1
|
Perumal SDM, Thangaian DT, Nandhakumar M, Devaraj N, Kalagatur NK. Evolution of large stokes shift and non-radiative energy transfer phenomenon in sustainable blue-fluorescent CQDs upon subnanomolar detection of Acebrophylline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125559. [PMID: 39675175 DOI: 10.1016/j.saa.2024.125559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Carbon quantum dots (CQDs) have emerged as powerful fluorescent sensors for identifying harmful compounds in environmental and biological samples, due to their robust and adjustable emission characteristics. In this study, we explore CQDs (size ∼ 3 nm), as a probe, derived from Walnut Shell (WS) biomass waste for detecting Acebrophylline (AB), a respiratory disease medicine. From the selectivity studies, the calculated energy transfer between the CQDs (10 mM; donor) and AB (10 mM; acceptor) was found to be 64 %, attributed to the formation of a ground state complex, CQDs + AB. The CQDs demonstrated high selectivity and sensitivity to AB in concentrations between 1-100 μM with a detection limit of 0.142 nM (R2 = 0.991, Ka = 1.39194 × 10-3 M-1). Time-correlated single-photon counting (TCSPC) experiments validated the static quenching of CQDs (3.46 → 3.71 ns) when exposed to AB. The proposed detection method was successfully applied for detecting AB in human urine samples with a good recovery percentage (81 to 123 %; RSD ca. 1 %). After AB sensing, changes in the CQDs' crystalline nature, elemental composition, and chemical state were examined using XRD, XPS, and FTIR spectroscopy. Microscopy imaging techniques (FESEM, HRTEM, and AFM) confirmed morphological changes of CQDs from spherical to agglomerated with an average diameter of approximately 14 nm. Additionally, the impact of time, pH, and interferons on AB sensing was investigated. In vitro anti-inflammatory activity and in vivo bioimaging studies on zebrafish were also performed. This study highlights several advantages, including a cost-effective and eco-friendly approach for healthcare applications.
Collapse
Affiliation(s)
- Saranya Devi Mudisoodum Perumal
- Department of Chemistry, and Centre for Research and Development, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamilnadu, India
| | - Daniel Thangadurai Thangaian
- Department of Chemistry, and Centre for Research and Development, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamilnadu, India.
| | - Manjubaashini Nandhakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, Tamilnadu, India
| | - Nataraj Devaraj
- Departments of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Naveen Kumar Kalagatur
- BU-DRDO Center for Life Science, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| |
Collapse
|
2
|
Sowndarya A, Thangadurai TD, Manjubaashini N, Pavithrakumar M, Senthilkumar K, Nataraj D, Kadirvelu K, Kalagatur KN. Surface-designed AuNPs-based fluorescent probe for ultra-sensitive detection of oral poultry antibacterial drug furaltadone via intermolecular hydrogen bonding. RSC Adv 2024; 14:28224-28233. [PMID: 39234519 PMCID: PMC11372455 DOI: 10.1039/d4ra04293j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/17/2024] [Indexed: 09/06/2024] Open
Abstract
Furaltadone (FTD), a nitrofuran drug, was primarily utilized as a very effective oral veterinary antibiotic, especially in poultry production farms. As a result, FTD, a form of carcinogen, might easily enter people via the food chain, leading to fatal cancers. As a result, it is critical to develop a quick and efficient approach for detecting FTD at extremely low concentrations. Considering the aforementioned purpose, pamoic acid (PA) capped gold nanoparticles (PA@AuNPs) were synthesized in spherical morphology (size 10-15 nm) using the method of chemical reduction and used as a fluorescent probe to detect FTD. The interaction between PA@AuNPs and FTD was validated by UV-vis, XRD, and FTIR methods. Microscopic images (FESEM and HRTEM) show that PA@AuNPs have varying morphologies including rod, triangle, hexagonal, and pentagonal, and average sizes of 20-50 nm after sensing FTD. The average surface roughness of PA@AuNPs was determined to be 46.75 nm using the AFM technique. The addition of FTD (0 → 100 μM) quenched the fluorescence emission intensity of PA@AuNPs at 436 nm (λ ex 353 nm) by 4-fold. This static quenching was confirmed by the formation of a ground state complex, PA@AuNPs·FTD, between AuNPs and FTD using fluorescence lifetime analysis. The presence of an isosbestic point at 412 nm in the UV-visible titration, as well as FTIR data, further demonstrated the existence of this ground state complex. PA@AuNPs revealed high sensitivity (LoD = 9.78 nM; K a = 1.0615 × 102 M-1) to FTD in water, resulting in a decrease in predicted quantum yield (Φ F) from 3.36% to 0.35%. To establish PA@AuNPs as a first-generation fluorescence probe for real samples, FTD in blood serum was measured (LoD = 6.07 nM; K a = 1.0595 × 102 M-1). The non-toxic cytotoxicity and bioimaging in live zebrafish broadened the practical uses of PA@AuNPs. Furthermore, the surface interactions between PA@AuNPs and FTD were studied theoretically using time-dependent density functional theory (TD-DFT) at the B3LYP/6-31G(d,p) level of theory to support the findings from the experiment.
Collapse
Affiliation(s)
- A Sowndarya
- Department of Chemistry and Centre for Research and Development, KPR Institute of Engineering and Technology Coimbatore 641407 Tamilnadu India
| | - T Daniel Thangadurai
- Department of Chemistry and Centre for Research and Development, KPR Institute of Engineering and Technology Coimbatore 641407 Tamilnadu India
| | - N Manjubaashini
- National Centre for Nanoscience and Nanotechnology, University of Madras Chennai 600025 India
| | - M Pavithrakumar
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - K Senthilkumar
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - D Nataraj
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - K Kadirvelu
- DRDO-Life Sciences, Bharathiar University Coimbatore 641046 India
| | | |
Collapse
|
3
|
Shilpa AS, Thangadurai TD, Bhalerao GM, Maji S. Tailor-designed carbon-based novel fluorescent architecture for nanomolar detection of radioactive elements U(VI) and Th(IV) in pH ± 5.0. Talanta 2024; 272:125783. [PMID: 38364569 DOI: 10.1016/j.talanta.2024.125783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Highly stable nitrogen-doped Graphene Quantum Dots (N-GQD) functionalized with Pamoic Acid (PA@N-GQD) are utilized for nanomolar detection of radioactive elements, Uranium (VI) and Thorium (IV), in pH ± 5.0. The absorption, fluorescence, crystalline nature, elemental composition, functional groups, and morphological state of as-prepared PA@N-GQD are evaluated by UV-visible absorption, photoluminescence, XRD, XPS, FTIR, HRTEM, FESEM, and AFM characterizations. The aqueous solution of PA@N-GQD is characterized by its spherical morphology, averaging 6.5 nm in size. PA@N-GQD exhibits a gradual decrease in fluorescence intensity at 438 nm (λex 344 nm) upon the addition of Uranium (VI) and Thorium (IV) ions. The selectivity, sensitivity, competitivity, pH, time effect, and reversibility studies of PA@N-GQDs have been carried out using the photoluminescence technique. The attained fluorescence Limit of Detection (LoD) of PA@N-GQD for Uranium (VI) and Thorium (IV) ions are 2.009 × 10-9 and 1.351 × 10-9 M, respectively. From the fluorescence titration studies of U(VI) and Th(IV), the binding constant, Stern-Volmer constant, Modified Stern-Volmer constant, association constant, and dissociation constants have been calculated separately. These aforementioned results indicate that the PA@N-GQD has a higher binding affinity towards Th(IV) than U(VI) in aqueous medium. This current research represents the development of advanced materials for environmental and analytical applications, specifically focusing on the precise detection and quantification of radioactive elements.
Collapse
Affiliation(s)
- A S Shilpa
- Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu, India
| | - T Daniel Thangadurai
- Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu, India.
| | | | - Siuli Maji
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, India
| |
Collapse
|
4
|
Han M, Silva SM, Russo MJ, Desroches PE, Lei W, Quigley AF, Kapsa RMI, Moulton SE, Stoddart PR, Greene GW. Lubricin (PRG-4) anti-fouling coating for surface-enhanced Raman spectroscopy biosensing: towards a hierarchical separation system for analysis of biofluids. Analyst 2023; 149:63-75. [PMID: 37933547 DOI: 10.1039/d3an00910f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Surface-enhanced Raman Spectroscopy (SERS) is a powerful optical sensing technique that amplifies the signal generated by Raman scattering by many orders of magnitude. Although the extreme sensitivity of SERS enables an extremely low limit of detection, even down to single molecule levels, it is also a primary limitation of the technique due to its tendency to equally amplify 'noise' generated by non-specifically adsorbed molecules at (or near) SERS-active interfaces. Eliminating interference noise is thus critically important to SERS biosensing and typically involves onerous extraction/purification/washing procedures and/or heavy dilution of biofluid samples. Consequently, direct analysis within biofluid samples or in vivo environments is practically impossible. In this study, an anti-fouling coating of recombinant human Lubricin (LUB) was self-assembled onto AuNP-modified glass slides via a simple drop-casting method. A series of Raman spectra were collected using rhodamine 6G (R6G) as a model analyte, which was spiked into NaCl solution or unprocessed whole blood. Likewise, we demonstrate the same sensing system for the quantitative detection of L-cysteine spiked in undiluted milk. It was demonstrated for the first time that LUB coating can mitigate the deleterious effect of fouling in a SERS sensor without compromising the detection of a target analyte, even in a highly fouling, complex medium like whole blood or milk. This feat is achieved through a molecular sieving property of LUB that separates small analytes from large fouling species directly at the sensing interface resulting in SERS spectra with low background (i.e., noise) levels and excellent analyte spectral fidelity. These findings indicate the great potential for using LUB coatings together with an analyte-selective layer to form a hierarchical separation system for SERS sensing of relevant analytes directly in complex biological media, aquaculture, food matrix or environmental samples.
Collapse
Affiliation(s)
- Mingyu Han
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, 671 Sneydes Road, Werribee, Victoria, 3030, Australia
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Matthew J Russo
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Pauline E Desroches
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Anita F Quigley
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Robert M I Kapsa
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Paul R Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - George W Greene
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
5
|
Lukáčová Bujňáková Z, Dutková E, Jakubíková J, Cholujová D, Varhač R, Borysenko L, Melnyk I. Investigation of the Interaction between Mechanosynthesized ZnS Nanoparticles and Albumin Using Fluorescence Spectroscopy. Pharmaceuticals (Basel) 2023; 16:1219. [PMID: 37765027 PMCID: PMC10536685 DOI: 10.3390/ph16091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, ZnS nanoparticles were bioconjugated with bovine serum albumin and prepared in a form of nanosuspension using a wet circulation grinding. The stable nanosuspension with monomodal particle size distribution (d50 = 137 nm) and negative zeta potential (-18.3 mV) was obtained. The sorption kinetics and isotherm were determined. Interactions between ZnS and albumin were studied using the fluorescence techniques. The quenching mechanism, describing both static and dynamic interactions, was investigated. Various parameters were calculated, including the quenching rate constant, binding constant, stoichiometry of the binding process, and accessibility of fluorophore to the quencher. It has been found that tryptophan, in comparison to tyrosine, can be closer to the binding site established by analyzing the synchronous fluorescence spectra. The cellular mechanism in multiple myeloma cells treated with nanosuspension was evaluated by fluorescence assays for quantification of apoptosis, assessment of mitochondrial membrane potential and evaluation of cell cycle changes. The preliminary results confirm that the nontoxic nature of ZnS nanoparticles is potentially applicable in drug delivery systems. Additionally, slight changes in the secondary structure of albumin, accompanied by a decrease in α-helix content, were investigated using the FTIR method after analyzing the deconvoluted Amide I band spectra of ZnS nanoparticles conjugated with albumin. Thermogravimetric analysis and long-term stability studies were also performed to obtain a complete picture about the studied system.
Collapse
Affiliation(s)
- Zdenka Lukáčová Bujňáková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| | - Erika Dutková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| | - Jana Jakubíková
- Cancer Research Institute of Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (J.J.)
| | - Danka Cholujová
- Cancer Research Institute of Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (J.J.)
| | - Rastislav Varhač
- Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154 Košice, Slovakia;
| | - Larysa Borysenko
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukraine, Generala Naumova 17, 03164 Kyiv, Ukraine;
| | - Inna Melnyk
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| |
Collapse
|
6
|
Manjubaashini N, Daniel Thangadurai T. Unaided-eye detection of diverse Metal ions by AuNPs-based Nanocomposites: A Review. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Hussain I, Fatima S, Ahmed S, Tabish M. Biophysical and molecular modelling analysis of the binding of β-resorcylic acid with bovine serum albumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Gurusamy S, Sankarganesh M, Nandini Asha R, Mathavan A. Biologically active oxovanadium(IV) Schiff base metal complex: antibacterial, antioxidant, biomolecular interaction and molecular docking studies. J Biomol Struct Dyn 2023; 41:599-610. [PMID: 34889705 DOI: 10.1080/07391102.2021.2009916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The oxovanadium(IV) Schiff base metal complex (ISNPV) have been synthesized as well as characterized by using micro analytical and traditional spectroscopic techniques. The spectral findings were utilized to validate the formation of ISNPV with structure exhibited square pyramidal geometry. The in vitro antibacterial activities of ISNPV were investigated to five different bacterial stains such as S. aureus, S. epidermidis, B. cereus, B. amyloliquefaciens and B. subtilis. The obtained result have suggested that the ISNPV has highest antibacterial activity against S. aureus than the other bacterial stains. The in vitro antioxidant activity like DPPH free radical scavenging assay method was studied by ISNPV in DMSO medium. Because it scavenges all free radicals, the ISNPV possesses higher antioxidant activity than the free ligand. UV-visible absorption and emission spectral techniques were used to investigate the binding of CT-DNA to the ISNPV. Both the spectral data indicate that the ISNPV binds the double helix structure of CT-DNA via an intercalation mode. Additionally, investigate the interactions of ISNPV with the protein molecules like BSA/HAS has been investigated using absorption and emission techniques. The absorption intensity of metal complex increases as well as the emission intensity of protein molecules ability decreases due to the binding nature of ISNPV with BSA/HSA protein molecules. The binding nature of ISNPV with bio molecules such as CT-DNA, BSA and HSA was also validated using molecular docking approach.
Collapse
Affiliation(s)
- Shunmugasundaram Gurusamy
- Department of Chemistry, V.O. Chidambaram College, Tuticorin, Tamil Nadu, India.,Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineeing, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamilnadu, India
| | | | - Alagarsamy Mathavan
- Department of Chemistry, V.O. Chidambaram College, Tuticorin, Tamil Nadu, India
| |
Collapse
|
9
|
Study of reactive dye/serum albumin interactions: thermodynamic parameters, protein alterations and computational analysis. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Shahabadi N, Ghaffari L, Mardani Z, Shiri F. Multi‐Spectroscopic and Theoretical Analyses of Human Serum Albumin Binding to a Water‐Soluble Zinc(II) Complex including β‐Amino Alcohol. ChemistrySelect 2022. [DOI: 10.1002/slct.202200645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry Faculty of Chemistry Razi University Kermanshah Iran
| | - Lida Ghaffari
- Department of Inorganic Chemistry Faculty of Chemistry Razi University Kermanshah Iran
| | - Zahra Mardani
- Department of Inorganic Chemistry Faculty of Chemistry Urmia University Urmia Iran
| | - Farshad Shiri
- Department of Inorganic Chemistry Faculty of Chemistry Razi University Kermanshah Iran
| |
Collapse
|
11
|
Maiti P, Saren U, Chakraborty U, Singha T, Paul S, Paul PK. Comparative and Selective Interaction of Amino Acid d-Cysteine with Colloidal Gold Nanoparticles in the Presence of a Fluorescent Probe in Aqueous Medium. ACS OMEGA 2022; 7:29013-29026. [PMID: 36033694 PMCID: PMC9404198 DOI: 10.1021/acsomega.2c02725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/01/2022] [Indexed: 05/20/2023]
Abstract
In this communication, we report the comparative and selective interaction of amino acid d-cysteine (d-Cys) with citrate caped gold nanoparticles (Au NPs) in the presence of a fluorescent dye, rhodamine B (RhB), in aqueous solution. Au NPs of size 27.5 nm could almost fully quench the steady-state fluorescence emission of RhB at their optimum concentrations in the mixed solution. The interactions of d-Cys, l-Cys, all other relevant d- and l-amino acids, neurotransmitters, and other relevant biological compounds with the Au NPs/RhB mixed solution have been explored by monitoring the fluorescence recovery efficiencies from the almost fully quenched state of RhB fluorescence via a simple steady-state spectrofluorometric method. The higher fluorescence recovery for the interaction of d-Cys with the Au NPs/RhB mixed system is accompanied by a distinct color change (red-wine to bluish-black) of the assay medium after the reaction compared to that of all other interfering compounds considered in this work. The sensitivity of this fluorometric response lies in a broad linear range of concentrations of d-Cys and the limit of detection (LOD) is found to be 4.2 nM, which is low compared to many other methods available in the literature. The different degrees of interaction of d-Cys and l-Cys with the Au NPs/RhB mixed sample have been further explored by circular dichroism (CD) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The selective interaction of d-Cys with the proposed Au NPs/RhB mixed system is also found to be correlated with interparticle cross-linking and aggregations of nanoparticles by the analysis of ζ potential and dynamic light scattering (DLS) study, transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy etc. The proposed interaction mechanism is further studied with a normal human urine sample to elucidate that the optimized combination of Au NPs and RhB may be realized as an efficient platform for detection of the amino acid d-Cys in a real biosample via a simple fluorometric approach.
Collapse
Affiliation(s)
- Pradip Maiti
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Ujjal Saren
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Utsav Chakraborty
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Tanmoy Singha
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Sharmistha Paul
- West
Bengal State Council of Science and Technology, Department of Science and Technology and Biotechnology, Vigyan Chetana Bhavan, Sector-I, Salt Lake, Kolkata 700064, India
| | - Pabitra Kumar Paul
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
- , . Phone: +91-9477631142 (M), +91-33-24138917 (O). Fax:
+91-33-24138917 (O)
| |
Collapse
|
12
|
Gurusamy S, Nandini Asha R, Sankarganesh M, Christopher Jeyakumar T, Mathavan A. Vanillin based colorimetric and fluorometric chemosensor for detection of Cu(II) ion: DFT calculation, DNA / BSA interaction and Molecular docking studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Volkova O, Kuleshova A, Saletsky A. Spectroscopy study of dimerization of fluorone dyes in AOT reverse micelles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120640. [PMID: 34838425 DOI: 10.1016/j.saa.2021.120640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/29/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The dimerization processes and its thermodynamic parameters of fluoronic dyes (fluorescein (F), eosin (E), erythrosine (ER), bengal rose (BR)) in reverse micelles of AOT with different hydrodynamic radius Rh are studied. The dimerization constants and its efficiency (the degree of dimerization of dye molecules (1-X)) were determined from the experimental data. It is found that an increase in the intercombination conversion due to the heavy atom effect leads to an increase of the value of (1-X). At the same time, the heavy atom effect affects the dye dimerization process for all the studied values of Rh. The linear dependence of (1-X) on Rh is observed. The slope of this dependence is affected by both the mass of the internal heavy atom and the charge of the anionic forms of dyes. It was found that there is a different structure of dye dimers for different Rh for all the studied systems - different angles α between the molecules in the dimer. A linear dependence of α on Rh is observed. At the same time, the growth gradients α(Rh) practically do not differ for F, E, and BR and they are of the greatest importance for the studied water-micellar solutions of dyes. The growth of α from Rh is insignificant for ER. The thermodynamic parameters (such as Gibbs potential ΔG, enthalpy (ΔH and entropy ΔS) were calculated from the experimentally measured dependences of the dimerization constant on the temperature. ΔH < 0 and ΔS < 0 in micellar solutions of the studied dyes at all values of Rh, that indicates that the dimerization reaction in the studied systems is controlled by enthalpy. The obtained linear relationship between TΔS and ΔH indicates the existence of enthalpy-entropy compensation in the dimeric reactions of the molecules of the studied dyes. The linear correlation observed between the values of TΔS and ΔH allowed us to establish that the higher the molecular weight of the halogen in the dye molecule, the more effectively an increase in ΔH contributes to the dimeric stability.
Collapse
Affiliation(s)
- Oksana Volkova
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leniskie Gori, GSP-2, d.1, str. 2, Moscow 119991, Russia
| | - Anna Kuleshova
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leniskie Gori, GSP-2, d.1, str. 2, Moscow 119991, Russia.
| | - Alexander Saletsky
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leniskie Gori, GSP-2, d.1, str. 2, Moscow 119991, Russia
| |
Collapse
|
14
|
Hussain I, Fatima S, Ahmed S, Tabish M. Deciphering the biomolecular interaction of β-resorcylic acid with human lysozyme: A biophysical and bioinformatics outlook. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Sravya V, Pavithra VR, Thangadurai TD, Nataraj D, Kumar NS. Excitation-independent and fluorescence-reversible N-GQD for picomolar detection of inhibitory neurotransmitter in milk samples ‒ an alleyway for possible neuromorphic computing application. Talanta 2021; 239:123132. [PMID: 34920264 DOI: 10.1016/j.talanta.2021.123132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023]
Abstract
N‒GQDs with an average size of ca. 20-30 nm are utilized for the picomolar detection of inhibitory neurotransmitters, glycine (Gly), in pH ca. 7.0. The crystalline nature, morphology, elemental composition, and chemical state of N-GQDs are investigated by XRD, FE-SEM, HR-TEM, XPS, and FT-IR techniques. The addition of Gly (100 × 10-9 M; 0 → 1.0 mL) steadily quenches the fluorescence intensity of N-GQD (1 × 10-6 M) at 432 nm (λex 333 nm) due to inner filter effect (IFE) through the formation of ground-state complex, N-GQD•Gly. The excitation-independent N‒GQDs showed an outstanding selectivity and sensitivity towards Gly with binding constant (Ka = 8.97 × 10-3 M-1) and LoD (21.04 pM; S/N = 3). Time-correlated single-photon counting experiment confirms the static quenching of N-GQD (8.77 → 8.85 ns) in the presence of Gly. The interference of other amino acids on the strong binding of the N-GQD•Gly complex in H2O is examined. Combinatorial Ex-OR and NOT gate logic circuits that could be useful in neuromorphic computing are developed based on the reversible fluorescence intensity changes of N-GQD upon the addition of Gly (ФF 0.54 → 0.39). The real-time application of N-GQD was investigated using commercially available relevant milk samples. Remarkably, not less than 99% cytotoxic reactivity of N-GQDs is attained against HeLa cells.
Collapse
Affiliation(s)
- V Sravya
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Affiliated with Anna University, Coimbatore, 641 022, Tamilnadu, India; Department of Physics, Kongunadu Arts and Science College, Affiliated to Bharathiar University, Coimbatore, 641 029, Tamilnadu, India
| | - V R Pavithra
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Affiliated with Anna University, Coimbatore, 641 022, Tamilnadu, India
| | - T Daniel Thangadurai
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Affiliated with Anna University, Coimbatore, 641 022, Tamilnadu, India.
| | - D Nataraj
- Department of Physics, Bharathiar University, Coimbatore, 641 046, Tamilnadu, India
| | - N Sathish Kumar
- Department of Electronics and Communication Engineering, Sri Ramakrishna Engineering College, Affiliated to Anna University, Coimbatore, 641 022, Tamilnadu, India
| |
Collapse
|
16
|
Muhideen Badhusha MS, Joel C, Imran Khan R, Vijayakumar N. Green synthesis and characterization of Fe doped ZnO nanoparticles and their interaction with bovine serum albumin. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Menezes TM, Neto AMDS, Gubert P, Neves JL. Effects of human serum albumin glycation on the interaction with the tyrosine kinase inhibitor pazopanib unveiled by multi-spectroscopic and bioinformatic tools. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Ouyang Y, Liu Y, Wang ZM, Liu Z, Wu M. FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring. NANO-MICRO LETTERS 2021; 13:133. [PMID: 34138374 PMCID: PMC8175610 DOI: 10.1007/s40820-021-00653-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has been rapidly developed over the past 30 years and widely applied in biomedical engineering. Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence. Because fluorescence lifetime is sensitive to microenvironments and molecule alterations, FLIM is promising for the detection of pathological conditions. Current cancer-related FLIM applications can be divided into three main categories: (i) FLIM with autofluorescence molecules in or out of a cell, especially with reduced form of nicotinamide adenine dinucleotide, and flavin adenine dinucleotide for cellular metabolism research; (ii) FLIM with Förster resonance energy transfer for monitoring protein interactions; and (iii) FLIM with fluorophore-dyed probes for specific aberration detection. Advancements in nanomaterial production and efficient calculation systems, as well as novel cancer biomarker discoveries, have promoted FLIM optimization, offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring. This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development. We also highlight current challenges and provide perspectives for further investigation.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
- Shenzhen Research Institute of Central South University, A510a, Virtual University Building, Nanshan District, Southern District, High-tech Industrial Park, Yuehai Street, Shenzhen, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Carbazole-hydrazinobenzothiazole a selective turn-on fluorescent sensor for Hg2+ions – Its protein binding and electrochemical application studies. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Teixeira de Alencar Filho JM, Sampaio PA, Silva de Carvalho I, Rocha da Silva A, Pereira ECV, Araujo E Amariz I, Nishimura RHV, Cavalcante da Cruz Araújo E, Rolim-Neto PJ, Rolim LA. Metal organic frameworks (MOFs) with therapeutic and biomedical applications: a patent review. Expert Opin Ther Pat 2021; 31:937-949. [PMID: 33915072 DOI: 10.1080/13543776.2021.1924149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Metal organic frameworks (MOFs) are a recent group of nano porous materials with exceptional physical properties, such as large surface areas, high pore volumes, low densities and well-defined pores. This type of material has been used frequently for biomedical and therapeutic applications, such as drug delivery systems and theranostic materials.Areas covered: In this review, the authors searched for patents filed in the last 10 years, found in different databases, related to the therapeutic or biomedical application of MOFs for use in different health fields. The possibility of these new materials becoming new therapeutic possibilities available to the population was emphasized.Expert opinion: The advances in research with MOFs have grown in the last 10 years and with that many possibilities for their applications have emerged in several areas, especially biomedical. The possibility of using these materials in drug delivery systems is the most common form of possibility of use in the health area, mainly due to easy obtaining and high reproducibility, which are seen very positively by the drug development technology sector.
Collapse
Affiliation(s)
| | - Pedrita Alves Sampaio
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | - Iure Silva de Carvalho
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | | | | | - Isabela Araujo E Amariz
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | | | | | - Pedro José Rolim-Neto
- Laboratório de Tecnologia de Medicamentos, Universidade Federal de Pernambuco, Recife-PE, Brasil
| | - Larissa Araújo Rolim
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| |
Collapse
|
21
|
Wang W, Huang Z, Li Y, Wang W, Shi J, Fu F, Huang Y, Pan X, Wu C. Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: A proof-of-concept study. Acta Pharm Sin B 2021; 11:1030-1046. [PMID: 33996415 PMCID: PMC8105779 DOI: 10.1016/j.apsb.2020.10.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
When nanoparticles were introduced into the biological media, the protein corona would be formed, which endowed the nanoparticles with new bio-identities. Thus, controlling protein corona formation is critical to in vivo therapeutic effect. Controlling the particle size is the most feasible method during design, and the influence of media pH which varies with disease condition is quite important. The impact of particle size and pH on bovine serum albumin (BSA) corona formation of solid lipid nanoparticles (SLNs) was studied here. The BSA corona formation of SLNs with increasing particle size (120-480 nm) in pH 6.0 and 7.4 was investigated. Multiple techniques were employed for visualization study, conformational structure study and mechanism study, etc. "BSA corona-caused aggregation" of SLN2‒3 was revealed in pH 6.0 while the dispersed state of SLNs was maintained in pH 7.4, which significantly affected the secondary structure of BSA and cell uptake of SLNs. The main interaction was driven by van der Waals force plus hydrogen bonding in pH 7.4, while by electrostatic attraction in pH 6.0, and size-dependent adsorption was confirmed. This study provides a systematic insight to the understanding of protein corona formation of SLNs.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanbei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiayu Shi
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
22
|
Ultra-sensitive detection of commercial vitamin B9 and B12 by graphene nanobuds through inner filter effect. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Exploring the binding interaction between bovine serum albumin and perindopril as well as influence of metal ions using multi-spectroscopic, molecular docking and DFT calculation. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Guo Y, Qin P, Wang C, Pan X, Dong X, Zong W. Characterization on the toxic mechanism of two fluoroquinolones to trypsin by spectroscopic and computational methods. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:230-238. [PMID: 31679438 DOI: 10.1080/03601234.2019.1685317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ciprofloxacin (CPFX) and enrofloxacin (ENFX), two of the most widely used fluoroquinolones (FQs), pose a great threat to humans and the ecosystem. In this study, the toxic mechanisms between the two FQs and trypsin were evaluated by means of multiple spectroscopic methods, as well as molecular docking. During the fluorescence investigations, both FQs quenched the intrinsic fluorescence of trypsin effectively, which was due to the formation of moderately strong complexes (mainly through van der Waals forces and hydrogen bonds). The binding of two FQs not only caused the conformational and micro-environmental changes of trypsin, but also changed its molecular activity; shown by the UV-Visible absorption spectroscopy, synchronous fluorescence spectroscopy, and functional tests. The established methods in this work can help to comprehensively understand the transport of FQs in the human body.
Collapse
Affiliation(s)
- Yanxiu Guo
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, School of Resource and Environmental Sciences, Linyi University, Linyi, P.R. China
| | - Pengfei Qin
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, School of Resource and Environmental Sciences, Linyi University, Linyi, P.R. China
| | - Chaoyun Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, School of Resource and Environmental Sciences, Linyi University, Linyi, P.R. China
| | - Xingren Pan
- School of Physics and Electronic Engineering, Linyi University, Linyi, P.R. China
| | - Xiaofei Dong
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, School of Resource and Environmental Sciences, Linyi University, Linyi, P.R. China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, Jinan, P.R. China
| |
Collapse
|
25
|
Biswas S, Chakraborty J, Agarwal A, Kumbhakar P. Gold nanostructures for the sensing of pH using a smartphone. RSC Adv 2019; 9:34144-34151. [PMID: 35529967 PMCID: PMC9073677 DOI: 10.1039/c9ra07101f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/07/2019] [Indexed: 11/21/2022] Open
Abstract
Recently, metal nanostructures have been found to be capable of recognizing small changes in their surrounding environment, which can be utilized as significant sensing tools. In this study, we demonstrated colorimetric sensing of pH by gold nanostructures (GNs) using a simple smartphone. An indigenously developed Android app based on the CIELab 1931 analysis, which could run in a smartphone, was used for the precise determination of the pH value of liquid media. The pH value of an unknown solution obtained from the developed Android app was also compared with that obtained from the conventional ratiometric technique and a commercial pH meter. In another endeavor, it was found that the synthesized GNs demonstrated a high energy transfer efficiency from a donor (namely, the rhodamine 6G, (Rh 6G)) dye. This property of the GNs can be utilized further in the future for studying different bimolecular activities within the human body. It was found that the photoluminescence (PL) of Rh 6G was quenched when it was kept in the vicinity of the synthesized GNs, which was explained in terms of the Förster energy transfer mechanism. Thus, the present study will open up a plethora of opportunities for researchers to employ the nanostructures of gold and other metals in developing low-cost and Internet of Things (IoT)-based sensing devices using only a smart phone.
Collapse
Affiliation(s)
- Subrata Biswas
- Nanoscience Laboratory, Dept. of Physics, National Institute of Technology Durgapur 713209 West Bengal India
| | - Jayjeet Chakraborty
- Department of Computer Science and Engineering (CSE), National Institute of Technology Durgapur 713209 West Bengal India
| | - Avinash Agarwal
- Department of Computer Science and Engineering (CSE), National Institute of Technology Durgapur 713209 West Bengal India
| | - Pathik Kumbhakar
- Nanoscience Laboratory, Dept. of Physics, National Institute of Technology Durgapur 713209 West Bengal India
| |
Collapse
|
26
|
Zhao L, Zhang H, Zhang J, Zong W, Liu R. Spectroscopic characterization, calorimetric study and molecular docking to evaluate the bioconjugation of maltol with hemoglobin. LUMINESCENCE 2019; 34:290-296. [PMID: 30723991 DOI: 10.1002/bio.3607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/01/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022]
Abstract
Maltol, a food additive, is extensively used in our daily life. To date, its biological safety is still debated. In this article, binding interaction of maltol with bovine hemoglobin (BHb), an important functional protein, was studied by molecular docking research and spectroscopic and calorimetric measurements. We found that maltol could cause structural changes of BHb. By interacting with Glu 101 (1.27 Å) and Lys 104 (2.49 Å) residues, maltol changed the cavity structure and induced a microenvironment change around tryptophan (Trp) residue. Thermodynamic parameters obtained from isothermal titration calorimetry (ITC) measurement showed that hydrophobic forces were the main forces existing in this system. The association constant of K (8.0 ± 3.4 × 104 M-1 ) shows the mild ligand-protein binding for maltol with BHb. The α-helix amount in BHb increased (59.6-62.6%) with different concentrations of maltol and the intrinsic fluorescence intensity was quenched by maltol, indicating the conformation changes and denaturation of BHb. This work presents the interactions of maltol with BHb at the molecular level and obtains evidence that maltol induces adverse effects to proteins in vitro.
Collapse
Affiliation(s)
- Lining Zhao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao, P. R. China
| | - Hao Zhang
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, P. R. China
| | - Jing Zhang
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao, P. R. China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, Jinan, P. R. China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao, P. R. China
| |
Collapse
|
27
|
Yang X, He L, Xu K, Yang Y, Lin W. The development of an ICT-based formaldehyde-responsive fluorescence turn-on probe with a high signal-to-noise ratio. NEW J CHEM 2018. [DOI: 10.1039/c8nj02467g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ICT-based formaldehyde fluorescence turn-on probe (PBD-FA) with a high signal-to-noise ratio was judiciously constructed for bio-applications.
Collapse
Affiliation(s)
- Xueling Yang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Longwei He
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Kaixin Xu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yunzhen Yang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|