1
|
Fathy MM, Saad OA, Fahmy HM. Radiosensitization impact assessment of silica-layered iron oxide nanocomposites with various shell thickness. Arch Biochem Biophys 2024; 764:110257. [PMID: 39674565 DOI: 10.1016/j.abb.2024.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
Silica shell is considered to be a promising design that enhances nanocomposite stability, cellular internalization, and consequentially therapeutic impacts by overcoming their aggregation under physiological conditions. This study addressed synthesizing silica-layered iron oxide-based nanoparticles (SCINPs) with different shell thicknesses (1-SCINPs, 2-SCINPs, 3-SCINPs, and 4-SCINPs). Also, the impact of shell thickness on the nanoparticle's cellular internalization and the radio-sensitizing effect of prepared nano-formulations were assessed. The physical properties of the synthesized nanoparticles were examined using transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), vibrating sample magnetometry (VSM), and X-ray diffraction (XRD). Cytotoxicity assay, oxidative stress parameters, and comet assay were used to investigate the radio-sensitizing effect of various nanoformulations. Results revealed that the mean diameter of prepared oxide-based nanoparticles (INPs) was about 12.63 ± 1.36 nm, and the shell thickness for 1-SCINPs, 2-SCINPs, 3-SCINPs, and 4-SCINPs was 22.58 ± 3.51, 26.13 ± 1.40, 46.95 ± 3.10 and 60.30 ± 4.30 nm, respectively. Interestingly, we found that in cells treated with 40 μg/ml of INPs, their viability decreased to 44.6 %. Meanwhile, the viability was 41.69 % and 39.4 % for cells treated with 1-SCINPs and 2-SCINPs, respectively. This means that a thicker silica shell led to a decreased impact on radiosensitization. This was attributed to the influence of surface properties and size of SCINPs on their cellular uptake and the secondary electrons' entrapment within thicker shells upon radiation exposure. Cell viability test, comet assay and oxidative stress parameters show that 2-SCINPs formulations had the most potent radiosensitizing effect (with the highest dose enhancement factor equal to 2.1) when combined with radio-treatment. The results suggest that optimizing the silica shell thickness is critical for maximizing the therapeutic efficacy of SCINPs, with 2-SCINPs showing the highest radiosensitization effect.
Collapse
Affiliation(s)
- Mohamed M Fathy
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | - Omnia A Saad
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
2
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
3
|
Vasić K, Knez Ž, Leitgeb M. Multifunctional Iron Oxide Nanoparticles as Promising Magnetic Biomaterials in Drug Delivery: A Review. J Funct Biomater 2024; 15:227. [PMID: 39194665 DOI: 10.3390/jfb15080227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
A wide range of applications using functionalized magnetic nanoparticles (MNPs) in biomedical applications, such as in biomedicine as well as in biotechnology, have been extensively expanding over the last years. Their potential is tremendous in delivery and targeting systems due to their advantages in biosubstance binding. By applying magnetic materials-based biomaterials to different organic polymers, highly advanced multifunctional bio-composites with high specificity, efficiency, and optimal bioavailability are designed and implemented in various bio-applications. In modern drug delivery, the importance of a successful therapy depends on the proper targeting of loaded bioactive components to specific sites in the body. MNPs are nanocarrier-based systems that are magnetically guided to specific regions using an external magnetic field. Therefore, MNPs are an excellent tool for different biomedical applications, in the form of imaging agents, sensors, drug delivery targets/vehicles, and diagnostic tools in managing disease therapy. A great contribution was made to improve engineering skills in surgical diagnosis, therapy, and treatment, while the advantages and applicability of MNPs have opened up a large scope of studies. This review highlights MNPs and their synthesis strategies, followed by surface functionalization techniques, which makes them promising magnetic biomaterials in biomedicine, with special emphasis on drug delivery. Mechanism of the delivery system with key factors affecting the drug delivery efficiency using MNPs are discussed, considering their toxicity and limitations as well.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
4
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
5
|
Fathy MM, Saad OA, Elshemey WM, Fahmy HM. Dose-enhancement of MCF 7 cell line radiotherapy using silica-iron oxide nanocomposite. Biochem Biophys Res Commun 2022; 632:100-106. [PMID: 36206593 DOI: 10.1016/j.bbrc.2022.09.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Cancer radiotherapy is one of the most effective regimens of cancer treatments, but cancer cell radioresistance remains a concern. Radiosensitizers can selectively improve the efficacy of radiotherapy and reduce inherent damage. The purpose of this work is to evaluate the effect of silica-coated iron oxide magnetic nanoparticles (SIONPs) as a radiosensitizer and compare their therapeutic effect with that of Iron oxide magnetic nanoparticles (IONPs). IONPs and SIONPs were characterized using several physical techniques such as a transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM). MTT and DNA double-strand breaks (Comet) assays have been used to detect the cytotoxicity, cell viability, and DNA damage of MCF-7 cells, which were treated with different concentrations of prepared nanoparticles and exposed to an X-ray beam. In this study, an efficient radiosensitizer, SIONPs, was successfully prepared and characterized. With 0.5 Gy dose, dose enhancement factor (DEF) values of cells treated with 5 and 10 μg/ml of IONPs were 1 and 1.09, respectively, while those treated with SIONPs at these concentrations had DEF of 1.21 and 1.32, respectively. Results demonstrated that SIONPs provide a potential for improving the radiosensitivity of breast cancer.
Collapse
|
6
|
Ramezani Farani M, Azarian M, Heydari Sheikh Hossein H, Abdolvahabi Z, Mohammadi Abgarmi Z, Moradi A, Mousavi SM, Ashrafizadeh M, Makvandi P, Saeb MR, Rabiee N. Folic Acid-Adorned Curcumin-Loaded Iron Oxide Nanoparticles for Cervical Cancer. ACS APPLIED BIO MATERIALS 2022; 5:1305-1318. [PMID: 35201760 PMCID: PMC8941513 DOI: 10.1021/acsabm.1c01311] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a deadly disease that has long plagued humans and has become more prevalent in recent years. The common treatment modalities for this disease have always faced many problems and complications, and this has led to the discovery of strategies for cancer diagnosis and treatment. The use of magnetic nanoparticles in the past two decades has had a significant impact on this. One of the objectives of the present study is to introduce the special properties of these nanoparticles and how they are structured to load and transport drugs to tumors. In this study, iron oxide (Fe3O4) nanoparticles with 6 nm sizes were coated with hyperbranched polyglycerol (HPG) and folic acid (FA). The functionalized nanoparticles (10-20 nm) were less likely to aggregate compared to non-functionalized nanoparticles. HPG@Fe3O4 and FA@HPG@Fe3O4 nanoparticles were compared in drug loading procedures with curcumin. HPG@Fe3O4 and FA@HPG@Fe3O4 nanoparticles' maximal drug-loading capacities were determined to be 82 and 88%, respectively. HeLa cells and mouse L929 fibroblasts treated with nanoparticles took up more FA@HPG@Fe3O4 nanoparticles than HPG@Fe3O4 nanoparticles. The FA@HPG@Fe3O4 nanoparticles produced in the current investigation have potential as anticancer drug delivery systems. For the purpose of diagnosis, incubation of HeLa cells with nanoparticles decreased MRI signal enhancement's percentage and the largest alteration was observed after incubation with FA@HPG@Fe3O4 nanoparticles.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology
and Diseases Group (TDG), Pharmaceutical Sciences Research Center
(PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Azarian
- Department
of Radiology, Charité - Universitätsmedizin
Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Hamid Heydari Sheikh Hossein
- Department
of Biotechnology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Zohreh Abdolvahabi
- Metabolic
Diseases Research Center, Research Institute for Prevention of Non-Communicable
Diseases, Qazvin University of Medical Sciences, Qazvin 241567, Iran
| | - Zahra Mohammadi Abgarmi
- Department
of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran 1668814811, P.O.
Box: 14115-331, Iran
| | - Arash Moradi
- Department
of Medical Biotechnology, National Institute
of Genetic Engineering and Biotechnology, Tehran 1668814811, P.O.
Box: 14956-161, Iran
| | | | - Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey,Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy,
| | - Mohammad Reza Saeb
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, 80-233, Poland
| | - Navid Rabiee
- Department
of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran,School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia,;
| |
Collapse
|
7
|
Martín-Sabroso C, Torres-Suárez AI, Alonso-González M, Fernández-Carballido A, Fraguas-Sánchez AI. Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives. Pharmaceutics 2021; 14:14. [PMID: 35056911 PMCID: PMC8781617 DOI: 10.3390/pharmaceutics14010014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023] Open
Abstract
In normal tissues, the expression of folate receptors is low and limited to cells that are important for embryonic development or for folate reabsorption. However, in several pathological conditions some cells, such as cancer cells and activated macrophages, overexpress folate receptors (FRs). This overexpression makes them a potential therapeutic target in the treatment of cancer and inflammatory diseases to obtain a selective delivery of drugs at altered cells level, and thus to improve the therapeutic efficacy and decrease the systemic toxicity of the pharmacological treatments. Two strategies have been used to achieve this folate receptor targeting: (i) the use of ligands with high affinity to FRs (e.g., folic acid or anti-FRs monoclonal antibodies) linked to the therapeutic agents or (ii) the use of nanocarriers whose surface is decorated with these ligands and in which the drug is encapsulated. This manuscript analyzes the use of FRs as a target to develop new therapeutic tools in the treatment of cancer and inflammatory diseases with an emphasis on the nanoformulations that have been developed for both therapeutic and imaging purposes.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Mario Alonso-González
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
8
|
Precise engineering of nanoassembled Corilagin small molecule into supramolecular nanoparticles for the treatment and care against cervical carcinoma. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Arab-Bafrani Z, Zabihi E, Jafari SM, Khoshbin-Khoshnazar A, Mousavi E, Khalili M, Babaei A. Enhanced radiotherapy efficacy of breast cancer multi cellular tumor spheroids through in-situ fabricated chitosan-zinc oxide bio-nanocomposites as radio-sensitizing agents. Int J Pharm 2021; 605:120828. [PMID: 34174360 DOI: 10.1016/j.ijpharm.2021.120828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
Overwhelming evidence has shown that three-dimensional multicellular tumor spheroids (MCTSs) as a mimic of in-vivo tumor can accurately exhibit cellular responses to treatments. So, we compared the capability of pure zinc oxide nanoparticles (ZnO-NPs) and chitosan-ZnO bio-nanocomposites (CS-ZnO BNCs) for enhancing the radiosensitization of MDA-MB-231 breast cancer cells (BCCs) in the 3D-MCTSs model. ZnO-NPs and CS-ZnO BNCs were synthesized by a facile co-precipitation method. FE-SEM images revealed that the uniform spherical ZnO-NPs with an average diameter of 35 nm were successfully dispersed on chitosan. MDA-MB-231 MCTSs which were formed in a non-adherent culture plate, possessed functional features of in-vivo tumor. The priority of such culture method to conventionally used 2D monolayer (or parental) cell culture is the mimicking of tumor microenvironment. The toxicity of CS-ZnO BNCs and ZnO-NPs against the MDA-M-231 BCCs was evaluated using MTT-colorimetric assay, which demonstrated superior biocompatibility of CS-ZnO BNCs compared to pure ZnO-NPs (even at high concentration of 100 μg/mL). Survival fraction analysis of cells under clinical X-ray irradiation (6 MV) showed that MCTSs had a higher radioresistance compared to parental cells. Besides, the clonogenic potential of irradiated MCTSs was significantly decreased by the addition of CS-ZnO BNCs similar to that of monolayer cells. The sensitivity enhancement ratios (SER) for MCTSs and monolayer cells were calculated 1.5 and 1.63, respectively. Further, tracking of radiobiological properties and apoptosis induction of MCTSs showed that CS-ZnO BNCs not only could lead to the creation of higher radiation-induced complex DNA break and apoptosis death in MCTSs, but also weakened DNA repair mechanisms. It was found that non-toxic concentration of CS-ZnO BNCs has promising potential to enhance radiosensitivity of resistant-MCTSs as a superior in-vitro tumor model. So, CS-ZnO BNCs can be a prominent candidate for overcoming the resistance of BCCs to radiotherapy.
Collapse
Affiliation(s)
- Zahra Arab-Bafrani
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Erfan Zabihi
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Seid Mahdi Jafari
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Alireza Khoshbin-Khoshnazar
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Elham Mousavi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences. Kerman, Iran
| | - Mohsen Khalili
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| |
Collapse
|
10
|
Sanità G, Carrese B, Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci 2020; 7:587012. [PMID: 33324678 PMCID: PMC7726445 DOI: 10.3389/fmolb.2020.587012] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
The use of nanoparticles (NP) in diagnosis and treatment of many human diseases, including cancer, is of increasing interest. However, cytotoxic effects of NPs on cells and the uptake efficiency significantly limit their use in clinical practice. The physico-chemical properties of NPs including surface composition, superficial charge, size and shape are considered the key factors that affect the biocompatibility and uptake efficiency of these nanoplatforms. Thanks to the possibility of modifying physico-chemical properties of NPs, it is possible to improve their biocompatibility and uptake efficiency through the functionalization of the NP surface. In this review, we summarize some of the most recent studies in which NP surface modification enhances biocompatibility and uptake. Furthermore, the most used techniques used to assess biocompatibility and uptake are also reported.
Collapse
Affiliation(s)
- Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett 2020; 497:229-242. [PMID: 33122099 DOI: 10.1016/j.canlet.2020.10.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023]
Abstract
Sonodynamic therapy (SDT) represents a promising modality that provides the possibility of non-invasively eliminating solid tumors in a site-directed manner. In light of the complexity and heterogeneity of tumors, more and more studies are attempting to combine SDT with other therapeutic methods so as to achieve better tumor treatment effect, which sheds new light on the potential of SDT-based synergistic therapeutics. Herein, the representative studies of SDT-instructed multimodal synergistic cancer therapy are comprehensively presented, such as sono-chemotherapy, sono-radiotherapy, sono-immunotherapy, and sono-chemodynamic therapy, etc., and their incorporate mechanisms are discussed in detail. The current challenges and future prospects to promote the advanced development of SDT-based nanomedicines in this burgeoning research field are highlighted. It is believed that such an emerging synergistic therapeutic modality based on SDT will play a more significant role in the field of tumor precision treatment medicine.
Collapse
|
12
|
Bochenek M, Oleszko-Torbus N, Wałach W, Lipowska-Kur D, Dworak A, Utrata-Wesołek A. Polyglycidol of Linear or Branched Architecture Immobilized on a Solid Support for Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1720233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marcelina Bochenek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | | - Wojciech Wałach
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Daria Lipowska-Kur
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | |
Collapse
|
13
|
Iqbal Z, Dilnawaz F. Nanocarriers For Vaginal Drug Delivery. ACTA ACUST UNITED AC 2020; 13:3-15. [PMID: 30767755 DOI: 10.2174/1872211313666190215141507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Vaginal drug delivery approach represents one of the imperative strategies for local and systemic delivery of drugs. The peculiar dense vascular networks, mucus permeability, and range of physiological characteristics of the vaginal cavity have been exploited for therapeutic benefit. Furthermore, the vaginal drug delivery has been curtailed due to the influence of different physiological factors like acidic pH, constant cervical secretion, microflora, cyclic changes during periods along with turnover of mucus of varying thickness. OBJECTIVE This review highlights advancement of nanomedicine and its prospective progress towards the clinic. METHODS Relevant literature reports and patents related to topics are retrieved and used. RESULT The extensive literature search and patent revealed that nanocarriers are efficacious over conventional treatment approaches. CONCLUSION Recently, nanotechnology based drug delivery approach has promised better therapeutic outcomes by providing enhanced permeation and sustained drug release activity. Different nanoplatforms based on drugs, peptides, proteins, antigens, hormones, nucleic material, and microbicides are gaining momentum for vaginal therapeutics.
Collapse
Affiliation(s)
- Zeenat Iqbal
- Nanomedicine Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Fahima Dilnawaz
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Bhubaneswar -751023, Odisha, India
| |
Collapse
|
14
|
Talluri S, Malla RR. Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Diagnosis and Treatment of Breast, Ovarian and Cervical Cancers. Curr Drug Metab 2020; 20:942-945. [DOI: 10.2174/1389200220666191016124958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022]
Abstract
Background:
The potential of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) as theranostic
agents for cancer has been investigated extensively. SPIONS can be utilized for diagnostic imaging, drug delivery as
well as for therapeutic applications. SPIONS are of particular interest because of their potential for non-invasive
diagnosis and non-invasive therapeutic applications. This article is a review of in vivo and clinical studies of SPIONs
for diagnosis and treatment of breast, ovarian and cervical cancer. The current limitations of this technology with
relation to clinical therapeutic applications and the potential to overcome these limitations are also discussed.
Methods:
NCBI Pubmed was searched for relevant documents by using keyword and MESH based search. The following
keyword combinations were used: ‘breast cancer’ and SPION, ‘ovarian cancer’ and SPION, and ‘cervical
cancer’ and SPION. The resulting list was manually scanned for the studies involving clinical and in vivo studies.
Results:
The 29 most relevant publications were identified and reviewed.
Conclusion:
Although numerous in vitro and in vivo studies have demonstrated the safety and effectiveness of the
use of SPIONs for both diagnostic and therapeutic applications, there is relatively little progress towards translation
to clinical applications involving breast, ovarian and cervical cancer.
Collapse
Affiliation(s)
- Sekhar Talluri
- Department of Biotechnology, Institute of Technology, GITAM (Deemed to be University), Visakhapatnam, India
| | - Rama R. Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, India
| |
Collapse
|
15
|
Howard D, Sebastian S, Le QVC, Thierry B, Kempson I. Chemical Mechanisms of Nanoparticle Radiosensitization and Radioprotection: A Review of Structure-Function Relationships Influencing Reactive Oxygen Species. Int J Mol Sci 2020; 21:E579. [PMID: 31963205 PMCID: PMC7013516 DOI: 10.3390/ijms21020579] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/19/2023] Open
Abstract
Metal nanoparticles are of increasing interest with respect to radiosensitization. The physical mechanisms of dose enhancement from X-rays interacting with nanoparticles has been well described theoretically, however have been insufficient in adequately explaining radiobiological response. Further confounding experimental observations is examples of radioprotection. Consequently, other mechanisms have gained increasing attention, especially via enhanced production of reactive oxygen species (ROS) leading to chemical-based mechanisms. Despite the large number of variables differing between published studies, a consensus identifies ROS-related mechanisms as being of significant importance. Understanding the structure-function relationship in enhancing ROS generation will guide optimization of metal nanoparticle radiosensitisers with respect to maximizing oxidative damage to cancer cells. This review highlights the physico-chemical mechanisms involved in enhancing ROS, commonly used assays and experimental considerations, variables involved in enhancing ROS generation and damage to cells and identifies current gaps in the literature that deserve attention. ROS generation and the radiobiological effects are shown to be highly complex with respect to nanoparticle physico-chemical properties and their fate within cells. There are a number of potential biological targets impacted by enhancing, or scavenging, ROS which add significant complexity to directly linking specific nanoparticle properties to a macroscale radiobiological result.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia; (D.H.); (B.T.)
| |
Collapse
|
16
|
Fathy MM, Fahmy HM, Saad OA, Elshemey WM. Silica-coated iron oxide nanoparticles as a novel nano-radiosensitizer for electron therapy. Life Sci 2019; 234:116756. [DOI: 10.1016/j.lfs.2019.116756] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
|
17
|
Shanei A, Akbari-Zadeh H. Investigating the Sonodynamic-Radiosensitivity Effect of Gold Nanoparticles on HeLa Cervical Cancer Cells. J Korean Med Sci 2019; 34:e243. [PMID: 31559711 PMCID: PMC6763396 DOI: 10.3346/jkms.2019.34.e243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In this article, we estimated the combined effect of radiotherapy (RT) with ultrasound (US) wave and the ability of gold nanoparticles (GNPs) to improve their combined therapeutic effects. METHODS At first, HeLa cells received the various treatment modalities: RT (6 MV; 0.5, 1, and 2 Gy), US irradiation (1 MHz; 0.5, 1, and 1.5 W/cm², 1 minute), and RT+US. Afterwards, the enhanced effect of US on RT was evaluated. Then, the effect of the synthesized GNPs at different concentrations (0.2, 1, and 5 μg/mL, 24 hours) was evaluated to assess the effect on HeLa cells combined with RT+US. Cell survival rates in the different treatment groups at 24, 48, and 72 hours post-treatment were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trypan blue assays. RESULTS Our results show US irradiation could enhance the effect of RT at the same radiation dose and could be utilized as a sensitizer agent for RT. Moreover, our findings indicate RT+US in combination with different nanoparticle concentrations could enhance the effect of RT+US so that they can improve the treatment results up to 9.93 times and act as sonodynamic-radiosensitivity. These results also indicate that the combination of RT with US along with GNPs has synergistic effects compared to RT or US alone. Cell survival results show that combining the low US waves (1.5 W/cm²), GNPs (5 μ/mL), and X-rays (2 Gy) increase the cytotoxicity on HeLa cell up to 95.8%. CONCLUSION We concluded that GNPs could act as a good sensitizing agent in RT+US irradiation and could result in the synergistic effects.
Collapse
Affiliation(s)
- Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Akbari-Zadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
A review on application of Nano-structures and Nano-objects with high potential for managing different aspects of bone malignancies. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine 2019; 14:1633-1657. [PMID: 30880970 PMCID: PMC6417854 DOI: 10.2147/ijn.s184723] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Conventional cancer treatment techniques show several limitations including low or no specificity and consequently a low efficacy in discriminating between cancer cells and healthy cells. Recent nanotechnology developments have introduced smart and novel therapeutic nanomaterials that take advantage of various targeting approaches. The use of nanotechnology in medicine and, more specifically, drug delivery is set to spread even more rapidly than it has over the past two decades. Currently, many nanoparticles (NPs) are under investigation for drug delivery including those for cancer therapy. Targeted nanomaterials bind selectively to cancer cells and greatly affect them with only a minor effect on healthy cells. Gold nanoparticles (Au-NPs), specifically, have been identified as significant candidates for new cancer therapeutic modalities because of their biocompatibility, easy functionalization and fabrication, optical tunable characteristics, and chemophysical stability. In the last decade, there has been significant research on Au-NPs and their biomedical applications. Functionalized Au-NPs represent highly attractive and promising candidates for drug delivery, owing to their unique dimensions, tunable surface functionalities, and controllable drug release. Further, iron oxide NPs due to their "superparamagnetic" properties have been studied and have demonstrated successful employment in numerous applications. In targeted drug delivery systems, drug-loaded iron oxide NPs can accumulate at the tumor site with the aid of an external magnetic field. This can lead to incremental effectiveness in drug release to the tumor site and vanquish cancer cells without harming healthy cells. In order for the application of iron oxide NPs in the human body to be realized, they should be biodegradable and biocompatible to minimize toxicity. This review illustrates recent advances in the field drug and small molecule delivery such as fluorouracil, folic acid, doxorubicin, paclitaxel, and daunorubicin, specifically when using gold and iron oxide NPs as carriers of anticancer therapeutic agents.
Collapse
Affiliation(s)
- Hossein Jahangirian
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA, USA,
| | - Katayoon Kalantari
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Zahra Izadiyan
- Department of Environment and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Roshanak Rafiee-Moghaddam
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA, USA,
| | - Kamyar Shameli
- Department of Environment and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Thomas J Webster
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA, USA,
| |
Collapse
|
20
|
Yan J, Peng X, Cai Y, Cong W. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:133-136. [DOI: 10.1016/j.jphotobiol.2018.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022]
|