilm in environmental, industrial or clinical settings. Formation of biofilm by Staphylococcus aureus ‘Rumba’ on untreated glass surface and a concerted disruption of the biofilm by silver nanoparticle and phage ϕ44AHJD.![]()
Collapse
Affiliation(s)
- Salim Manoharadas
- King Saud University, Department of Botany and Microbiology, Central Laboratory RM 55A College of Science Building 5, P.O. Box. 2454 Riyadh 11451 Saudi Arabia +966-14699665 +966-114689170
| | - Mohammad Altaf
- King Saud University, Department of Botany and Microbiology, Central Laboratory RM 55A College of Science Building 5, P.O. Box. 2454 Riyadh 11451 Saudi Arabia +966-14699665 +966-114689170.,King Saud University, Department of Chemistry, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- King Saud University, Department of Zoology, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | | | - Ahmed Yacine M Badjah Hadj
- King Saud University, Department of Chemistry, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | - Mohammed Saeed Ali Abuhasil
- King Saud University, Department of Food Science and Nutrition, College of Agriculture and Food Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| |
Collapse
|
12
|
Ricardo SIC, Anjos IIL, Monge N, Faustino CMC, Ribeiro IAC. A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections. ACS Infect Dis 2020; 6:3109-3130. [PMID: 33245664 DOI: 10.1021/acsinfecdis.0c00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary and intravascular catheters are two of the most used invasive medical devices; however, microbial colonization of catheter surfaces is responsible for most healthcare-associated infections (HAIs). Several antimicrobial-coated catheters are available, but recurrent antibiotic therapy can decrease their potential activity against resistant bacterial strains. The aim of this Review is to question the actual effectiveness of currently used (coated) catheters and describe the progress and promise of alternative antimicrobial coatings. Different strategies have been reviewed with the common goal of preventing biofilm formation on catheters, including release-based approaches using antibiotics, antiseptics, nitric oxide, 5-fluorouracil, and silver as well as contact-killing approaches employing quaternary ammonium compounds, chitosan, antimicrobial peptides, and enzymes. All of these strategies have given proof of antimicrobial efficacy by modifying the physiology of pathogens or disrupting their structural integrity. The aim for synergistic approaches using multitarget processes and the combination of both antifouling and bactericidal properties holds potential for the near future. Despite intensive research in biofilm preventive strategies, laboratorial studies still present some limitations since experimental conditions usually are not the same and also differ from biological conditions encountered when the catheter is inserted in the human body. Consequently, in most cases, the efficacy data obtained from in vitro studies is not properly reflected in the clinical setting. Thus, further well-designed clinical trials and additional cytotoxicity studies are needed to prove the efficacy and safety of the developed antimicrobial strategies in the prevention of biofilm formation at catheter surfaces.
Collapse
Affiliation(s)
- Susana I. C. Ricardo
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês I. L. Anjos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Célia M. C. Faustino
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Isabel A. C. Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
13
|
Mikhailova EO. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J Funct Biomater 2020; 11:E84. [PMID: 33255874 PMCID: PMC7711612 DOI: 10.3390/jfb11040084] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
This review is devoted to the medical application of silver nanoparticles produced as a result of "green" synthesis using various living organisms (bacteria, fungi, plants). The proposed mechanisms of AgNPs synthesis and the action mechanisms on target cells are highlighted.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of innovation management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
14
|
Liu L, Xiao X, Li K, Li X, Shi B, Liao X. Synthesis of Catechin-Rare Earth Complex with Efficient and Broad-Spectrum Anti-Biofilm Activity. Chem Biodivers 2020; 17:e1900734. [PMID: 31981410 DOI: 10.1002/cbdv.201900734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/24/2020] [Indexed: 11/12/2022]
Abstract
Biofilm is the crucial reason of clinical infections. Herein, green tea based polyphenol (catechin) and rare earth (RE) metal ions were employed for the preparation of catechin-RE complexes with significant anti-biofilm properties. The complexes were characterized by FT-IR, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS), which suggested that catechin coordinated with RE3+ through its ortho phenolic hydroxy groups. The prepared catechin-RE showed significant effects in anti-biofilm growth against P. aeruginosa (Gram-negative bacteria), S. sciuri (Gram-positive bacteria), and A. niger (fungi), which significantly exceeded the utilization of catechin or RE3+ . Morphological observations indicated that catechin supplied cell affinity to transfer RE3+ and helped to damage cell membrane, which act as a carrier to exert cytotoxicity of RE3+ to realize anti-biofilm. Differential gene expression analysis described gene expression changes induced by catechin-RE, including 56, 272 and 2160 downregulated genes for P. aeruginosa, S. sciuri and A. niger, respectively, which suggested critical changes in cellular metabolism, growth and other processes. These results illustrate the outstanding superiority of catechin-RE complexes in anti-infection aspect, i. e., the green tea based rare earth complexes are promising candidates for anti-biofilm applications to address serious challenges in the prevention of multiple infections.
Collapse
Affiliation(s)
- Lu Liu
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiao Xiao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Ke Li
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Xia Li
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Bi Shi
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Xuepin Liao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
15
|
Gherasim O, Grumezescu AM, Grumezescu V, Iordache F, Vasile BS, Holban AM. Bioactive Surfaces of Polylactide and Silver Nanoparticles for the Prevention of Microbial Contamination. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E768. [PMID: 32046134 PMCID: PMC7040686 DOI: 10.3390/ma13030768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
Thanks to its peculiar interactions with biological molecules and structures, metallic silver in the form of silver nanoparticles achieved a remarkable comeback as a potential antimicrobial agent. The antimicrobial use of silver nanoparticles is of clinical importance, as several pathogenic microorganisms developed resistance against various conventional drug treatments. Hence, given the extensive efficiency of silver nanoparticles against drug-sensitive and drug-resistant pathogens, their therapeutic implications were demonstrated in multiple medical applications, such as silver-based dressings, silver-coated biomedical devices and silver-containing nanogels. Bacterial strains possess an intrinsic ability to form well-organized microbial communities, capable of developing adaptive mechanisms to environmental aggression and self-protective pathways against antibiotics. The formation of these mono- or poly-microbial colonies, called biofilms, is closely related with the occurrence of infectious processes which result in severe and chronic pathologies. Therefore, substantial efforts were oriented to the development of new protective coatings for biomedical surfaces, capable of sustaining the physiological processes within human-derived normal cells and to disrupt the microbial contamination and colonization stages. Nanostructured materials based on polylactic acid and silver nanoparticles are herein proposed as bioactive coatings able to prevent the formation of microbial biofilms on biomedical relevant surfaces.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (B.S.V.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (B.S.V.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Florin Iordache
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (B.S.V.)
| | - Alina Maria Holban
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania;
| |
Collapse
|
16
|
Quintero-Quiroz C, Acevedo N, Zapata-Giraldo J, Botero LE, Quintero J, Zárate-Triviño D, Saldarriaga J, Pérez VZ. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater Res 2020. [PMID: 31890269 DOI: 10.1186/s40824-019-0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters for the synthesis of AgNPs can increase its antimicrobial capacity by improving its physical-chemical properties. METHODS In this study a Face Centered Central Composite Design (FCCCD) was carried out with four parameters: A g N O 3 concentration, sodium citrate (TSC) concentration, N a B H 4 concentration and the pH of the reaction with the objective of inhibit the growth of microorganisms. The response variables were the average size of AgNPs, the peak with the greatest intensity in the size distribution, the polydispersity of the nanoparticle size and the yield of the process. AgNPs obtained from the optimization were characterized physically and chemically. The antimicrobial activity of optimized AgNPs was evaluated against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans and compared with AgNPs before optimization. In addition, the cytotoxicity of the optimized AgNPs was evaluated by the colorimetric assay MTT (3- (4,5- Dimethylthiazol- 2- yl)- 2, 5 - Diphenyltetrazolium Bromide). RESULTS It was found that the four factors studied were significant for the response variables, and a significant model (p < 0.05) was obtained for each variable. The optimal conditions were 8 for pH and 0.01 M, 0.0 6M, 0.01 M for the concentration of TSC, A g N O 3, and N a B H 4, respectively. Optimized AgNPs spherical and hemispherical were obtained, and 67.66% of it had a diameter less than 10.30 nm. A minimum bactericidal concentration (MBC) and minimum fungicidal Concentration (MFC) of optimized AgNPs was found against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans at 19.89, 9.94, 9.94, 2.08 μg/mL, respectively. Furthermore, the lethal concentration 50 (L C 50) of optimized AgNPs was found on 19.11 μg/mL and 19.60 μg/mL to Vero and NiH3T3 cells, respectively. CONCLUSIONS It was found that the factors studied were significant for the variable responses and the optimization process used was effective to improve the antimicrobial activity of the AgNPs.
Collapse
Affiliation(s)
- Catalina Quintero-Quiroz
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia
| | - Natalia Acevedo
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia
| | - Jenniffer Zapata-Giraldo
- 2Grupo de Investigación de Biología de Sistemas,Universidad Pontificia Bolivariana, Cl 78B No. 72A-109, Medellín, 050031 Colombia
| | - Luz E Botero
- 2Grupo de Investigación de Biología de Sistemas,Universidad Pontificia Bolivariana, Cl 78B No. 72A-109, Medellín, 050031 Colombia
| | - Julián Quintero
- 3Universidad de Antioquia, Cl.67 No. 53-108, Medellín, 050010 Colombia
| | - Diana Zárate-Triviño
- 4Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N Ciudad Universitaria San Nicolás de los Garza, Monterrey, 64450 México
| | - Jorge Saldarriaga
- 5Grupo de Investigación Sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Cq.1 No. 70-01, Medellín, 050031 Colombia
| | - Vera Z Pérez
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia.,Facultad de Ingeniería Eléctrica y Electrónica, Medellín, 050031 Colombia
| |
Collapse
|
17
|
|
18
|
Quintero-Quiroz C, Acevedo N, Zapata-Giraldo J, Botero LE, Quintero J, Zárate-Triviño D, Saldarriaga J, Pérez VZ. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater Res 2019; 23:27. [PMID: 31890269 PMCID: PMC6921438 DOI: 10.1186/s40824-019-0173-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Background Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters for the synthesis of AgNPs can increase its antimicrobial capacity by improving its physical-chemical properties. Methods In this study a Face Centered Central Composite Design (FCCCD) was carried out with four parameters: AgNO3 concentration, sodium citrate (TSC) concentration, NaBH4 concentration and the pH of the reaction with the objective of inhibit the growth of microorganisms. The response variables were the average size of AgNPs, the peak with the greatest intensity in the size distribution, the polydispersity of the nanoparticle size and the yield of the process. AgNPs obtained from the optimization were characterized physically and chemically. The antimicrobial activity of optimized AgNPs was evaluated against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans and compared with AgNPs before optimization. In addition, the cytotoxicity of the optimized AgNPs was evaluated by the colorimetric assay MTT (3- (4,5- Dimethylthiazol- 2- yl)- 2, 5 - Diphenyltetrazolium Bromide). Results It was found that the four factors studied were significant for the response variables, and a significant model (p < 0.05) was obtained for each variable. The optimal conditions were 8 for pH and 0.01 M, 0.0 6M, 0.01 M for the concentration of TSC, AgNO3, and NaBH4, respectively. Optimized AgNPs spherical and hemispherical were obtained, and 67.66% of it had a diameter less than 10.30 nm. A minimum bactericidal concentration (MBC) and minimum fungicidal Concentration (MFC) of optimized AgNPs was found against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans at 19.89, 9.94, 9.94, 2.08 μg/mL, respectively. Furthermore, the lethal concentration 50 (LC50) of optimized AgNPs was found on 19.11 μg/mL and 19.60 μg/mL to Vero and NiH3T3 cells, respectively. Conclusions It was found that the factors studied were significant for the variable responses and the optimization process used was effective to improve the antimicrobial activity of the AgNPs.
Collapse
Affiliation(s)
- Catalina Quintero-Quiroz
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia
| | - Natalia Acevedo
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia
| | - Jenniffer Zapata-Giraldo
- 2Grupo de Investigación de Biología de Sistemas,Universidad Pontificia Bolivariana, Cl 78B No. 72A-109, Medellín, 050031 Colombia
| | - Luz E Botero
- 2Grupo de Investigación de Biología de Sistemas,Universidad Pontificia Bolivariana, Cl 78B No. 72A-109, Medellín, 050031 Colombia
| | - Julián Quintero
- 3Universidad de Antioquia, Cl.67 No. 53-108, Medellín, 050010 Colombia
| | - Diana Zárate-Triviño
- 4Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N Ciudad Universitaria San Nicolás de los Garza, Monterrey, 64450 México
| | - Jorge Saldarriaga
- 5Grupo de Investigación Sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Cq.1 No. 70-01, Medellín, 050031 Colombia
| | - Vera Z Pérez
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia.,Facultad de Ingeniería Eléctrica y Electrónica, Medellín, 050031 Colombia
| |
Collapse
|
19
|
Nakamura S, Sato M, Sato Y, Ando N, Takayama T, Fujita M, Ishihara M. Synthesis and Application of Silver Nanoparticles (Ag NPs) for the Prevention of Infection in Healthcare Workers. Int J Mol Sci 2019; 20:E3620. [PMID: 31344881 PMCID: PMC6695748 DOI: 10.3390/ijms20153620] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Silver is easily available and is known to have microbicidal effect; moreover, it does not impose any adverse effects on the human body. The microbicidal effect is mainly due to silver ions, which have a wide antibacterial spectrum. Furthermore, the development of multidrug-resistant bacteria, as in the case of antibiotics, is less likely. Silver ions bind to halide ions, such as chloride, and precipitate; therefore, when used directly, their microbicidal activity is shortened. To overcome this issue, silver nanoparticles (Ag NPs) have been recently synthesized and frequently used as microbicidal agents that release silver ions from particle surface. Depending on the specific surface area of the nanoparticles, silver ions are released with high efficiency. In addition to their bactericidal activity, small Ag NPs (<10 nm in diameter) affect viruses although the microbicidal effect of silver mass is weak. Because of their characteristics, Ag NPs are useful countermeasures against infectious diseases, which constitute a major issue in the medical field. Thus, medical tools coated with Ag NPs are being developed. This review outlines the synthesis and utilization of Ag NPs in the medical field, focusing on environment-friendly synthesis and the suppression of infections in healthcare workers (HCWs).
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan.
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yoko Sato
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Naoko Ando
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College Hospital, Saitama 359-8513, Japan
| | - Masanori Fujita
- Division of Environmental Medicine, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| |
Collapse
|
20
|
Mathew S, Raveendran A, Mathew J, Radhakrishnan EK. Antibacterial Effectiveness of Rice Water (Starch)‐Capped Silver Nanoparticles Fabricated Rapidly in the Presence of Sunlight. Photochem Photobiol 2019; 95:627-634. [DOI: 10.1111/php.13005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Shiji Mathew
- School of Biosciences Mahatma Gandhi University Kottayam Kerala India
| | - Aswani Raveendran
- School of Biosciences Mahatma Gandhi University Kottayam Kerala India
| | - Jyothis Mathew
- School of Biosciences Mahatma Gandhi University Kottayam Kerala India
| | | |
Collapse
|
21
|
Thomas R, Snigdha S, Bhavitha KB, Babu S, Ajith A, Radhakrishnan EK. Biofabricated silver nanoparticles incorporated polymethyl methacrylate as a dental adhesive material with antibacterial and antibiofilm activity against Streptococcus mutans. 3 Biotech 2018; 8:404. [PMID: 30221117 PMCID: PMC6131137 DOI: 10.1007/s13205-018-1420-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022] Open
Abstract
In this study, polymethyl methacrylate (PMMA) thin films incorporated with biofabricated silver nanoparticles were used to evaluate the in vitro antimicrobial and antibiofilm activity against the cariogenic bacterium Streptococcus mutans. For this, silver nanoparticles (AgNPs) were generated using Bacillus amyloliquefaciens SJ14 culture (MAgNPs) and extract from Curcuma aromatica rhizome (CAgNPs). The AgNPs were further characterized by UV-Vis spectroscopy and high-resolution transmission electron microscopy. The minimum inhibitory concentration, minimum bactericidal concentration and antibiofilm activity of AgNPs against S. mutans were also assessed. Here, MAgNPs were found to have superior antimicrobial activity when compared to CAgNPs. The MAgNPs and CAgNPs also demonstrated 99% and 94% inhibition of biofilm formation of S. mutans at concentrations of 3 µg/mL and 50 µg/mL, respectively. The AgNPs were further incorporated into PMMA thin films using solvent casting method. The thin films were also characterized by scanning electron microscopy and UV-Vis spectroscopy. Subsequently, both PMMA/MAgNPs and PMMA/CAgNPs nanocomposite thin films were subjected to antimicrobial and antibiofilm analysis. The microbicidal activity was found to be higher for the PMMA/MAgNPs thin film, which highlights the potency of microbially synthesized AgNPs as excellent agents to inhibit cariogenic bacteria from colonising dental restorative material.
Collapse
Affiliation(s)
- Roshmi Thomas
- School of Biosciences, Mahatma Gandhi University, PD Hills (P.O.), Kottayam, Kerala 686 560 India
| | - S. Snigdha
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, PD Hills (P.O.), Kottayam, Kerala 686 560 India
| | - K. B. Bhavitha
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, PD Hills (P.O.), Kottayam, Kerala 686 560 India
- Department of Physics, St Teresas’s College, Ernakulam, Kerala 682011 India
| | - Seethal Babu
- School of Biosciences, Mahatma Gandhi University, PD Hills (P.O.), Kottayam, Kerala 686 560 India
| | - Anjitha Ajith
- School of Biosciences, Mahatma Gandhi University, PD Hills (P.O.), Kottayam, Kerala 686 560 India
| | - E. K. Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, PD Hills (P.O.), Kottayam, Kerala 686 560 India
| |
Collapse
|
22
|
Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E681. [PMID: 30200373 PMCID: PMC6163202 DOI: 10.3390/nano8090681] [Citation(s) in RCA: 587] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022]
Abstract
During the past few years, silver nanoparticles (AgNPs) became one of the most investigated and explored nanotechnology-derived nanostructures, given the fact that nanosilver-based materials proved to have interesting, challenging, and promising characteristics suitable for various biomedical applications. Among modern biomedical potential of AgNPs, tremendous interest is oriented toward the therapeutically enhanced personalized healthcare practice. AgNPs proved to have genuine features and impressive potential for the development of novel antimicrobial agents, drug-delivery formulations, detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration and regeneration materials, complex healthcare condition strategies, and performance-enhanced therapeutic alternatives. Given the impressive biomedical-related potential applications of AgNPs, impressive efforts were undertaken on understanding the intricate mechanisms of their biological interactions and possible toxic effects. Within this review, we focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based nanostructures.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 313 Splaiul Independenței, Bucharest 060042, Romania.
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, Magurele 077125, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, Craiova 200349, Romania.
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| |
Collapse
|