1
|
Agrawal HG, Khatun S, Rengan AK, Mishra AK. Tuning the Flavin Core via Donor Appendage for Selective Subcellular Bioimaging and PDT Application. Chemistry 2024; 30:e202401483. [PMID: 38853431 DOI: 10.1002/chem.202401483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Herein, we report a novel flavin analogue as singular chemical component for lysosome bioimaging, and inherited photosensitizer capability of the flavin core was demonstrated as a promising candidate for photodynamic therapy (PDT) application. Fine-tuning the flavin core with the incorporation of methoxy naphthyl appendage provides an appropriate chemical design, thereby offering photostability, selectivity, and lysosomal colocalization, along with the aggregation-induced emissive nature, making it suitable for lysosomal bioimaging applications. Additionally, photosensitization capability of the flavin core with photostable nature of the synthesized analogue has shown remarkable capacity for generating reactive oxygen species (ROS) within cells, making it a promising candidate for photodynamic therapy (PDT) application.
Collapse
Affiliation(s)
- Harsha Gopal Agrawal
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Telangana, 502285, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, Telangana, 502285, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, Telangana, 502285, India
| | - Ashutosh Kumar Mishra
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Telangana, 502285, India
| |
Collapse
|
2
|
Pourhajibagher M, Ghafari HA, Bahador A. Postbiotic mediators derived from Lactobacillus species enhance riboflavin-mediated antimicrobial photodynamic therapy for eradication of Streptococcus mutans planktonic and biofilm growth. BMC Oral Health 2024; 24:836. [PMID: 39048998 PMCID: PMC11267908 DOI: 10.1186/s12903-024-04620-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Streptococcus mutans has been implicated as a primary causative agent of dental caries and one of its important virulence properties is an ability to form biofilm on tooth surfaces. Thus, strategies to prevent and control S. mutans biofilms are requested. The present study aimed to examine the eradication of S. mutans planktonic and biofilm cells using riboflavin (Rib)-mediated antimicrobial photodynamic therapy (aPDT) enhanced by postbiotic mediators derived from Lactobacillus species. MATERIALS AND METHODS Minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Rib and postbiotic mediators were determined. The antimicrobial and anti-biofilm effects of Rib-mediated aPDT (Rib plus blue light), Rib-mediated aPDT in combination with postbiotic mediators derived from Lactobacillus casei (LC) (aPDT+ LC), and Rib-mediated aPDT in combination with postbiotic mediators derived from Lactobacillus plantarum (LP) (aPDT+ LP) were evaluated. The anti-virulence potential of Rib-mediated aPDT, aPDT+ LC, and aPDT+ LP were assessed by measuring the expression of the gtfB gene using quantitative real-time polymerase chain reaction (qRT-PCR) at the highest concentrations of Rib, LC, and LP, at which the S. mutans had proliferation as the same as in the control (non-treated) group. RESULTS According to the results, the MIC doses of LC, LP, and Rib were 64 µg/mL, 128 µg/mL, and 128 µg/mL, respectively, while the MBC values of LC, LP, and Rib were 128 µg/mL, 256 µg/mL, and 256 µg/mL, respectively. Rib-mediated aPDT, aPDT+ LP, and aPDT+ LC showed a significant reduction in Log10 CFU/mL of S. mutans compared to the control group (4.2, 4.9, and 5.2 Log10 CFU/mL, respectively; all P < 0.05). The most destruction of S. mutans biofilms was observed after treatment with aPDT+ LC followed by aPDT+ LP and Rib-mediated aPDT (77.5%, 73.3%, and 67.6%, respectively; all P < 0.05). The concentrations of 31.2 µg/mL, 62.5 µg/mL, and 62.5 µg/mL were considered as the highest concentrations of LC, LP, and Rib, respectively, at which S. mutans replicates as same as the control group and were used for gtfB gene expression assay using qRT-PCR during Rib-mediated aPDT, aPDT+ LP, and aPDT+ LC treatments. Gene expression results revealed that aPDT+ LP and aPDT+ LC could decrease the gene expression level of gtfB by 6.3- and 5.7-fold, respectively (P < 0.05), while only 5.1-fold reduction was observed after Rib-mediated aPDT (P < 0.05). CONCLUSION Our findings indicate that aPDT+ LP and aPDT+ LC hold promise for use as a treatment to combat S. mutans planktonic and biofilms growth as well as anti-virulence as a preventive strategy to inhibit biofilms development via reduction of gtfB gene expression.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan-Ali Ghafari
- Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
3
|
Sturm S, Niegisch G, Windolf J, Suschek CV. Exposure of Bladder Cancer Cells to Blue Light (λ = 453 nm) in the Presence of Riboflavin Synergistically Enhances the Cytotoxic Efficiency of Gemcitabine. Int J Mol Sci 2024; 25:4868. [PMID: 38732087 PMCID: PMC11084806 DOI: 10.3390/ijms25094868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Non-muscle invasive bladder cancer is a common tumour in men and women. In case of resistance to the standard therapeutic agents, gemcitabine can be used as off-label instillation therapy into the bladder. To reduce potential side effects, continuous efforts are made to optimise the therapeutic potential of drugs, thereby reducing the effective dose and consequently the pharmacological burden of the medication. We recently demonstrated that it is possible to significantly increase the therapeutic efficacy of mitomycin C against a bladder carcinoma cell line by exposure to non-toxic doses of blue light (453 nm). In the present study, we investigated whether the therapeutically supportive effect of blue light can be further enhanced by the additional use of the wavelength-specific photosensitiser riboflavin. We found that the gemcitabine-induced cytotoxicity of bladder cancer cell lines (BFTC-905, SW-1710, RT-112) was significantly enhanced by non-toxic doses of blue light in the presence of riboflavin. Enhanced cytotoxicity correlated with decreased levels of mitochondrial ATP synthesis and increased lipid peroxidation was most likely the result of increased oxidative stress. Due to these properties, blue light in combination with riboflavin could represent an effective therapy option with few side effects and increase the success of local treatment of bladder cancer, whereby the dose of the chemotherapeutic agent used and thus the chemical load could be significantly reduced with similar or improved therapeutic success.
Collapse
Affiliation(s)
- Sofia Sturm
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Joachim Windolf
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christoph V. Suschek
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Ran C, Pu K. Molecularly generated light and its biomedical applications. Angew Chem Int Ed Engl 2024; 63:e202314468. [PMID: 37955419 DOI: 10.1002/anie.202314468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Molecularly generated light, referred to here as "molecular light", mainly includes bioluminescence, chemiluminescence, and Cerenkov luminescence. Molecular light possesses unique dual features of being both a molecule and a source of light. Its molecular nature enables it to be delivered as molecules to regions deep within the body, overcoming the limitations of natural sunlight and physically generated light sources like lasers and LEDs. Simultaneously, its light properties make it valuable for applications such as imaging, photodynamic therapy, photo-oxidative therapy, and photobiomodulation. In this review article, we provide an updated overview of the diverse applications of molecular light and discuss the strengths and weaknesses of molecular light across various domains. Lastly, we present forward-looking perspectives on the potential of molecular light in the realms of molecular imaging, photobiological mechanisms, therapeutic applications, and photobiomodulation. While some of these perspectives may be considered bold and contentious, our intent is to inspire further innovations in the field of molecular light applications.
Collapse
Affiliation(s)
- Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| |
Collapse
|
5
|
Shen Q, Guo H, Yan Y. Photobiomodulation for Neurodegenerative Diseases: A Scoping Review. Int J Mol Sci 2024; 25:1625. [PMID: 38338901 PMCID: PMC10855709 DOI: 10.3390/ijms25031625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases involve the progressive dysfunction and loss of neurons in the central nervous system and thus present a significant challenge due to the absence of effective therapies for halting or reversing their progression. Based on the characteristics of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), which have prolonged incubation periods and protracted courses, exploring non-invasive physical therapy methods is essential for alleviating such diseases and ensuring that patients have an improved quality of life. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits and functions by stimulating, healing, regenerating, and protecting organizations at risk of injury, degradation, or death. Over the last two decades, PBM has gained widespread recognition as a non-invasive physical therapy method, showing efficacy in pain relief, anti-inflammatory responses, and tissue regeneration. Its application has expanded into the fields of neurology and psychiatry, where extensive research has been conducted. This paper presents a review and evaluation of studies investigating PBM in neurodegenerative diseases, with a specific emphasis on recent applications in AD and PD treatment for both animal and human subjects. Molecular mechanisms related to neuron damage and cognitive impairment are scrutinized, offering valuable insights into PBM's potential as a non-invasive therapeutic strategy.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haoyun Guo
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yihua Yan
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
6
|
Buniowska I, Wronski N, Insinska-Rak M, Sikorski M, Wolnicka-Glubisz A. Tetraacetyl riboflavin derivative mediates caspase 3/7 activation via MAPK in A431 cells upon blue light influence. Photochem Photobiol 2024; 100:204-213. [PMID: 37029736 DOI: 10.1111/php.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
An acetylated riboflavin derivative, 3-methyl-tetraacetyl riboflavin (3MeTARF), is a compound with high photostability and photophysical properties similar to riboflavin, including the ability to photogenerate singlet oxygen. In the present study, we compared the effects of irradiation on A431 cancer cells with blue LED light (438 nm) in the presence of 3MeTARF and riboflavin on MAPK phosphorylation, apoptosis, caspase 3/7 activation and PARP cleavage. We observed that photogenerated oxidative stress in this reaction activates MAPK by increasing phosphorylation of p38 and JNK proteins. Preincubation of cells with inhibitors specific for phosphorylation of p38 and JNK proteins (SB203580, SP600125), respectively, results in decreased caspase 3/7 activation and PARP cleavage. We showed that the tetraacetyl derivative more effectively activates MAPK and skin cancer cell death compared to riboflavin. These data, together with results of our previous study, support the hypothesis that 3MeTARF, of riboflavin, might be more useful and desirable as a compound for use in photodynamic oxidation processes, including its therapeutic potential.
Collapse
Affiliation(s)
- Izabela Buniowska
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Norbert Wronski
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Chiu CM, Lee SY, Chen PR, Zhan SQ, Yuann JMP, Huang ST, Wu MF, Cheng CW, Chang YC, Liang JY. An investigation of the influence of reactive oxygen species produced from riboflavin-5'-phosphate by blue or violet light on the inhibition of WiDr colon cancer cells. Photodiagnosis Photodyn Ther 2023; 44:103810. [PMID: 37748698 DOI: 10.1016/j.pdpdt.2023.103810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Riboflavin-5'-phosphate (FMN), an innocuous product of riboflavin (RF) phosphorylation, is vital for humans. FMN is sensitive to light illumination, as indicated by reactive oxygen species (ROS) formation. This investigation was undertaken to evaluate the influence of blue light illumination (BLI) and violet light illumination (VLI) upon FMN to develop a method to inhibit WiDr colon cancer cells by FMN photolysis. When FMN is subjected to BLI and VLI, it inhibits WiDr colon cancer cells by generating superoxide radical anions (O2•-). The respective reduction rates are 42.6 and 81.9 % in WiDr colon cancer cells for FMN treated with BLI and VLI at 20 W/m2 for 0.5 h. FMN treated with VLI inhibits WiDr colon cancer cells more effectively than BLI. Propidium iodide (PI) is a fluorescent dye that is used to detect abnormal DNA due to cell death by apoptosis or necrosis. The PI-positive count for nuclei increased significantly for the WiDr colon cancer cells that were treated with FMN under VLI at 20 W/m2 for 0.5 h. FMN photolysis achieved using VLI allows efficient photodynamic therapy (PDT) by triggering the cytotoxicity of FMN on WiDr colon cancer cells.
Collapse
Affiliation(s)
- Chi-Ming Chiu
- Department of Biotechnology, Ming Chuan University, GuiShan 33343, Taiwan
| | - Shwu-Yuan Lee
- Department of Tourism and Leisure, Hsing Wu University, New Taipei City 24452, Taiwan
| | - Pin-Rong Chen
- Department of Biotechnology, Ming Chuan University, GuiShan 33343, Taiwan
| | - Shao-Qi Zhan
- Department of Biotechnology, Ming Chuan University, GuiShan 33343, Taiwan
| | - Jeu-Ming P Yuann
- Department of Biotechnology, Ming Chuan University, GuiShan 33343, Taiwan
| | - Shiuh-Tsuen Huang
- Department of Science Education and Application, National Taichung University of Education, Taichung 40306, Taiwan; Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40200, Taiwan
| | - Ming-Fang Wu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Chien-Wei Cheng
- Department of Biotechnology, Ming Chuan University, GuiShan 33343, Taiwan
| | - Yu-Chung Chang
- Department of Biotechnology, Ming Chuan University, GuiShan 33343, Taiwan.
| | - Ji-Yuan Liang
- Department of Biotechnology, Ming Chuan University, GuiShan 33343, Taiwan.
| |
Collapse
|
8
|
Bischer AP, Baran TM, Wojtovich AP. Reactive oxygen species drive foraging decisions in Caenorhabditis elegans. Redox Biol 2023; 67:102934. [PMID: 37864874 PMCID: PMC10616421 DOI: 10.1016/j.redox.2023.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
Environmental surveillance-mediated behavior integrates multiple cues through complex signaling mechanisms. In Caenorhabditis elegans, neurons coordinate perception and response through evolutionarily conserved molecular signaling cascades to mediate attraction and avoidance behaviors. However, despite lacking eyes, C. elegans was recently reported to perceive and react to the color blue. Here, we provide an explanation for this apparent color perception. We show that internally-generated reactive oxygen species (ROS) occurring in response to light are additive to exogenous sources of ROS, such as bacterial toxins or photosensitizers. Multiple sub-threshold sources of ROS are integrated to coordinate behavioral responses to the environment with internal physiologic cues, independent of color. We further demonstrate that avoidance behavior can be blocked by antioxidants, while ROS is both sufficient and scalable to phenocopy the avoidance response. Moreover, avoidance behavior in response to ROS is plastic and reversible, suggesting it may occur through a post-translation redox modification. Blue light affects C. elegans behavior through ROS generation by endogenous flavins in a process requiring the neuronal gustatory photoreceptor like protein, LITE-1. Our results demonstrate that LITE-1 is also required for ROS-mediated avoidance of pyocyanin and light-activated photosensitizers and this role is mediated through the modification of Cys44. Overall, these findings demonstrate that ROS and LITE-1 are central mediators of C. elegans foraging behavior through integration of multiple inputs, including light.
Collapse
Affiliation(s)
- Andrew P Bischer
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Timothy M Baran
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Cao J, Ma X, Zhang G, Hong S, Ma R, Wang Y, Yan X, Ma M. Prognostic analyses of genes associated with anoikis in breast cancer. PeerJ 2023; 11:e15475. [PMID: 37842046 PMCID: PMC10576492 DOI: 10.7717/peerj.15475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/08/2023] [Indexed: 10/17/2023] Open
Abstract
Breast cancer (BRCA) is the most diagnosed cancer worldwide and is responsible for the highest cancer-associated mortality among women. It is evident that anoikis resistance contributes to tumour cell metastasis, and this is the primary cause of treatment failure for BRCA. However, anoikis-related gene (ARG) expression profiles and their prognostic value in BRCA remain unclear. In this study, a prognostic model of ARGs based on The Cancer Genome Atlas (TCGA) database was established using a least absolute shrinkage and selection operator analysis to evaluate the prognostic value of ARGs in BRCA. The risk factor graph demonstrated that the low-risk group had longer survival than the high-risk group, implying that the prognostic model had a good performance. We identified 11 ARGs that exhibited differential expression between the two risk groups in TCGA and Gene Expression Omnibus databases. Through Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses, we revealed that the screened ARGs were associated with tumour progression and metastasis. In addition, a protein-protein interaction network showed potential interactions among these ARGs. Furthermore, gene set enrichment analysis suggested that the Notch and Wnt signalling pathways were overexpressed in the high-risk group, and gene set variation analysis revealed that 38 hallmark genes differed between the two groups. Moreover, Kaplan-Meier survival curves and receiver operating characteristic curves were used to identify five ARGs (CD24, KRT15, MIA, NDRG1, TP63), and quantitative polymerase chain reaction was employed to assess the differential expression of these ARGs. Univariate and multivariate Cox regression analyses were then performed for the key ARGs, with the best prediction of 3 year survival. In conclusion, ARGs might play a crucial role in tumour progression and serve as indicators of prognosis in BRCA.
Collapse
Affiliation(s)
- Jingyu Cao
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xinyi Ma
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Guijuan Zhang
- School of Nursing of Jinan University, Guangzhou, China
| | - Shouyi Hong
- College of Traditional Chinese Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Jinan University, Guangzhou, China
| | - Ruirui Ma
- College of Traditional Chinese Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Jinan University, Guangzhou, China
| | - Yanqiu Wang
- College of Traditional Chinese Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Jinan University, Guangzhou, China
| | - Xianxin Yan
- College of Traditional Chinese Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Jinan University, Guangzhou, China
| | - Min Ma
- College of Traditional Chinese Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Insińska-Rak M, Sikorski M, Wolnicka-Glubisz A. Riboflavin and Its Derivates as Potential Photosensitizers in the Photodynamic Treatment of Skin Cancers. Cells 2023; 12:2304. [PMID: 37759526 PMCID: PMC10528563 DOI: 10.3390/cells12182304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Riboflavin, a water-soluble vitamin B2, possesses unique biological and physicochemical properties. Its photosensitizing properties make it suitable for various biological applications, such as pathogen inactivation and photodynamic therapy. However, the effectiveness of riboflavin as a photosensitizer is hindered by its degradation upon exposure to light. The review aims to highlight the significance of riboflavin and its derivatives as potential photosensitizers for use in photodynamic therapy. Additionally, a concise overview of photodynamic therapy and utilization of blue light in dermatology is provided, as well as the photochemistry and photobiophysics of riboflavin and its derivatives. Particular emphasis is given to the latest findings on the use of acetylated 3-methyltetraacetyl-riboflavin derivative (3MeTARF) in photodynamic therapy.
Collapse
Affiliation(s)
- Małgorzata Insińska-Rak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.I.-R.); (M.S.)
| | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.I.-R.); (M.S.)
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
11
|
Jiang H, Qin H, Sun M, Lin S, Yang J, Liu M. Effect of blue light on the cell viability of A549 lung cancer cells and investigations into its possible mechanism. JOURNAL OF BIOPHOTONICS 2023; 16:e202300047. [PMID: 37265005 DOI: 10.1002/jbio.202300047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Blue light has attracted extensive attention as a new potential cancer therapy. Recent studies have indicated that blue light has a significant inhibition effect on A459 cells. However, the effect of light parameters on the treatment of A549 cells and the mechanism of how blue light made the effect was still unclear. This study aimed to investigate A549 cells responses to blue light with varying irradiance and dose-dense, and tried to find out the mechanism of the effects blue light made. The results suggested that the responses of A549 cells to blue light with different irradiance and dose-dense were different and the decrease of cell viability reached saturation when the irradiance reached 3 mW/cm2 and the dose-dense reached 3.6 J/cm2 . It was assumed that blue light suppressed PI3K/AKT pathway and promoted the expression of JNK and p53 to affect the proliferation of A549 cells.
Collapse
Affiliation(s)
- Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Miao Sun
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| | - Jiali Yang
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| |
Collapse
|
12
|
Kumari J, Das K, Babaei M, Rokni GR, Goldust M. The impact of blue light and digital screens on the skin. J Cosmet Dermatol 2023; 22:1185-1190. [PMID: 36594795 DOI: 10.1111/jocd.15576] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The skin is frequently subjected to a variety of environmental trauma and stress. It is unavoidably subjected to blue light due to the increased use of electronic equipment, including indoor lighting and digital gadgets like smartphones and laptops, which have a range of detrimental effects. The method of action and numerous harmful consequences of blue light on the skin are the main subjects of this review. MATERIALS AND METHODS A literature search has been performed using PubMed, GoogleScholar and EmBase databases and an updated review on the topic has been presented. RESULTS Numerous studies have shown that being exposed to blue light accelerates the aging process and produces cutaneous hyperpigmentation. It also modifies the circadian rhythm. The two main molecules that mediate cellular responses to blue light are nitric oxide (NO) and reactive oxygen species. However, the precise process is still not fully known. CONCLUSION These negative consequences may eventually cause more general skin damage, which may hasten the aging process. At times, skin protection may be crucial for protection against blue light.
Collapse
Affiliation(s)
- Jyoti Kumari
- Silchar Medical College and Hospital, Silchar, Assam, India
| | - Kinnor Das
- Consultant Dermatolgist, Apollo clinic, Silchar, Assam, India
| | - Mahsa Babaei
- School of Medicine, Stanford University, Stanford, California, USA
| | - Ghasem Rahmatpour Rokni
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
13
|
Soleimany A, Khoee S, Dastan D, Shi Z, Yu S, Sarmento B. Two-photon photodynamic therapy based on FRET using tumor-cell targeted riboflavin conjugated graphene quantum dot. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112602. [PMID: 36442423 DOI: 10.1016/j.jphotobiol.2022.112602] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
The photodynamic therapy (PDT) is considered as a noninvasive and photo-controlled treatment for various cancers. However, its potential is not fully developed as current clinically approved photosensitizers (PSs) mainly absorb the light in the UV-visible region (less than 700 nm), where the depth of penetration is inadequate for reaching tumor cells under deeper tissue layers. Furthermore, the lack of specific accumulation capability of the conventional PSs in the tumor cells may cause serious toxicity and low treatment efficiency. To address these problems, riboflavin (Rf) conjugated and amine-functionalized nitrogen-doped graphene quantum dots (am-N-GQD) are herein proposed. Rf functions as both photosensitizer and targeting ligand by indirect excitation through intra-particle fluorescence resonance energy transfer (FRET) via two-photon (TP) excited am-N-GQD, to enhance the treatment depth, and further am-N-GQD-Rf accumulation in cancer cells using Rf transporter family (RFVTs) and Rf carrier proteins (RCPs). The one-photon (OP) and two-photon(TP)-PDT effect and cellular internalization ability of the am-N-GQD-Rf were investigated in vitro in different cancel cell lines. Besides the excellent cellular uptake as well TP-PDT capability, the superior biocompatibility of am-N-GQD-Rf in vitro makes it promising candidate in PDT.
Collapse
Affiliation(s)
- Amir Soleimany
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| | - Davoud Dastan
- School of Materials Science and Engineering, Georgia Institute of Technology, 30332 Atlanta, GA, USA
| | - Zhicheng Shi
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Shengtao Yu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
14
|
Dai X, Jin S, Xuan Y, Yang Y, Lu X, Wang C, Chen L, Xiang L, Zhang C. 590 nm LED Irradiation Improved Erythema through Inhibiting Angiogenesis of Human Microvascular Endothelial Cells and Ameliorated Pigmentation in Melasma. Cells 2022; 11:cells11243949. [PMID: 36552713 PMCID: PMC9776419 DOI: 10.3390/cells11243949] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Melasma is a common refractory acquired pigmentary skin disease that mainly affects middle-aged women. The pathogenesis of melasma is still uncertain, while abnormal vascular endothelial cells may play a role. We previously demonstrated the yellow light of light-emitting diodes (LED) could inhibit melanogenesis through the photobiomodulation (PBM) of melanocytes and keratinocytes. In the current study, we investigated the effect of 590 nm LED on the function of human microvascular endothelial cells (HMEC-1). We revealed 0-40 J/cm2 590 nm LED had no toxic effect on HMEC-1 in vitro. 590 nm LED irradiation significantly reduced cell migration, tube formation, as well as the expression of vascular endothelial growth factor (VEGF) and stem cell factor (SCF), a pro-melanogenic factor. Moreover, we illustrated that 590 nm LED inhibited the phosphorylation of the AKT/PI3K/mTOR signaling pathway, and the inhibitory effect on HMEC-1 could be partially reversed by insulin-like growth factor 1 (IGF-1), an AKT/PI3K/mTOR pathway agonist. Besides, we conducted a pilot clinical study and observed a marked improvement on facial erythema and pigmentation in melasma patients after amber LED phototherapy. Taken together, 590 nm LED inhibited HMEC-1 migration, tube formation and the secretion of VEGF and SCF, predominantly through the inhibition of the AKT/PI3K/mTOR pathway, which may serve as a novel therapeutic option for melasma.
Collapse
|
15
|
Luo Y, Cao B, Zhong M, Liu M, Xiong X, Zou T. Organogold(III) Complexes Display Conditional Photoactivities: Evolving From Photodynamic into Photoactivated Chemotherapy in Response to O 2 Consumption for Robust Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202212689. [PMID: 36109339 DOI: 10.1002/anie.202212689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 11/09/2022]
Abstract
Photodynamic therapy (PDT) is a spatiotemporally controllable, powerful approach in combating cancers but suffers from low activity under hypoxia, whereas photoactivated chemotherapy (PACT) operates in an O2 -independent manner but compromises the ability to harness O2 for potent photosensitization. Herein we report that cyclometalated gold(III)-alkyne complexes display a PDT-to-PACT evolving photoactivity for efficient cancer treatment. On the one hand, the gold(III) complexes can act as dual photosensitizers and substrates, leading to conditional PDT activity in oxygenated condition that progresses to highly efficient PACT (ϕ up to 0.63) when O2 is depleted in solution and under cellular environment. On the other hand, the conditional PDT-to-PACT reactivity can be triggered by external photosensitizers in a similar manner in vitro and in vivo, giving additional tumor-selectivity and/or deep tissue penetration by red-light irradiation that leads to robust anticancer efficacy.
Collapse
Affiliation(s)
- Yunli Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Mingjie Zhong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Moyi Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
16
|
Hegmann L, Sturm S, Niegisch G, Windolf J, Suschek CV. Enhancement of human bladder carcinoma cell chemosensitivity to Mitomycin C through quasi-monochromatic blue light (λ = 453 ± 10 nm). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 236:112582. [PMID: 36272336 DOI: 10.1016/j.jphotobiol.2022.112582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 01/31/2023]
Abstract
Human urothelial bladder carcinoma (uBC) is the second most tumor entity of the urogenital tract. As far as possible, therapy for non-muscle invasive uBC takes place as resection of the tumor tissue, followed by intravesical chemotherapy or immunotherapy. Because of the high recurrence rate of uBC, there is a need for improved efficiency in the treatment. In the present in vitro study we have evaluated a new approach to enhance the cytotoxic efficiency of Mitomycin C (MMC), which is commonly used for intravesical treatment of uBC on the relevant urothelial cancer cell line RT112. For that we used quasi-monochromatic blue light (453 ± 10 nm) at its non-toxic dose of 110 J/cm2 as an additive stimulus to enhance the therapeutic efficiency of MMC (10 μg/ml). We found, that blue light exposure of RT112 cells led to a very strong increase in intracellular production of reactive oxygen species (ROS) and to a significant reduction (p < 0.05) of all function parameters of mitochondrial respiration, including basal activity and ATP production. Although not being toxic when used as a single impact, together with MMC blue light strongly enhanced the therapeutic efficiency of MMC in the form of significantly enhanced cytotoxicity via apoptosis and secondary necrosis. Our results clearly show that blue light, most likely due to its ability to increase intracellular ROS production and reduce mitochondrial respiration, increased the cytotoxic efficiency of MMC and therefore might represent an effective, low-side-effect, and success-enhancing therapy option in the local treatment of bladder cancer.
Collapse
Affiliation(s)
- Lisa Hegmann
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Sofia Sturm
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Christoph V Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
17
|
Toh K, Nishio K, Nakagawa R, Egoshi S, Abo M, Perron A, Sato SI, Okumura N, Koizumi N, Dodo K, Sodeoka M, Uesugi M. Chemoproteomic Identification of Blue-Light-Damaged Proteins. J Am Chem Soc 2022; 144:20171-20176. [DOI: 10.1021/jacs.2c07180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kohei Toh
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kosuke Nishio
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Reiko Nakagawa
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Syusuke Egoshi
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masahiro Abo
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Amelie Perron
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shin-ichi Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
- School of Pharmacy, Fudan University, Shanghai 201203, People’s Republic of China
| |
Collapse
|
18
|
Yang J, Fu Q, Jiang H, Li Y, Liu M. Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Front Oncol 2022; 12:1022973. [PMID: 36313662 PMCID: PMC9606592 DOI: 10.3389/fonc.2022.1022973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor that mainly affects the pediatric and adolescent population; limb salvage treatment has become one of the most concerned and expected outcomes of OS patients recently. Phototherapy (PT), as a novel, non-invasive, and efficient antitumor therapeutic approach including photodynamic therapy (PDT), photothermal therapy (PTT), and photobiomodulation therapy (PBMT), has been widely applied in superficial skin tumor research and clinical treatment. OS is the typical deep tumor, and its phototherapy research faces great limitations and challenges. Surprisingly, pulse mode LED light can effectively improve tissue penetration and reduce skin damage caused by high light intensity and has great application potential in deep tumor research. In this review, we discussed the research progress and related molecular mechanisms of phototherapy in the treatment of OS, mainly summarized the status quo of blue light PBMT in the scientific research and clinical applications of tumor treatment, and outlooked the application prospect of pulsed blue LED light in the treatment of OS, so as to further improve clinical survival rate and prognosis of OS treatment and explore corresponding cellular mechanisms.
Collapse
Affiliation(s)
- Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yinghua Li
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| |
Collapse
|
19
|
Purbhoo-Makan M, Houreld NN, Enwemeka CS. The Effects of Blue Light on Human Fibroblasts and Diabetic Wound Healing. Life (Basel) 2022; 12:life12091431. [PMID: 36143466 PMCID: PMC9505688 DOI: 10.3390/life12091431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a serious threat to global health and is among the top 10 causes of death. The Diabetic foot ulcer (DFU) is among the most common and severe complications of the disease. Bacterial infections are common; therefore, timely aggressive management, using multidisciplinary management approaches is needed to prevent complications, morbidity, and mortality, particularly in view of the growing cases of antibiotic-resistant bacteria. Photobiomodulation (PBM) involves the application of low-level light at specific wavelengths to induce cellular photochemical and photophysical responses. Red and near-infrared (NIR) wavelengths have been shown to be beneficial, and recent studies indicate that other wavelengths within the visible spectrum could be helpful as well, including blue light (400–500 nm). Reports of the antimicrobial activity and susceptibility of blue light on several strains of the same bacterium show that many bacteria are less likely to develop resistance to blue light treatment, meaning it is a viable alternative to antibiotic therapy. However, not all studies have shown positive results for wound healing and fibroblast proliferation. This paper presents a critical review of the literature concerning the use of PBM, with a focus on blue light, for tissue healing and diabetic ulcer care, identifies the pros and cons of PBM intervention, and recommends the potential role of PBM for diabetic ulcer care.
Collapse
Affiliation(s)
- Meesha Purbhoo-Makan
- Department of Podiatry, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Correspondence:
| | - Chukuka S. Enwemeka
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- College of Health and Human Services, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
20
|
Dionisi S, Piera K, Baumschlager A, Khammash M. Implementation of a Novel Optogenetic Tool in Mammalian Cells Based on a Split T7 RNA Polymerase. ACS Synth Biol 2022; 11:2650-2661. [PMID: 35921263 PMCID: PMC9396705 DOI: 10.1021/acssynbio.2c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Optogenetic tools are widely used to control gene expression
dynamics
both in prokaryotic and eukaryotic cells. These tools are used in
a variety of biological applications from stem cell differentiation
to metabolic engineering. Despite some tools already available in
bacteria, no light-inducible system currently exists to control gene
expression independently from mammalian transcriptional and/or translational
machineries thus working orthogonally to endogenous regulatory mechanisms.
Such a tool would be particularly important in synthetic biology,
where orthogonality is advantageous to achieve robust activation of
synthetic networks. Here we implement, characterize, and optimize
a new optogenetic tool in mammalian cells based on a previously published
system in bacteria called Opto-T7RNAPs. The tool is orthogonal to
the cellular machinery for transcription and consists of a split T7
RNA polymerase coupled with the blue light-inducible magnets system
(mammalian OptoT7–mOptoT7). In our study we exploited the T7
polymerase’s viral origins to tune our system’s expression
level, reaching up to an almost 20-fold change activation over the
dark control. mOptoT7 is used here to generate mRNA for protein expression,
shRNA for protein inhibition, and Pepper aptamer for RNA visualization.
Moreover, we show that mOptoT7 can mitigate the gene expression burden
when compared to another optogenetic construct. These properties make
mOptoT7 a powerful new tool to use when orthogonality and viral RNA
species (that lack endogenous RNA modifications) are desired.
Collapse
Affiliation(s)
- Sara Dionisi
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Karol Piera
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Armin Baumschlager
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
21
|
Bromelain mediates apoptosis in HeLa cells via ROS-independent pathway. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Nakayama E, Kushibiki T, Mayumi Y, Azuma R, Ishihara M, Kiyosawa T. Blue Laser Irradiation Decreases the ATP Level in Mouse Skin and Increases the Production of Superoxide Anion and Hypochlorous Acid in Mouse Fibroblasts. BIOLOGY 2022; 11:biology11020301. [PMID: 35205166 PMCID: PMC8869339 DOI: 10.3390/biology11020301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Photobiomodulation studies have reported that blue light irradiation induces the production of reactive oxygen species. We examined the effect of blue laser (405 nm) irradiation on ATP level in the skin and measured the types of reactive oxygen species and reactive nitrogen species. The decrease in the skin ATP level due to blue light irradiation may be caused by oxidative stress due to the generation of reactive oxygen species. These findings highlight the need to consider the effects on the skin when performing photobiomodulation treatment using blue light. Abstract Photobiomodulation studies have reported that blue light irradiation induces the production of reactive oxygen species. We investigated the effect of blue laser (405 nm) irradiation on the ATP levels in mouse skin and determined the types of reactive oxygen species and reactive nitrogen species using cultured mouse fibroblasts. Blue laser irradiation caused a decrease in the ATP level in the mouse skin and triggered the generation of superoxide anion and hypochlorous acid, whereas nitric oxide and peroxynitrite were not detected. Moreover, blue laser irradiation resulted in reduced cell viability. It is believed that the decrease in the skin ATP level due to blue light irradiation results from the increased levels of oxidative stress due to the generation of reactive oxygen species. This method of systematically measuring the levels of reactive oxygen species and reactive nitrogen species may be useful for understanding the effects of irradiation conditions.
Collapse
Affiliation(s)
- Eiko Nakayama
- Department of Plastic Surgery, National Defense Medical College, Saitama 3598513, Japan; (R.A.); (T.K.)
- Correspondence: ; Tel.: +81-4-2995-1596
| | - Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, Saitama 3598513, Japan; (T.K.); (Y.M.); (M.I.)
| | - Yoshine Mayumi
- Department of Medical Engineering, National Defense Medical College, Saitama 3598513, Japan; (T.K.); (Y.M.); (M.I.)
| | - Ryuichi Azuma
- Department of Plastic Surgery, National Defense Medical College, Saitama 3598513, Japan; (R.A.); (T.K.)
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, Saitama 3598513, Japan; (T.K.); (Y.M.); (M.I.)
| | - Tomoharu Kiyosawa
- Department of Plastic Surgery, National Defense Medical College, Saitama 3598513, Japan; (R.A.); (T.K.)
| |
Collapse
|
23
|
Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041192. [PMID: 35208984 PMCID: PMC8879555 DOI: 10.3390/molecules27041192] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
Abstract
Despite significant advances in early diagnosis and treatment, cancer is one of the leading causes of death. Photodynamic therapy (PDT) is a therapy for the treatment of many diseases, including cancer. This therapy uses a combination of a photosensitizer (PS), light irradiation of appropriate length and molecular oxygen. The photodynamic effect kills cancer cells through apoptosis, necrosis, or autophagy of tumor cells. PDT is a promising approach for eliminating various cancers but is not yet as widely applied in therapy as conventional chemotherapy. Currently, natural compounds with photosensitizing properties are being discovered and identified. A reduced toxicity to healthy tissues and a lower incidence of side effects inspires scientists to seek natural PS for PDT. In this review, several groups of compounds with photoactive properties are presented. The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. This review focused on the anticancer activity of furanocoumarins, polyacetylenes, thiophenes, tolyporphins, curcumins, alkaloid and anthraquinones in relation to the light-absorbing properties. Attention will be paid to their phototoxic and anti-cancer effects on various types of cancer.
Collapse
|
24
|
Development of a G2/M arrest high-throughput screening method identifies potent radiosensitizers. Transl Oncol 2022; 16:101336. [PMID: 34986454 PMCID: PMC8732089 DOI: 10.1016/j.tranon.2021.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
Radiation is a powerful tool used to control tumor growth and induce an immune response; however, it is limited by damage to surrounding tissue and adverse effects such skin irritation. Breast cancer patients in particular may endure radiation dermatitis, and potentially lymphedema, after a course of radiotherapy. Radio-sensitizing small molecule drugs may enable lower effective doses of both radiation and chemotherapy to minimize toxicity to healthy tissue. In this study, we identified a novel high-throughput method for screening radiosensitizers by image analysis of nuclear size and cell cycle. In vitro assays were performed on cancer cells lines to assess combined therapeutic and radiation effects. In vivo, radiation in combination with proflavine hemisulfate led to enhanced efficacy demonstrated by improved tumor volume control in mice bearing syngeneic breast tumors. This study provides a proof of concept for utilizing G2/M stall as a predictor of radiosensitization and is the first report of a flavin acting as an X-ray radiation enhancer in a breast cancer mouse model.
Collapse
|
25
|
Wang X, Song Z, Li H, Liu K, Sun Y, Liu X, Wang M, Yang Y, Su S, Li Z. Short-wavelength blue light contributes to the pyroptosis of human lens epithelial cells (hLECs). Exp Eye Res 2021; 212:108786. [PMID: 34624334 DOI: 10.1016/j.exer.2021.108786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The purpose of this study is to examine the effect of short-wavelength blue light (SWBL) on cultured human lens epithelial cells (hLECs). The pathogenesis of cataracts after SWBL exposure is discussed. METHODS HLE-B3 hLECs were randomly divided into 3 groups: the NC group, which was grown in a dark incubator; the acetyl (Ac)-Tyr-Val-Ala-Asp-chloromethyl ketone (AC-YVAD-CMK) treatment group; and the SWBL exposure group. After SWBL (2500 lux) irradiation (for 8, 16, 24, and 32 h), caspase-1 and gasdermin D (GSDMD) expression levels in HLE-B3 hLECs were examined using ELISA, immunofluorescence staining, and Western blotting analyses. Double-positive staining of hLECs for activated and inhibited caspase-1 was used to determine pyroptosis in HLE-B3 hLECs. RESULTS SWBL led to hLEC death, but a caspase-1 inhibitor suppressed cell death. The flow cytometry results also confirmed the dose-dependent effect of SWBL irradiation on the pyroptotic death of hLECs. Caspase-1 and GSDMD expression levels in all hLEC groups changed with blue light exposure times (8, 16, 24, and 32 h) and were higher in the AC-YVAD-CMK and SWBL exposure groups than in the NC group. The immunofluorescence results revealed higher GSDMD-N expression in the cell membrane of both the AC-YVAD-CMK and SWBL exposure groups than in the NC group. CONCLUSIONS Based on the data, SWBL induces pyroptotic programmed cell death by activating the GSDMD signalling axis in HLE-B3 hLECs. These results provide new insights into the exploitation of new candidates for the prevention of cataracts.
Collapse
Affiliation(s)
- Xiaohui Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, China
| | - Zhaowei Song
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, China
| | - Huazhang Li
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, China
| | - Kexin Liu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, China
| | - Ying Sun
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, China; Department of Ophthalmology, Second Hospital of Heilongjiang Province, Harbin, China
| | - Xiangyu Liu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, China
| | - Meiyu Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, China
| | - Yuexing Yang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, China
| | - Sheng Su
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, China
| | - Zhijian Li
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
26
|
Matijević M, Žakula J, Korićanac L, Radoičić M, Liang X, Mi L, Tričković JF, Šobot AV, Stanković MN, Nakarada Đ, Mojović M, Petković M, Stepić M, Nešić MD. Controlled killing of human cervical cancer cells by combined action of blue light and C-doped TiO 2 nanoparticles. Photochem Photobiol Sci 2021; 20:1087-1098. [PMID: 34398442 DOI: 10.1007/s43630-021-00082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
In this study, C-doped TiO2 nanoparticles (C-TiO2) were prepared and tested as a photosensitizer for visible-light-driven photodynamic therapy against cervical cancer cells (HeLa). X-ray diffraction and Transmission Electron Microscopy confirmed the anatase form of nanoparticles, spherical shape, and size distribution from 5 to 15 nm. Ultraviolet-visible light spectroscopy showed that C doping of TiO2 enhances the optical absorption in the visible light range caused by a bandgap narrowing. The photo-cytotoxic activity of C-TiO2 was investigated in vitro against HeLa cells. The lack of dark cytotoxicity indicates good biocompatibility of C-TiO2. In contrast, a combination with blue light significantly reduced the survival of HeLa cells: illumination only decreased cell viability by 30% (15 min of illumination, 120 µW power), and 60% when HeLa cells were preincubated with C-TiO2. We have also confirmed blue light-induced C-TiO2-catalyzed generation of reactive oxygen species in vitro and intracellularly. Oxidative stress triggered by C-TiO2/blue light was the leading cause of HeLa cell death. Fluorescent labeling of treated HeLa cells showed distinct morphological changes after the C-TiO2/blue light treatment. Unlike blue light illumination, which caused the appearance of large necrotic cells with deformed nuclei, cytoplasm swelling, and membrane blebbing, a combination of C-TiO2/blue light leads to controlled cell death, thus providing a better outcome of local anticancer therapy.
Collapse
Affiliation(s)
- Milica Matijević
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia.
| | - Jelena Žakula
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia
| | - Lela Korićanac
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia
| | - Marija Radoičić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia
| | - Xinyue Liang
- Department of Optical Science and Engineering, Fudan University, 200433, Shanghai, People's Republic of China
| | - Lan Mi
- Department of Optical Science and Engineering, Fudan University, 200433, Shanghai, People's Republic of China
| | - Jelena Filipović Tričković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia
| | - Ana Valenta Šobot
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia
| | - Maja N Stanković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000, Niš, Serbia
| | - Đura Nakarada
- Faculty of Physical Chemistry, University of Belgrade, 11000, Belgrade, Serbia
| | - Miloš Mojović
- Faculty of Physical Chemistry, University of Belgrade, 11000, Belgrade, Serbia
| | - Marijana Petković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia
| | - Milutin Stepić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia
| | - Maja D Nešić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia
| |
Collapse
|
27
|
Sadowska M, Narbutt J, Lesiak A. Blue Light in Dermatology. Life (Basel) 2021; 11:670. [PMID: 34357042 PMCID: PMC8307003 DOI: 10.3390/life11070670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Phototherapy is an important method of dermatological treatments. Ultraviolet (280-400 nm) therapy is of great importance; however, there are concerns of its long-term use, as it can lead to skin aging and carcinogenesis. This review aims to evaluate the role and the mechanism of action of blue light (400-500 nm), a UV-free method. The main mediators of cellular responses to blue light are nitric oxide (NO) and reactive oxygen species (ROS). However, the detailed mechanism is still not fully understood. It was demonstrated that blue light induces an anti-inflammatory and antiproliferative effect; thus, it may be beneficial for hyperproliferative and chronic inflammatory skin diseases such as atopic dermatitis, eczema, and psoriasis. It was also found that blue light might cause the reduction of itching. It may be beneficial on hair growth and may be used in the treatment of acne vulgaris by reducing follicular colonization of Propionibacterium acnes. Further studies are needed to develop accurate protocols, as the clinical effects depend on the light parameters as well as the treatment length. There are no major adverse effects observed yet, but long-term safety should be monitored as there are no studies considering the long-term effects of blue light on the skin.
Collapse
Affiliation(s)
- Magdalena Sadowska
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Łódź, 90-419 Łódź, Poland; (J.N.); (A.L.)
| | | | | |
Collapse
|
28
|
Mekseriwattana W, Phungsom A, Sawasdee K, Wongwienkham P, Kuhakarn C, Chaiyen P, Katewongsa KP. Dual Functions of Riboflavin-functionalized Poly(lactic-co-glycolic acid) Nanoparticles for Enhanced Drug Delivery Efficiency and Photodynamic Therapy in Triple-negative Breast Cancer Cells. Photochem Photobiol 2021; 97:1548-1557. [PMID: 34109623 DOI: 10.1111/php.13464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Combating triple-negative breast cancer (TNBC) is one of the greatest challenges in cancer therapy. This is primarily due to the difficulties in developing drug delivery systems that can effectively target cancer sites. In this study, we demonstrated a proof-of-principle concept using modified surfaces of poly(lactic-co-glycolic acid) nanoparticles linked with a riboflavin analogue (PLGA-CSRf) to obtain a dual-functional material. PLGA-CSRf nanoparticles were able to function as a drug delivery ligand and a photodynamic therapy agent for TNBC cells (MDA-MB-231). Biocompatibility of novel PLGA-CSRf nanoparticles was evaluated with both breast cancer and normal breast (MCF-10A) cells. In vitro studies revealed a six-fold increase in the cellular uptake of PLGA-CSRf nanoparticles in cancer cells compared with normal cells. The results demonstrate the ability of riboflavin (Rf) to enhance the delivery of PLGA nanoparticles to TNBC cells. The viability of TNBC cells was decreased following treatment with doxorubicin-encapsulated PLGA-CSRf nanoparticles in combination with UV irradiation, due to the photosensitizing property of Rf on the surface of the nanoparticles. This work demonstrated the ability of PLGA-CSRf to function both as an effective drug delivery carrier and as a therapeutic entity, with the potential to enhance photodynamic effects in the highly aggressive TNBC model.
Collapse
Affiliation(s)
- Wid Mekseriwattana
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anunyaporn Phungsom
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Komkrich Sawasdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Food Processing Technology Management, Faculty of Agro-Industry, Panyapiwat Institute of Management, Nonthaburi, Thailand
| | | | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Kanlaya Prapainop Katewongsa
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Jo HL, Jung Y, Kim YK, Kim N, Cho E, Han J, Hwang YK, Suh BF, Kim E. Efficacy of ethyl ascorbyl ether-containing cosmetic cream on blue light-induced skin changes. J Cosmet Dermatol 2021; 21:1270-1279. [PMID: 34002928 DOI: 10.1111/jocd.14232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Office workers are consistently exposed to blue light, mainly from sunlight and digital device. Recent studies report that blue light has various harmful effects, including cellular changes via reactive oxygen species. Studies on blue light-induced skin changes have only been conducted in vitro and have not been clinically confirmed. OBJECTIVE We provide novel methods to evaluate the effect of the product on the recovery of skin changed by blue light. METHODS Internet surveys were conducted for workers in their 20s and 40s regarding exposure time to blue light in various environments. To study the effects of long-term exposure to blue light (456 nm) on the skin, we designed three light intensity conditions, and various skin characteristics were observed. After blue light irradiation, various skin characteristics were analyzed before and after applying ethyl ascorbyl ether (EAE)-containing cosmetic cream for 2 weeks. RESULTS When exposed to strong blue light for approximately 16 days, the L* value, skin hydration, transparency, and elasticity decreased, and the melanin index, erythema index, a* value, and b* value increased. Furthermore, after short-term blue light irradiation (dose, 269 J/cm2 , the equivalent of blue light exposure for approximately 38 days in daily life), the L* value and elasticity decreased, and the melanin index and erythema index increased. However, when EAE cream was applied on skin for 1-2 weeks, the skin recovered. CONCLUSION This study clinically confirms the skin changes caused by blue light and the effect of EAE in relieving such changes.
Collapse
Affiliation(s)
- Hong Li Jo
- AMOREPACIFIC, Research and Development Center, Gyeonggi-do, Korea
| | - Yuchul Jung
- AMOREPACIFIC, Research and Development Center, Gyeonggi-do, Korea
| | - Young Kyun Kim
- AMOREPACIFIC, Research and Development Center, Gyeonggi-do, Korea
| | - Nahee Kim
- Clinical Research Center, Institut d'Expertise Clinique (IEC) Korea, Gyeonggi-do, Korea
| | - Eunbyul Cho
- Clinical Research Center, Institut d'Expertise Clinique (IEC) Korea, Gyeonggi-do, Korea
| | - Jiyeon Han
- AMOREPACIFIC, Research and Development Center, Gyeonggi-do, Korea
| | - Yoon Kyun Hwang
- AMOREPACIFIC, Research and Development Center, Gyeonggi-do, Korea
| | - Byung-Fhy Suh
- AMOREPACIFIC, Research and Development Center, Gyeonggi-do, Korea
| | - Eunjoo Kim
- AMOREPACIFIC, Research and Development Center, Gyeonggi-do, Korea
| |
Collapse
|
30
|
Zhao L, Guo Q, Yuan C, Li S, Yuan Y, Zeng Q, Zhang X, Ye C, Zhou X. Photosensitive MRI biosensor for BCRP-Targeted uptake and light-induced inhibition of tumor cells. Talanta 2021; 233:122501. [PMID: 34215118 DOI: 10.1016/j.talanta.2021.122501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Riboflavin and its derivatives are the most important coenzymes in vivo metabolism, and are closely related to life activities. In this paper, the first photolysis 129Xe biosensor was developed by combining cryptophane-A with riboflavin moiety, which showed photosensitivity recorded by hyperpolarized 129Xe NMR/MRI technology with an obvious chemical shift change of 5.3 ppm in aqueous solution. Cellular fluorescence imaging confirmed that the biosensor could be enriched in MCF-7 cells, and MTT assays confirmed that the cytotoxicity was enhanced after irradiation. Findings suggested that the biosensor has a potential application in tumor targeting and the inhibition of tumor cell proliferation after photodegradation.
Collapse
Affiliation(s)
- Longhui Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, PR China
| | - Chenlu Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sha Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, PR China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, PR China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, PR China.
| |
Collapse
|
31
|
Chauhan A, Gretz N. Role of Visible Light on Skin Melanocytes: A Systematic Review. Photochem Photobiol 2021; 97:911-915. [PMID: 33987856 DOI: 10.1111/php.13454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
In the last few years, the focus of phototherapy has shifted toward the visible (400-700 nm) part of the electromagnetic spectrum of light. Lately, it has been demonstrated that visible light (VL) can have both beneficial and detrimental effects, especially on the skin. Previously and until now, the most harmful effects on the skin are associated with ultraviolet radiation (UVR). After exposure to natural light, the most evident and immediate change is observed on skin pigmentation. Various wavelengths within the visible spectrum have been reported to alter skin pigmentation. However, the underlying mechanisms are incompletely understood so far. The article aims to shed light on the progress made in the photobiology field (photobiomodulation, PBM) to study the role of visible light on skin melanocytes.
Collapse
Affiliation(s)
- Aparna Chauhan
- Medical faculty of Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical faculty of Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
32
|
Berry BJ, Baldzizhar A, Nieves TO, Wojtovich AP. Neuronal AMPK coordinates mitochondrial energy sensing and hypoxia resistance in C. elegans. FASEB J 2020; 34:16333-16347. [PMID: 33058299 PMCID: PMC7756364 DOI: 10.1096/fj.202001150rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 01/12/2023]
Abstract
Organisms adapt to their environment through coordinated changes in mitochondrial function and metabolism. The mitochondrial protonmotive force (PMF) is an electrochemical gradient that powers ATP synthesis and adjusts metabolism to energetic demands via cellular signaling. It is unknown how or where transient PMF changes are sensed and signaled due to the lack of precise spatiotemporal control in vivo. We addressed this by expressing a light-activated proton pump in mitochondria to spatiotemporally "turn off" mitochondrial function through PMF dissipation in tissues with light. We applied our construct-mitochondria-OFF (mtOFF)-to understand how metabolic status impacts hypoxia resistance, a response that relies on mitochondrial function. Activation of mtOFF induced starvation-like behavior mediated by AMP-activated protein kinase (AMPK). We found prophylactic mtOFF activation increased survival following hypoxia, and that protection relied on neuronal AMPK. Our study links spatiotemporal control of mitochondrial PMF to cellular metabolic changes that mediate behavior and stress resistance.
Collapse
Affiliation(s)
- Brandon J. Berry
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Aksana Baldzizhar
- Department of Anesthesiology and Perioperative MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| | - Tyrone O. Nieves
- Department of Anesthesiology and Perioperative MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| | - Andrew P. Wojtovich
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNYUSA,Department of Anesthesiology and Perioperative MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| |
Collapse
|
33
|
Shin DW. Various biological effects of solar radiation on skin and their mechanisms: implications for phototherapy. Anim Cells Syst (Seoul) 2020; 24:181-188. [PMID: 33029294 PMCID: PMC7473273 DOI: 10.1080/19768354.2020.1808528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The skin protects our body from various external factors, such as chemical and physical stimuli, microorganisms, and sunlight. Sunlight is a representative environmental factor that considerably influences the physiological activity of our bodies. The molecular mechanisms and detrimental effects of ultraviolet rays (UVR) on skin have been thoroughly investigated. Chronic exposure to UVR generally causes skin damage and eventually induces wrinkle formation and reduced elasticity of the skin. Several studies have shown that infrared rays (IR) also lead to the breakdown of collagen fibers in the skin. However, several reports have demonstrated that the appropriate use of UVR or IR can have beneficial effects on skin-related diseases. Additionally, it has been revealed that visible light of different wavelengths has various biological effects on the skin. Interestingly, several recent studies have reported that photoreceptors are also expressed in the skin, similar to those in the eyes. Based on these data, I discuss the various physiological effects of sunlight on the skin and provide insights on the use of phototherapy, which uses a specific wavelength of sunlight as a non-invasive method, to improve skin-related disorders.
Collapse
Affiliation(s)
- Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
34
|
Mae Y, Kanda T, Sugihara T, Takata T, Kinoshita H, Sakaguchi T, Hasegawa T, Tarumoto R, Edano M, Kurumi H, Ikebuchi Y, Kawaguchi K, Isomoto H. Verteporfin-photodynamic therapy is effective on gastric cancer cells. Mol Clin Oncol 2020; 13:10. [PMID: 32754324 DOI: 10.3892/mco.2020.2081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/15/2020] [Indexed: 01/18/2023] Open
Abstract
Photodynamic therapy (PDT) induces photochemical reactions, resulting in the destruction of tumor cells via singlet (S1) oxygen production. This cellular destruction occurs specifically in tumor cells, following selective accumulation of a photosensitizer and its excitation by a specific wavelength. Verteporfin (VP) is a second-generation photosensitizer that is currently being used worldwide in PDT to treat age-related macular degeneration. In addition, clinical trials with VP-PDT demonstrated anti-tumor efficacy and overall safety when used to treat locally advanced pancreatic cancer. In the present study, we examined the anti-tumor effect of VP-PDT on gastric cancer (GC) cell lines in vitro to conduct an initial assessment of its potential clinical applicability to this specific type of cancer. We evaluated the viability of MKN45 and MKN74 cancer cell lines after VP-PDT exposure and calculated the half maximal effective concentration (EC50) values for VP. Apoptosis in VP-PDT-exposed GC cells was observed. Furthermore, the EC50 values for a 30-min treatment with VP (2.5 J/cm2 of 660 nm LED light) were 0.61 and 1.21 µM for MKN45 and MKN74, respectively. When VP treatment times were increased, the EC50 values decreased. In conclusion, VP-PDT may be developed as an effective treatment for GC.
Collapse
Affiliation(s)
- Yukari Mae
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Tsutomu Kanda
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Takaaki Sugihara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Tomoaki Takata
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Hidehito Kinoshita
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Takuki Sakaguchi
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Takashi Hasegawa
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Ryohei Tarumoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Mirai Edano
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Hiroki Kurumi
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Yuichiro Ikebuchi
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Koichiro Kawaguchi
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| |
Collapse
|
35
|
Jo HL, Jung Y, Suh B, Cho E, Kim K, Kim E. Clinical evaluation method for blue light (456 nm) protection of skin. J Cosmet Dermatol 2020; 19:2438-2443. [DOI: 10.1111/jocd.13508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022]
Affiliation(s)
| | | | | | - Eunbyul Cho
- Institute d’Expertise Clinique Korea Gyeonggi‐do Korea
| | | | | |
Collapse
|
36
|
Berry BJ, Wojtovich AP. Mitochondrial light switches: optogenetic approaches to control metabolism. FEBS J 2020; 287:4544-4556. [PMID: 32459870 DOI: 10.1111/febs.15424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Developing new technologies to study metabolism is increasingly important as metabolic disease prevalence increases. Mitochondria control cellular metabolism and dynamic changes in mitochondrial function are associated with metabolic abnormalities in cardiovascular disease, cancer, and obesity. However, a lack of precise and reversible methods to control mitochondrial function has prevented moving from association to causation. Recent advances in optogenetics have addressed this challenge, and mitochondrial function can now be precisely controlled in vivo using light. A class of genetically encoded, light-activated membrane channels and pumps has addressed mechanistic questions that promise to provide new insights into how cellular metabolism downstream of mitochondrial function contributes to disease. Here, we highlight emerging reagents-mitochondria-targeted light-activated cation channels or proton pumps-to decrease or increase mitochondrial activity upon light exposure, a technique we refer to as mitochondrial light switches, or mtSWITCH . The mtSWITCH technique is broadly applicable, as energy availability and metabolic signaling are conserved aspects of cellular function and health. Here, we outline the use of these tools in diverse cellular models of disease. We review the molecular details of each optogenetic tool, summarize the results obtained with each, and outline best practices for using optogenetic approaches to control mitochondrial function and downstream metabolism.
Collapse
Affiliation(s)
- Brandon J Berry
- Department of Pharmacology and Physiology, University of Rochester Medical Center, NY, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, NY, USA
| |
Collapse
|
37
|
The Influence of the Degradation of Tetracycline by Free Radicals from Riboflavin-5'-Phosphate Photolysis on Microbial Viability. Microorganisms 2019; 7:microorganisms7110500. [PMID: 31661888 PMCID: PMC6920948 DOI: 10.3390/microorganisms7110500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/19/2019] [Accepted: 10/26/2019] [Indexed: 11/17/2022] Open
Abstract
Tetracycline (TC) is a broad-spectrum antibiotic compound. Wastewater with TC may have an adverse effect on ecosystems. Riboflavin-5′-phosphate (FMN or flavin mononucleotide) is a non-toxic product of the phosphorylation of vitamin B2 and is required for the proper functioning of the humans. FMN is sensitized to ultraviolet (UV) and blue light radiation, as evidenced by the generation of reactive oxygen species (ROS). This study inspects feasible applications of blue light on FMN so as to develop a valid way of degrading TC by FMN photolysis. We used the increased rate of bacterial survival as a practical indicator of antibiotic degradation. TC in the presence of FMN solution decomposed completely after 20 W/m2 of blue light irradiation (TCF treatment), and the degradation of TC (D-TCF) occurred after the photolytic process. After TCF treatment, colony-forming units (CFUs) of Escherichia coli (E. coli) were determined for the D-TCF solution. The CFU of E. coli preservation was 93.2% of the D-TCF solution (50 μg/mL of TC in the presence of 114 μg/mL of FMN solution treated with 20 W/m2 of blue light irradiation at 25 °C for 1 h) cultivation. The mass spectrum of D-TCF showed diagnostic ion signals at m/z 431.0 and 414.0 Da. The molecular formula of D-TCF was C21H22N2O8, and the exact mass was 430.44 g/mol. TC degradation by FMN photolysis can significantly decrease the antimicrobial ability of TC. The results expressed here regarding the influence of FMN photolysis on TC degradation offer an environmentally sound wastewater treatment method.
Collapse
|
38
|
Serrage H, Heiskanen V, Palin WM, Cooper PR, Milward MR, Hadis M, Hamblin MR. Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light. Photochem Photobiol Sci 2019; 18:1877-1909. [PMID: 31183484 PMCID: PMC6685747 DOI: 10.1039/c9pp00089e] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/30/2019] [Indexed: 12/31/2022]
Abstract
Photobiomodulation (PBM) describes the application of light at wavelengths ranging from 400-1100 nm to promote tissue healing, reduce inflammation and promote analgesia. Traditionally, red and near-infra red (NIR) light have been used therapeutically, however recent studies indicate that other wavelengths within the visible spectrum could prove beneficial including blue and green light. This review aims to evaluate the literature surrounding the potential therapeutic effects of PBM with particular emphasis on the effects of blue and green light. In particular focus is on the possible primary and secondary molecular mechanisms of PBM and also evaluation of the potential effective parameters for application both in vitro and in vivo. Studies have reported that PBM affects an array of molecular targets, including chromophores such as signalling molecules containing flavins and porphyrins as well as components of the electron transport chain. However, secondary mechanisms tend to converge on pathways induced by increases in reactive oxygen species (ROS) production. Systematic evaluation of the literature indicated 72% of publications reported beneficial effects of blue light and 75% reported therapeutic effects of green light. However, of the publications evaluating the effects of green light, reporting of treatment parameters was uneven with 41% failing to report irradiance (mW cm-2) and 44% failing to report radiant exposure (J cm-2). This review highlights the potential of PBM to exert broad effects on a range of different chromophores within the body, dependent upon the wavelength of light applied. Emphasis still remains on the need to report exposure and treatment parameters, as this will enable direct comparison between different studies and hence enable the determination of the full potential of PBM.
Collapse
Affiliation(s)
- Hannah Serrage
- College of Medical and Dental Sciences, University of Birmingham, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Akasov RA, Sholina NV, Khochenkov DA, Alova AV, Gorelkin PV, Erofeev AS, Generalova AN, Khaydukov EV. Photodynamic therapy of melanoma by blue-light photoactivation of flavin mononucleotide. Sci Rep 2019; 9:9679. [PMID: 31273268 PMCID: PMC6609768 DOI: 10.1038/s41598-019-46115-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most aggressive and lethal form of cancer. Photodynamic therapy (PDT) is a clinically approved technique for cancer treatment, including non-melanoma skin cancer. However, the most of conventional photosensitizers are of low efficacy against melanoma due to the possible dark toxicity at high drug concentrations, melanin pigmentation, and induction of anti-oxidant defense mechanisms. In the current research we propose non-toxic flavin mononucleotide (FMN), which is a water-soluble form of riboflavin (vitamin B2) as a promising agent for photodynamic therapy of melanoma. We demonstrated selective accumulation of FMN in melanoma cells in vivo and in vitro in comparison with keratinocytes and fibroblasts. Blue light irradiation with dose 5 J/cm2 of melanoma cells pre-incubated with FMN led to cell death through apoptosis. Thus, the IC50 values of human melanoma A375, Mel IL, and Mel Z cells were in a range of FMN concentration 10–30 µM that can be achieved in tumor tissue under systemic administration. The efficiency of reactive oxygen species (ROS) generation under FMN blue light irradiation was measured in single melanoma cells by a label-free technique using an electrochemical nanoprobe in a real-time control manner. Melanoma xenograft regression in mice was observed as a result of intravenous injection of FMN followed by blue-light irradiation of tumor site. The inhibition of tumor growth was 85–90% within 50 days after PDT treatment.
Collapse
Affiliation(s)
- R A Akasov
- I.M. Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia. .,Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997, Miklukho-Maklaya str. 16/10, Moscow, Russia. .,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia. .,National University of Science and Technology «MISIS», Leninskiy Prospect 4, 119991, Moscow, Russia.
| | - N V Sholina
- I.M. Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia.,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia.,FSBSI "N.N. Blokhin National medical research center for oncology" of Ministry of Health of the Russian Federation, 115478, Kashirskoe Shosse 24, Moscow, Russia
| | - D A Khochenkov
- Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia.,FSBSI "N.N. Blokhin National medical research center for oncology" of Ministry of Health of the Russian Federation, 115478, Kashirskoe Shosse 24, Moscow, Russia.,Togliatti State University, 445020, Belorusskaya str. 14, Togliatti, Russia
| | - A V Alova
- Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| | - P V Gorelkin
- Medical Nanotechnology LLC, Stroiteley 4-5-47, 119311, Moscow, Russia
| | - A S Erofeev
- Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia.,National University of Science and Technology «MISIS», Leninskiy Prospect 4, 119991, Moscow, Russia
| | - A N Generalova
- Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997, Miklukho-Maklaya str. 16/10, Moscow, Russia.,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia
| | - E V Khaydukov
- I.M. Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia.,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia.,Volgograd State University, 400062, Universitetskiy Prospect, 100, Volgograd, Russia
| |
Collapse
|
40
|
Identification of Flavin Mononucleotide as a Cell‐Active Artificial
N
6
‐Methyladenosine RNA Demethylase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Xie LJ, Yang XT, Wang RL, Cheng HP, Li ZY, Liu L, Mao L, Wang M, Cheng L. Identification of Flavin Mononucleotide as a Cell-Active Artificial N 6 -Methyladenosine RNA Demethylase. Angew Chem Int Ed Engl 2019; 58:5028-5032. [PMID: 30756480 DOI: 10.1002/anie.201900901] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 01/05/2023]
Abstract
N6 -Methyladenosine (m6 A) represents a common and highly dynamic modification in eukaryotic RNA that affects various cellular pathways. Natural dioxygenases such as FTO and ALKBH5 are enzymes that demethylate m6 A residues in mRNA. Herein, the first identification of a small-molecule modulator that functions as an artificial m6 A demethylase is reported. Flavin mononucleotide (FMN), the metabolite produced by riboflavin kinase, mediates substantial photochemical demethylation of m6 A residues of RNA in live cells. This study provides a new perspective to the understanding of demethylation of m6 A residues in mRNA and sheds light on the development of powerful small molecules as RNA demethylases and new probes for use in RNA biology.
Collapse
Affiliation(s)
- Li-Jun Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ti Yang
- BNLMS, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui-Li Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hou-Ping Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Yan Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- BNLMS, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Wang
- BNLMS, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Key Lab of Functional Molecular Engineering of Guangdong Province, South China University of Technology), Guangzhou, 510640, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Yim PD, Gallos G, Perez-Zoghbi JF, Zhang Y, Xu D, Wu A, Berkowitz DE, Emala CW. Airway smooth muscle photorelaxation via opsin receptor activation. Am J Physiol Lung Cell Mol Physiol 2019; 316:L82-L93. [PMID: 30284927 PMCID: PMC6383505 DOI: 10.1152/ajplung.00135.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023] Open
Abstract
Nonvisual opsin (OPN) receptors have recently been implicated in blue light-mediated photorelaxation of smooth muscle in various organs. Since photorelaxation has not yet been demonstrated in airway smooth muscle (ASM) or in human tissues, we questioned whether functional OPN receptors are expressed in mouse and human ASM. mRNA, encoding the OPN 3 receptor, was detected in both human and mouse ASM. To demonstrate the functionality of the OPN receptors, we performed wire myography of ex vivo ASM from mouse and human upper airways. Blue light-mediated relaxation of ACh-preconstricted airways was intensity and wavelength dependent (maximum relaxation at 430-nm blue light) and was inhibited by blockade of the large-conductance calcium-activated potassium channels with iberiotoxin. We further implicated OPN receptors as key mediators in functional photorelaxation by demonstrating increased relaxation in the presence of a G protein receptor kinase 2 inhibitor or an OPN chromophore (9- cis retinal). We corroborated these responses in peripheral airways of murine precision-cut lung slices. This is the first demonstration of photorelaxation in ASM via an OPN receptor-mediated pathway.
Collapse
Affiliation(s)
- Peter D Yim
- Department of Anesthesiology, Columbia University , New York, New York
| | - George Gallos
- Department of Anesthesiology, Columbia University , New York, New York
| | | | - Yi Zhang
- Department of Anesthesiology, Columbia University , New York, New York
| | - Dingbang Xu
- Department of Anesthesiology, Columbia University , New York, New York
| | - Amy Wu
- Department of Anesthesiology, Columbia University , New York, New York
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Charles W Emala
- Department of Anesthesiology, Columbia University , New York, New York
| |
Collapse
|
43
|
Yang MY, Chang KC, Chen LY, Hu A. Low-dose blue light irradiation enhances the antimicrobial activities of curcumin against Propionibacterium acnes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:21-28. [PMID: 30273795 DOI: 10.1016/j.jphotobiol.2018.09.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/09/2018] [Accepted: 09/24/2018] [Indexed: 01/06/2023]
Abstract
Propionibacterium acnes (P. acnes) is an opportunistic infection in human skin that causes acne vulgaris. Antibiotic agents provide the effective eradication of microbes until the development of drug-resistant microbes. Photodynamic inactivation (PDI) is a non-antibiotic therapy for microbial eradication. In this study, the visible blue light (BL, λmax = 462 nm) was used to enhance the antimicrobial activities of curcumin, a natural phenolic compound. Individual exposure to curcumin or BL irradiation does not generate cytotoxicity on P. acnes. The viability of P. acnes was decreased significantly in 0.09 J/cm2 BL with 1.52 μM of curcumin. Furthermore, the low-dose blue light irradiation triggers a series of cytotoxic actions of curcumin on P. acnes. The lethal factors of photolytic curcumin were investigated based on the morphology of P. acnes by SEM and fluorescent images. The membrane disruption of microbes was observed on the PDI against P. acnes. Chromatography and mass spectrometry techniques were also used to identify the photolytic metabolites. Curcumin could be photolysed into vanillin through BL irradiation, which presents a strong linear relationship in quantitation. Because the safety of blue light in mammalian cell has been proven, the photolytic curcumin treatment could support non-antibiotic therapy to eradicate P. acnes on clinical dermatology.
Collapse
Affiliation(s)
- Ming-Yeh Yang
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu-Chi University, Hualien 970, Taiwan; Department of Laboratory Medicine, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
| | - Liang-Yü Chen
- Department of Biotechnology, Ming-Chuan University, Taoyuan City 333, Taiwan.
| | - Anren Hu
- Department of Laboratory Medicine and Biotechnology, Tzu-Chi University, Hualien 970, Taiwan.
| |
Collapse
|
44
|
Mignon C, Uzunbajakava NE, Castellano-Pellicena I, Botchkareva NV, Tobin DJ. Differential response of human dermal fibroblast subpopulations to visible and near-infrared light: Potential of photobiomodulation for addressing cutaneous conditions. Lasers Surg Med 2018; 50:859-882. [PMID: 29665018 DOI: 10.1002/lsm.22823] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND OBJECTIVES The past decade has witnessed a rapid expansion of photobiomodulation (PBM), demonstrating encouraging results for the treatment of cutaneous disorders. Confidence in this approach, however, is impaired not only by a lack of understanding of the light-triggered molecular cascades but also by the significant inconsistency in published experimental outcomes, design of the studies and applied optical parameters. This study aimed at characterizing the response of human dermal fibroblast subpopulations to visible and near-infrared (NIR) light in an attempt to identify the optical treatment parameters with high potential to address deficits in aging skin and non-healing chronic wounds. MATERIALS AND METHODS Primary human reticular and papillary dermal fibroblasts (DF) were isolated from the surplus of post-surgery human facial skin. An in-house developed LED-based device was used to irradiate cell cultures using six discrete wavelengths (450, 490, 550, 590, 650, and 850 nm). Light dose-response at a standard oxygen concentration (20%) at all six wavelengths was evaluated in terms of cell metabolic activity. This was followed by an analysis of the transcriptome and procollagen I production at a protein level, where cells were cultured in conditions closer to in vivo at 2% environmental oxygen and 2% serum. Furthermore, the production of reactive oxygen species (ROS) was accessed using real-time fluorescence confocal microscopy imaging. Here, production of ROS in the presence or absence of antioxidants, as well as the cellular localization of ROS, was evaluated. RESULTS In terms of metabolic activity, consecutive irradiation with short-wavelength light (⇐530 nm) exerted an inhibitory effect on DF, while longer wavelengths (>=590 nm) had essentially a neutral effect. Cell behavior following treatment with 450 nm was biphasic with two distinct states: inhibitory at low- to mid- dose levels (<=30 J/cm2 ), and cytotoxic at higher dose levels (>30 J/cm2 ). Cell response to blue light was accompanied by a dose-dependent release of ROS that was localized in the perinuclear area close to mitochondria, which was attenuated by an antioxidant. Overall, reticular DFs exhibited a greater sensitivity to light treatment at the level of gene expression than did papillary DFs, with more genes significantly up- or down- regulated. At the intra-cellular signaling pathway level, the up- or down- regulation of vital pathways was observed only for reticular DF, after treatment with 30 J/cm2 of blue light. At the cellular level, short visible wavelengths exerted a greater inhibitory effect on reticular DF. Several genes involved in the TGF-β signaling pathway were also affected. In addition, procollagen I production was inhibited. By contrast, 850 nm near-infrared (NIR) light (20 J/cm2 ) exerted a stimulatory metabolic effect in these cells, with no detectable intracellular ROS formation. Here too, reticular DF were more responsive than papillary DF. This stimulatory effect was only observed under in vivo-like low oxygen conditions, corresponding to normal dermal tissue oxygen levels (approximately 2%). CONCLUSION This study highlights a differential impact of light on human skin cells with upregulation of metabolic activity with NIR light, and inhibition of pro-collagen production and proliferation in response to blue light. These findings open-up new avenues for developing therapies for different cutaneous conditions (e.g., treatment of keloids and fibrosis) or differential therapy at distinct stages of wound healing. Lasers Surg. Med. 50:859-882, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charles Mignon
- Centre for Skin Sciences, University of Bradford, BD71DP, Bradford, United-Kingdom.,Philips Research, High Tech Campus, Eindhoven, Netherlands
| | | | - Irene Castellano-Pellicena
- Centre for Skin Sciences, University of Bradford, BD71DP, Bradford, United-Kingdom.,Philips Research, High Tech Campus, Eindhoven, Netherlands
| | | | - Desmond J Tobin
- Centre for Skin Sciences, University of Bradford, BD71DP, Bradford, United-Kingdom
| |
Collapse
|