1
|
Modi SK, Mohapatra P, Bhatt P, Singh A, Parmar AS, Roy A, Joshi V, Singh MS. Targeting tumor microenvironment with photodynamic nanomedicine. Med Res Rev 2024. [PMID: 39152568 DOI: 10.1002/med.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Photodynamic therapy (PDT) is approved for the treatment of certain cancers and precancer lesions. While early Photosensitizers (PS) have found their way to the clinic, research in the last two decades has led to the development of third-generation PS, including photodynamic nanomedicine for improved tumor delivery and minimal systemic or phototoxicity. In terms of nanoparticle design for PDT, we are witnessing a shift from passive to active delivery for improved outcomes with reduced PS dosage. Tumor microenvironment (TME) comprises of a complex and dynamic landscape with myriad potential targets for photodynamic nanocarriers that are surface-modified with ligands. Herein, we review ways to improvise PDT by actively targeting nanoparticles (NPs) to intracellular organelles such as mitochondria or lysosomes and so forth, overcoming the limitations caused by PDT-induced hypoxia, disrupting the blood vascular networks in tumor tissues-vascular targeted PDT (VTP) and targeting immune cells for photoimmunotherapy. We propose that a synergistic outlook will help to address challenges such as deep-seated tumors, metastasis, or relapse and would lead to robust PDT response in patients.
Collapse
Affiliation(s)
- Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, London, UK
| | - Pragyan Mohapatra
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Priya Bhatt
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Aishleen Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Manu Smriti Singh
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Shramova EI, Deyev SM, Proshkina GM. A Vector Nanoplatform for the Bioimaging of Deep-Seated Tumors. Acta Naturae 2024; 16:72-81. [PMID: 39188260 PMCID: PMC11345090 DOI: 10.32607/actanaturae.27425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 08/28/2024] Open
Abstract
Today, in preclinical studies, optical bioimaging based on luminescence and fluorescence is indispensable in studying the development of neoplastic transformations, the proliferative activity of the tumor, its metastatic potential, as well as the therapeutic effect of antitumor agents. In order to expand the capabilities of optical imaging, sensors based on the bioluminescence resonance energy transfer (BRET) mechanism and, therefore, independent of an external light source are being developed. A targeted nanoplatform based on HER2-specific liposomes whose internal environment contains a genetically encoded BRET sensor was developed in this study to visualize deep-seated tumors characterized by overexpression of human epidermal growth factor receptor type 2 (HER2). The BRET sensor is a hybrid protein consisting of the highly catalytic luciferase NanoLuc (an energy donor) and a LSSmKate1 red fluorescent protein with a large Stokes shift (an energy acceptor). During the bioimaging of disseminated intraperitoneal tumors formed by HER2-positive SKOV3.ip1cells of serous ovarian cystadenocarcinoma, it was shown that the developed system is applicable in detecting deep-seated tumors of a certain molecular profile. The developed system can become an efficient platform for optimizing preclinical studies of novel targeted drugs.
Collapse
Affiliation(s)
- E. I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991 Russian Federation
- National Research Centre “Kurchatov Institute”, Moscow, 123098 Russian Federation
| | - G. M. Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
| |
Collapse
|
3
|
Yu L, Liu Z, Xu W, Jin K, Liu J, Zhu X, Zhang Y, Wu Y. Towards overcoming obstacles of type II photodynamic therapy: Endogenous production of light, photosensitizer, and oxygen. Acta Pharm Sin B 2024; 14:1111-1131. [PMID: 38486983 PMCID: PMC10935104 DOI: 10.1016/j.apsb.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 03/17/2024] Open
Abstract
Conventional photodynamic therapy (PDT) approaches face challenges including limited light penetration, low uptake of photosensitizers by tumors, and lack of oxygen in tumor microenvironments. One promising solution is to internally generate light, photosensitizers, and oxygen. This can be accomplished through endogenous production, such as using bioluminescence as an endogenous light source, synthesizing genetically encodable photosensitizers in situ, and modifying cells genetically to express catalase enzymes. Furthermore, these strategies have been reinforced by the recent rapid advancements in synthetic biology. In this review, we summarize and discuss the approaches to overcome PDT obstacles by means of endogenous production of excitation light, photosensitizers, and oxygen. We envision that as synthetic biology advances, genetically engineered cells could act as precise and targeted "living factories" to produce PDT components, leading to enhanced performance of PDT.
Collapse
Affiliation(s)
- Lin Yu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Zhen Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Wei Xu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| |
Collapse
|
4
|
Shramova EI, Filimonova VP, Frolova AY, Pichkur EB, Fedotov VR, Konevega AL, Deyev SM, Proshkina GM. HER2-specific liposomes loaded with proteinaceous BRET pair as a promising tool for targeted self-excited photodynamic therapy. Eur J Pharm Biopharm 2023; 193:208-217. [PMID: 37956784 DOI: 10.1016/j.ejpb.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Photodynamic therapy (PDT) for deep-seated tumors is still challenging due to the limited penetration of visible light through tissues. To resolve this limitation, systems based on bioluminescence resonance energy transfer (BRET), that do not require an external light source are proposed. Herein, for BRET-activated PDT we developed proteinaceous BRET-pair consisting of luciferase NanoLuc, which acts as energy donor upon addition of luciferase specific substrate furimazine, and phototoxic protein SOPP3 as a photosensitizer. We have shown that hybrid protein NanoLuc-SOPP3 is an excellent BRET pair with BRET ratio of 1.12. Targeted delivery of NanoLuc-SOPP3 BRET pair via tumor-specific small liposomes (∼100 nm) to tumors overexpressing the HER2-receptor (human epidermal growth factor receptor 2) was demonstrated in vitro and in vivo. The proposed BRET-activated system has been shown to significantly suppress tumor growth in a model of subcutaneous and, more importantly, deep-seated tumor model. Taking into account the in vivo efficiency of proposed BRET-activated system, we believe that it has great potential for depth-independent PDT and can significantly broaden the application of PDT in the clinic.
Collapse
Affiliation(s)
- Elena I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Victoriya P Filimonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Anastasiya Yu Frolova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Eugene B Pichkur
- Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Vlad R Fedotov
- Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Andrey L Konevega
- Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia; "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Russia; Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Galina M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia.
| |
Collapse
|
5
|
Novel Small Multilamellar Liposomes Containing Large Quantities of Peptide Nucleic Acid Selectively Kill Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14194806. [PMID: 36230729 PMCID: PMC9564164 DOI: 10.3390/cancers14194806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We present, for the first time, the preparation of small (60–90 nm in diameter) liposomes containing extremely large amounts (~8000 molecules per vesicle) of short, cytosine-rich peptide nucleic acid. The outer surface of liposomes wasfunctionalized with scaffold molecules specific to tumor-associated antigen overexpressing in breast cancer. We have shown that targeted liposomesspecifically interact with cancer cells and reduce their viability in sub-nanomolar concentrations. The results presented here can be widely used in cancer therapy based on cytosine-rich PNA oligonucleotides. Abstract Peptide nucleic acid (PNA) may be used in various biomedical applications; however, these are currently limited, due to its low solubility in aqueous solutions. In this study, a methodology to overcome this limitation is demonstrated, as well as the effect of PNA on cell viability. We show that extruding a mixture of natural phospholipids and short (6–22 bases), cytosine-rich PNA through a 100 nm pore size membrane under mild acidic conditions resulted in the formation of small (60–90 nm in diameter) multilamellar vesicles (SMVs) comprising several (3–5) concentric lipid membranes. The PNA molecules, being positively charged under acidic conditions (due to protonation of cytosine bases in the sequence), bind electrostatically to negatively charged phospholipid membranes. The large membrane surface area allowed the encapsulation of thousands of PNA molecules in the vesicle. SMVs were conjugated with the designed ankyrin repeat protein (DARPin_9-29), which interacts with human epidermal growth factor receptor 2 (HER2), overexpressed in human breast cancer. The conjugate was shown to enter HER2-overexpressing cells by receptor-mediated endocytosis. PNA molecules, released from lysosomes, aggregate in the cytoplasm into micron-sized particles, which interfere with normal cell functioning, causing cell death. The ability of DARPin-functionalized SMVs to specifically deliver large quantities of PNA to cancer cells opens a new promising avenue for cancer therapy.
Collapse
|
6
|
CUI Z, SHU Y, XIE X, JIN Y. Light-driven activation of NADPH oxidases. SCIENTIA SINICA VITAE 2022. [DOI: 10.1360/ssv-2022-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Digby EM, Tung MT, Kagalwala HN, Ryan LS, Lippert AR, Beharry AA. Dark Dynamic Therapy: Photosensitization without Light Excitation Using Chemiluminescence Resonance Energy Transfer in a Dioxetane-Erythrosin B Conjugate. ACS Chem Biol 2022; 17:1082-1091. [PMID: 35394740 DOI: 10.1021/acschembio.1c00925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (e.g., singlet oxygen) are the primary cytotoxic agents used in the clinically approved technique photodynamic therapy (PDT). Although singlet oxygen has high potential to effectively kill tumor cells, its production via light excitation of a photosensitizer has been limited by the penetration depth and delivery of light in tissue. To produce singlet oxygen without light excitation, we describe the use of Schaap's chemiluminescent scaffold comprising an adamantylidene-dioxetane motif. Functionalizing this scaffold with a photosensitizer, Erythrosin B, resulted in spontaneous chemiluminescence resonance energy transfer (CRET) leading to the production of singlet oxygen. We show that this compound is cell permeable and that the singlet oxygen produced via CRET is remarkably efficient in killing cancer cells at low micromolar concentrations. Moreover, we demonstrate that protection of the phenol on the chemiluminescent scaffold with a nitroreductase-responsive trigger group allows for cancer-selective dark dynamic cell death. Here, we present the concept of dark dynamic therapy using a small cell-permeable molecule capable of producing the effects of PDT in cells, without light.
Collapse
Affiliation(s)
- Elyse M. Digby
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Matthew T. Tung
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Husain N. Kagalwala
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, Texas 75205-0314, United States
| | - Lucas S. Ryan
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, Texas 75205-0314, United States
| | - Alexander R. Lippert
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, Texas 75205-0314, United States
| | - Andrew A. Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
8
|
Shramova EI, Chumakov SP, Shipunova VO, Ryabova AV, Telegin GB, Kabashin AV, Deyev SM, Proshkina GM. Genetically encoded BRET-activated photodynamic therapy for the treatment of deep-seated tumors. LIGHT, SCIENCE & APPLICATIONS 2022; 11:38. [PMID: 35190528 PMCID: PMC8861062 DOI: 10.1038/s41377-022-00729-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 05/05/2023]
Abstract
Photodynamic therapy (PDT) is one of the most appealing photonic modalities for cancer treatment based on anticancer activity of light-induced photosensitizer-mediated reactive oxygen species (ROS), but a limited depth of light penetration into tissues does not make possible the treatment of deep-seated neoplasms and thus complicates its widespread clinical adoption. Here, we introduce the concept of genetically encoded bioluminescence resonance energy transfer (BRET)-activated PDT, which combines an internal light source and a photosensitizer (PS) in a single-genetic construct, which can be delivered to tumors seated at virtually unlimited depth and then triggered by the injection of a substrate to initiate their treatment. To illustrate the concept, we engineered genetic NanoLuc-miniSOG BRET pair, combining NanoLuc luciferase flashlight and phototoxic flavoprotein miniSOG, which generates ROS under luciferase-substrate injection. We prove the concept feasibility in mice bearing NanoLuc-miniSOG expressing tumor, followed by its elimination under the luciferase-substrate administration. Then, we demonstrate a targeted delivery of NanoLuc-miniSOG gene, via tumor-specific lentiviral particles, into a tumor, followed by its successful elimination, with tumor-growth inhibition (TGI) coefficient exceeding 67%, which confirms a great therapeutic potential of the proposed concept. In conclusion, this study provides proof-of-concept for deep-tissue "photodynamic" therapy without external light source that can be considered as an alternative for traditional PDT.
Collapse
Affiliation(s)
- Elena I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - Stepan P Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe shosse, Moscow, 115409, Russia
| | - Anastasiya V Ryabova
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova, 38, Moscow, 119991, Russia
| | - Georgij B Telegin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect Nauki 6, Pushchino, 142290, Russia
| | - Andrei V Kabashin
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe shosse, Moscow, 115409, Russia
- Aix Marseille University, CNRS, LP3, 163 Ave. De Luminy, Case 917, 13288, Marseille, France
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia.
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe shosse, Moscow, 115409, Russia.
| | - Galina M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia.
| |
Collapse
|
9
|
New Applications of Photodynamic Therapy in the Management of Candidiasis. J Fungi (Basel) 2021; 7:jof7121025. [PMID: 34947007 PMCID: PMC8705304 DOI: 10.3390/jof7121025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
The most important aetiological agent of opportunistic mycoses worldwide is Candida spp. These yeasts can cause severe infections in the host, which may be fatal. Isolates of Candida albicans occur with greater frequency and variable resistance patterns. Photodynamic therapy (PDT) has been recognised as an alternative treatment to kill pathogenic microorganisms. PDT utilises a photosensitizer, which is activated at a specific wavelength and oxygen concentration. Their reaction yields reactive oxygen species that kill the infectious microorganism. A systematic review of new applications of PDT in the management of candidiasis was performed. Of the 222 studies selected for in-depth screening, 84 were included in this study. All the studies reported the antifungal effectiveness, toxicity and dosimetry of treatment with antimicrobial PDT (aPDT) with different photosensitizers against Candida spp. The manuscripts that are discussed reveal the breadth of the new applications of aPDT against Candida spp., which are resistant to common antifungals. aPDT has superior performance compared to conventional antifungal therapies. With further studies, aPDT should prove valuable in daily clinical practice.
Collapse
|
10
|
Manoilov KY, Verkhusha VV, Shcherbakova DM. A guide to the optogenetic regulation of endogenous molecules. Nat Methods 2021; 18:1027-1037. [PMID: 34446923 DOI: 10.1038/s41592-021-01240-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs.
Collapse
Affiliation(s)
- Kyrylo Yu Manoilov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Science Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers (Basel) 2021; 13:3484. [PMID: 34298707 PMCID: PMC8307713 DOI: 10.3390/cancers13143484] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with strong potential over well-established standard therapies in certain cases. Non-ionising radiation, localisation, possible repeated treatments, and stimulation of immunological response are some of the main beneficial features of PDT. Despite the great potential, its application remains challenging. Limited light penetration depth, non-ideal photosensitisers, complex dosimetry, and complicated implementations in the clinic are some limiting factors hindering the extended use of PDT. To surpass actual technological paradigms, radically new sources, light-based devices, advanced photosensitisers, measurement devices, and innovative application strategies are under extensive investigation. The main aim of this review is to highlight the advantages/pitfalls, technical challenges and opportunities of PDT, with a focus on technologies for light activation of photosensitisers, such as light sources, delivery devices, and systems. In this vein, a broad overview of the current status of superficial, interstitial, and deep PDT modalities-and a critical review of light sources and their effects on the PDT process-are presented. Insight into the technical advancements and remaining challenges of optical sources and light devices is provided from a physical and bioengineering perspective.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
12
|
Choi H, Eom S, Kim HU, Bae Y, Jung HS, Kang S. Load and Display: Engineering Encapsulin as a Modular Nanoplatform for Protein-Cargo Encapsulation and Protein-Ligand Decoration Using Split Intein and SpyTag/SpyCatcher. Biomacromolecules 2021; 22:3028-3039. [PMID: 34142815 DOI: 10.1021/acs.biomac.1c00481] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein cage nanoparticles have a unique spherical hollow structure that provides a modifiable interior space and an exterior surface. For full application, it is desirable to utilize both the interior space and the exterior surface simultaneously with two different functionalities in a well-combined way. Here, we genetically engineered encapsulin protein cage nanoparticles (Encap) as modular nanoplatforms by introducing a split-C-intein (IntC) fragment and SpyTag into the interior and exterior surfaces, respectively. A complementary split-N-intein (IntN) was fused to various protein cargoes, such as NanoLuc luciferase (Nluc), enhanced green fluorescent protein (eGFP), and Nluc-miniSOG, individually, which led to their successful encapsulation into Encaps to form Cargo@Encap through split intein-mediated protein ligation during protein coexpression and cage assembly in bacteria. Conversely, the SpyCatcher protein was fused to various protein ligands, such as a glutathione binder (GST-SC), dimerizing ligands (FKBP12-SC and FRB-SC), and a cancer-targeting affibody (SC-EGFRAfb); subsequently, they were displayed on Cargo@Encaps through SpyTag/SpyCatcher ligation to form Cargo@Encap/Ligands in a mix-and-match manner. Nluc@Encap/glutathione-S-transferase (GST) was effectively immobilized on glutathione (GSH)-coated solid supports exhibiting repetitive and long-term usage of the encapsulated luciferases. We also established luciferase-embedded layer-by-layer (LbL) nanostructures by alternately depositing Nluc@Encap/FKBP12 and Nluc@Encap/FRB in the presence of rapamycin and applied enhanced green fluorescent protein (eGFP)@Encap/EGFRAfb as a target-specific fluorescent imaging probe to visualize specific cancer cells selectively. Modular functionalization of the interior space and the exterior surface of a protein cage nanoparticle may offer the opportunity to develop new protein-based nanostructured devices and nanomedical tools.
Collapse
Affiliation(s)
- Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si 24341, Gangwon-do, Korea
| | - Yoonji Bae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si 24341, Gangwon-do, Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
13
|
Shilova O, Shramova E, Proshkina G, Deyev S. Natural and Designed Toxins for Precise Therapy: Modern Approaches in Experimental Oncology. Int J Mol Sci 2021; 22:ijms22094975. [PMID: 34067057 PMCID: PMC8124712 DOI: 10.3390/ijms22094975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer cells frequently overexpress specific surface receptors providing tumor growth and survival which can be used for precise therapy. Targeting cancer cell receptors with protein toxins is an attractive approach widely used in contemporary experimental oncology and preclinical studies. Methods of targeted delivery of toxins to cancer cells, different drug carriers based on nanosized materials (liposomes, nanoparticles, polymers), the most promising designed light-activated toxins, as well as mechanisms of the cytotoxic action of the main natural toxins used in modern experimental oncology, are discussed in this review. The prospects of the combined therapy of tumors based on multimodal nanostructures are also discussed.
Collapse
Affiliation(s)
- Olga Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
- Correspondence: (O.S.); (S.D.)
| | - Elena Shramova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
| | - Galina Proshkina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
| | - Sergey Deyev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
- Research Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: (O.S.); (S.D.)
| |
Collapse
|
14
|
Diaz D, Vidal X, Sunna A, Care A. Bioengineering a Light-Responsive Encapsulin Nanoreactor: A Potential Tool for In Vitro Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7977-7986. [PMID: 33586952 DOI: 10.1021/acsami.0c21141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Encapsulins, a prokaryotic class of self-assembling protein nanocompartments, are being re-engineered to serve as "nanoreactors" for the augmentation or creation of key biochemical reactions. However, approaches that allow encapsulin nanoreactors to be functionally activated with spatial and temporal precision are lacking. We report the construction of a light-responsive encapsulin nanoreactor for "on demand" production of reactive oxygen species (ROS). Herein, encapsulins were loaded with the fluorescent flavoprotein mini-singlet oxygen generator (miniSOG), a biological photosensitizer that is activated by blue light to generate ROS, primarily singlet oxygen (1O2). We established that the nanocompartments stably encased miniSOG and in response to blue light were able to mediate the photoconversion of molecular oxygen into ROS. Using an in vitro model of lung cancer, we showed that ROS generated by the nanoreactor triggered photosensitized oxidation reactions which exerted a toxic effect on tumor cells, suggesting utility in photodynamic therapy. This encapsulin nanoreactor thus represents a platform for the light-controlled initiation and/or modulation of ROS-driven processes in biomedicine and biotechnology.
Collapse
Affiliation(s)
- Dennis Diaz
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Xavier Vidal
- Fraunhofer Institut für Angewandte Festkörperphysik (IAF), Tullastrasse 72, 79108 Freiburg, Germany
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew Care
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
15
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
16
|
Sureda-Vives M, Sarkisyan KS. Bioluminescence-Driven Optogenetics. Life (Basel) 2020; 10:E318. [PMID: 33260589 PMCID: PMC7760859 DOI: 10.3390/life10120318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/04/2023] Open
Abstract
Bioluminescence-based technologies are among the most commonly used methods to quantify and visualise physiology at the cellular and organismal levels. However, the potential of bioluminescence beyond reporter technologies remains largely unexplored. Here, we provide an overview of the emerging approaches employing bioluminescence as a biological light source that triggers physiological events and controls cell behaviour and discuss its possible future application in synthetic biology.
Collapse
Affiliation(s)
- Macià Sureda-Vives
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Karen S. Sarkisyan
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
17
|
Shipunova VO, Komedchikova EN, Kotelnikova PA, Zelepukin IV, Schulga AA, Proshkina GM, Shramova EI, Kutscher HL, Telegin GB, Kabashin AV, Prasad PN, Deyev SM. Dual Regioselective Targeting the Same Receptor in Nanoparticle-Mediated Combination Immuno/Chemotherapy for Enhanced Image-Guided Cancer Treatment. ACS NANO 2020; 14:12781-12795. [PMID: 32935975 DOI: 10.1021/acsnano.0c03421] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When combined with immunotherapy, image-guided targeted delivery of chemotherapeutic agents is a promising direction for combination cancer theranostics, but this approach has so far produced only limited success due to a lack of molecular targets on the cell surface and low therapeutic index of conventional chemotherapy drugs. Here, we demonstrate a synergistic strategy of combination immuno/chemotherapy in conditions of dual regioselective targeting, implying vectoring of two distinct binding sites of a single oncomarker (here, HER2) with theranostic compounds having a different mechanism of action. We use: (i) PLGA nanoformulation, loaded with an imaging diagnostic fluorescent dye (Nile Red) and a chemotherapeutic drug (doxorubicin), and functionalized with affibody ZHER2:342 (8 kDa); (ii) bifunctional genetically engineered DARP-LoPE (42 kDa) immunotoxin comprising of a low-immunogenic modification of therapeutic Pseudomonas exotoxin A (LoPE) and a scaffold targeting protein, DARPin9.29 (14 kDa). According to the proposed strategy, the first chemotherapeutic nanoagent is targeted by the affibody to subdomain III and IV of HER2 with 60-fold specificity compared with nontargeted particles, while the second immunotoxin is effectively targeted by DARPin molecule to subdomain I of HER2. We demonstrate that this dual targeting strategy can enhance anticancer therapy of HER2-positive cells with a very strong synergy, which made possible 1000-fold decrease of effective drug concentration in vitro and a significant enhancement of HER2 cancer therapy compared to monotherapy in vivo. Moreover, this therapeutic combination prevented the appearance of secondary tumor nodes. Thus, the suggested synergistic strategy utilizing dual targeting of the same oncomarker could give rise to efficient methods for aggressive tumors treatment.
Collapse
Affiliation(s)
- Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Elena N Komedchikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Polina A Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Alexey A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Galina M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Elena I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Hilliard L Kutscher
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
- Department of Medicine, University at Buffalo, 875 Ellicott Street, Buffalo, New York 14203, United States
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street, Suite 550, Buffalo, New York 14203, United States
| | - Georgij B Telegin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Andrei V Kabashin
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Aix Marseille University, CNRS, LP3, Campus de Luminy-case 917, 13288, Marseille Cedex 9, France
| | - Paras N Prasad
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| |
Collapse
|
18
|
Shramova E, Proshkina G, Shipunova V, Ryabova A, Kamyshinsky R, Konevega A, Schulga A, Konovalova E, Telegin G, Deyev S. Dual Targeting of Cancer Cells with DARPin-Based Toxins for Overcoming Tumor Escape. Cancers (Basel) 2020; 12:cancers12103014. [PMID: 33081407 PMCID: PMC7602955 DOI: 10.3390/cancers12103014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Targeted therapy of solid tumors represents a great challenge because of heterogeneity of tumor-associated antigen expression. To overcome this obstacle we propose a dual targeting therapy based on protein preparations capable of recognizing different of tumor-associated antigens on a tumor cell producing a directed cytotoxic effect. The dual specific therapy of breast carcinoma-bearing mice using the designed preparations eliminates both the primary tumor and distant metastases. The mono-targeting therapy aimed at single tumor-associated antigen did not suppress metastases at all. The proposed approach can serve as a potential therapeutic strategy that surpasses mono-specific targeting strategies in the anti-cancer efficacy. Abstract We report here a combined anti-cancer therapy directed toward HER2 and EpCAM, common tumor-associated antigens of breast cancer cells. The combined therapeutic effect is achieved owing to two highly toxic proteins—a low immunogenic variant of Pseudomonas aeruginosa exotoxin A and ribonuclease Barnase from Bacillus amyloliquefaciens. The delivery of toxins to cancer cells was carried out by targeting designed ankyrin repeat proteins (DARPins). We have shown that both target agents efficiently accumulate in the tumor. Simultaneous treatment of breast carcinoma-bearing mice with anti-EpCAM fusion toxin based on LoPE and HER2-specific liposomes loaded with Barnase leads to concurrent elimination of primary tumor and metastases. Monotherapy with anti-HER2- or anti-EpCAM-toxins did not produce a comparable effect on metastases. The proposed approach can be considered as a promising strategy for significant improvement of cancer therapy.
Collapse
Affiliation(s)
- Elena Shramova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
- Correspondence: (E.S.); (G.P.); Tel.: +7-9169503549 (E.S.); +7-9167997089 (G.P.)
| | - Galina Proshkina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
- Correspondence: (E.S.); (G.P.); Tel.: +7-9169503549 (E.S.); +7-9167997089 (G.P.)
| | - Victoria Shipunova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Anastasia Ryabova
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Street 38, 119991 Moscow, Russia;
| | - Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (R.K.); (A.K.)
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, 141701 Moscow, Russia
| | - Andrey Konevega
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (R.K.); (A.K.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Orlova Roscha 1, 188300 Gatchina, Russia
- Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Aleksey Schulga
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Elena Konovalova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Georgij Telegin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Sergey Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
- The Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
19
|
Kim EH, Park S, Kim YK, Moon M, Park J, Lee KJ, Lee S, Kim YP. Self-luminescent photodynamic therapy using breast cancer targeted proteins. SCIENCE ADVANCES 2020; 6:eaba3009. [PMID: 32917700 PMCID: PMC7486108 DOI: 10.1126/sciadv.aba3009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Despite the potential of photodynamic therapy (PDT), its comprehensive use in cancer treatment has not been achieved because of the nondegradable risks of photosensitizing drugs and limits of light penetration and instrumentation. Here, we present bioluminescence (BL)-induced proteinaceous PDT (BLiP-PDT), through the combination of luciferase and a reactive oxygen species (ROS)-generating protein (Luc-RGP), which is self-luminescent and degradable. After exposure to coelenterazine-h as a substrate for luciferase without external light irradiation, Luc-RGP fused with a small lead peptide-induced breast cancer cell death through the generation of BL-sensitive ROS in the plasma membrane. Even with extremely low light energy, BLiP-PDT exhibited targeted effects in primary breast cancer cells from patients and in in vivo tumor xenograft mouse models. These findings suggest that BLiP-PDT is immediately useful as a promising theranostic approach against various cancers.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Sangwoo Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Yun Kyu Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Minwoo Moon
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jeongwon Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
20
|
Love AC, Prescher JA. Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology. Cell Chem Biol 2020; 27:904-920. [PMID: 32795417 PMCID: PMC7472846 DOI: 10.1016/j.chembiol.2020.07.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
Bioluminescence has long been used to image biological processes in vivo. This technology features luciferase enzymes and luciferin small molecules that produce visible light. Bioluminescent photons can be detected in tissues and live organisms, enabling sensitive and noninvasive readouts on physiological function. Traditional applications have focused on tracking cells and gene expression patterns, but new probes are pushing the frontiers of what can be visualized. The past few years have also seen the merger of bioluminescence with optogenetic platforms. Luciferase-luciferin reactions can drive light-activatable proteins, ultimately triggering signal transduction and other downstream events. This review highlights these and other recent advances in bioluminescence technology, with an emphasis on tool development. We showcase how new luciferins and engineered luciferases are expanding the scope of optical imaging. We also highlight how bioluminescent systems are being leveraged not just for sensing-but also controlling-biological processes.
Collapse
Affiliation(s)
- Anna C Love
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
21
|
Li Y, Cui ZJ. NanoLuc Bioluminescence-Driven Photodynamic Activation of Cholecystokinin 1 Receptor with Genetically-Encoded Protein Photosensitizer MiniSOG. Int J Mol Sci 2020; 21:ijms21113763. [PMID: 32466589 PMCID: PMC7313028 DOI: 10.3390/ijms21113763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
In contrast to reversible activation by agonist, cholecystokinin 1 receptor (CCK1R) is permanently activated by singlet oxygen generated in photodynamic action, with sulphonated aluminium phthalocyanine or genetically encoded mini singlet oxygen generator (miniSOG) as photosensitizer. In these works, a halogen light source was used to power photodynamic action. For possible in vivo application of photodynamic CCK1R physiology, bearing a cumbersome light-delivery device connected to an external light source by experimental animals might interfere with their behavior. Therefore, in the present work, the possibility of bioluminescence-driven miniSOG photodynamic CCK1R activation was examined, as monitored by Fura-2 calcium imaging. In parallel experiments, it was found that, after plasma membrane (PM)-localized expression of miniSOGPM in AR4-2J cells, light irradiation with blue light-emitting diode (LED) (450 nm, 85 mW·cm-2, 1.5 min) induced persistent calcium oscillations that were blocked by CCK1R antagonist devazepide 2 nM. NanoLuc was expressed bicistronically with miniSOGPM via an internal ribosome entry site (IRES) sequence (pminiSOGPM-IRES-NanoLuc). The resultant miniSOGPM-IRES-NanoLuc-AR4-2J cells were found to generate strong bioluminescence upon addition of NanoLuc substrate coelenterazine. Strikingly, coelenterazine 5 microM was found to trigger long-lasting calcium oscillations (a hallmark for permanent CCK1R activation) in perifused miniSOGPM-IRES-NanoLuc-AR4-2J cells. These data indicate that NanoLuc bioluminescence can drive miniSOGPM photodynamic CCK1R activation, laying the foundation for its future in vivo applications.
Collapse
|
22
|
Tang WZ, Cui ZJ. Permanent Photodynamic Activation of the Cholecystokinin 2 Receptor. Biomolecules 2020; 10:biom10020236. [PMID: 32033232 PMCID: PMC7072308 DOI: 10.3390/biom10020236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
The cholecystokinin 2 receptor (CCK2R) is expressed in the central nervous system and peripheral tissues, playing an important role in higher nervous and gastrointestinal functions, pain sensation, and cancer growth. CCK2R is reversibly activated by cholecystokinin or gastrin, but whether it can be activated permanently is not known. In this work, we found that CCK2R expressed ectopically in CHO-K1 cells was permanently activated in the dark by sulfonated aluminum phthalocyanine (SALPC / AlPcS4, 10-1,000 nM), as monitored by Fura-2 fluorescent calcium imaging. Permanent CCK2R activation was also observed with AlPcS2, but not PcS4. CCK2R previously exposed to SALPC (3 and 10 nM) was sensitized by subsequent light irradiation (> 580 nm, 31.5 mW·cm-2). After the genetically encoded protein photosensitizer mini singlet oxygen generator (miniSOG) was fused to the N-terminus of CCK2R and expressed in CHO-K1 cells, light irradiation (450 nm, 85 mW·cm-2) activated in-frame CCK2R (miniSOG-CCK2R), permanently triggering persistent calcium oscillations blocked by the CCK2R antagonist YM 022 (30 nM). From these data, it is concluded that SALPC is a long-lasting CCK2R agonist in the dark, and CCK2R is photogenetically activated permanently with miniSOG as photosensitizer. These properties of SALPC and CCK2R could be used to study CCK2R physiology and possibly for pain and cancer therapies.
Collapse
|
23
|
Gurruchaga-Pereda J, Martínez-Martínez V, Rezabal E, Lopez X, Garino C, Mancin F, Cortajarena AL, Salassa L. Flavin Bioorthogonal Photocatalysis Toward Platinum Substrates. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juan Gurruchaga-Pereda
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
- CIC biomaGUNE, Paseo de Miramón 182, Donostia, 20014, Spain
| | | | - Elixabete Rezabal
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
- Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, Donostia, 20080, Spain
| | - Xabier Lopez
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
- Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, Donostia, 20080, Spain
| | - Claudio Garino
- Department of Chemistry, University of Turin, via Pietro Giuria 7, Turin, 10125, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, 35131, Italy
| | - Aitziber L. Cortajarena
- CIC biomaGUNE, Paseo de Miramón 182, Donostia, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain
| |
Collapse
|
24
|
Xiong Y, Tian X, Ai HW. Molecular Tools to Generate Reactive Oxygen Species in Biological Systems. Bioconjug Chem 2019; 30:1297-1303. [PMID: 30986044 DOI: 10.1021/acs.bioconjchem.9b00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) not only are byproducts of aerobic respiration, but also play vital roles in metabolism regulation and signal transductions. It is important to understand the functions of ROS in biological systems. In addition, scientists have made use of ROS to kill bacteria and tumors through a process known as photodynamic therapy (PDT). This paper provides a concise review of current molecular tools that can generate ROS in biological systems via either nongenetic or genetically encoded way. Challenges and perspectives are further discussed with the hope of broadening the applications of ROS generators in research and clinical settings.
Collapse
Affiliation(s)
- Ying Xiong
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, and the UVA Cancer Center , University of Virginia , 1340 Jefferson Park Avenue , Charlottesville , Virginia 22908 , United States
| | - Xiaodong Tian
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, and the UVA Cancer Center , University of Virginia , 1340 Jefferson Park Avenue , Charlottesville , Virginia 22908 , United States
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, and the UVA Cancer Center , University of Virginia , 1340 Jefferson Park Avenue , Charlottesville , Virginia 22908 , United States
| |
Collapse
|
25
|
Kim CK, Cho KF, Kim MW, Ting AY. Luciferase-LOV BRET enables versatile and specific transcriptional readout of cellular protein-protein interactions. eLife 2019; 8:43826. [PMID: 30942168 PMCID: PMC6447360 DOI: 10.7554/elife.43826] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/16/2019] [Indexed: 12/21/2022] Open
Abstract
Technologies that convert transient protein-protein interactions (PPIs) into stable expression of a reporter gene are useful for genetic selections, high-throughput screening, and multiplexing with omics technologies. We previously reported SPARK (Kim et al., 2017), a transcription factor that is activated by the coincidence of blue light and a PPI. Here, we report an improved, second-generation SPARK2 that incorporates a luciferase moiety to control the light-sensitive LOV domain. SPARK2 can be temporally gated by either external light or addition of a small-molecule luciferin, which causes luciferase to open LOV via proximity-dependent BRET. Furthermore, the nested 'AND' gate design of SPARK2-in which both protease recruitment to the membrane-anchored transcription factor and LOV domain opening are regulated by the PPI of interest-yields a lower-background system and improved PPI specificity. We apply SPARK2 to high-throughput screening for GPCR agonists and for the detection of trans-cellular contacts, all with versatile transcriptional readout.
Collapse
Affiliation(s)
- Christina K Kim
- Department of Genetics, Stanford University, Stanford, United States
| | - Kelvin F Cho
- Cancer Biology Program, Stanford University, Stanford, United States
| | - Min Woo Kim
- Department of Genetics, Stanford University, Stanford, United States
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|