1
|
Wang Y, Chang L, Gao H, Yu C, Gao Y, Peng Q. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer. Eur J Med Chem 2024; 272:116508. [PMID: 38761583 DOI: 10.1016/j.ejmech.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The traditional clinical approaches for oral cancer consist of surgery, chemotherapy, radiotherapy, immunotherapy, and so on. However, these treatments often induce side effects and exhibit limited efficacy. Photothermal therapy (PTT) emerges as a promising adjuvant treatment, utilizing photothermal agents (PTAs) to convert light energy into heat for tumor ablation. Another innovative approach, photodynamic therapy (PDT), leverages photosensitizers (PSs) and specific wavelength laser irradiation to generate reactive oxygen species (ROS), offering an effective and non-toxic alternative. The relevant combination therapies have been reported in the field of oral cancer. Simultaneously, the advancement of nanomaterials has propelled the clinical application of PTT and PDT. Therefore, a comprehensive understanding of PTT and PDT is required for better application in oral cancer treatment. Here, we review the use of PTT and PDT in oral cancer, including noble metal materials (e.g., Au nanoparticles), carbon materials (e.g., graphene oxide), organic dye molecules (e.g., indocyanine green), organic molecule-based agents (e.g., porphyrin-analog phthalocyanine) and other inorganic materials (e.g., MXenes), exemplify the advantages and disadvantages of common PTAs and PSs, and summarize the combination therapies of PTT with PDT, PTT/PDT with chemotherapy, PTT with radiotherapy, PTT/PDT with immunotherapy, and PTT/PDT with gene therapy in the treatment of oral cancer. The challenges related to the PTT/PDT combination therapy and potential solutions are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenhao Yu
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610500, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Ling J, Gu R, Liu L, Chu R, Wu J, Zhong R, Ye S, Liu J, Fan S. Versatile Design of Organic Polymeric Nanoparticles for Photodynamic Therapy of Prostate Cancer. ACS MATERIALS AU 2024; 4:14-29. [PMID: 38221923 PMCID: PMC10786136 DOI: 10.1021/acsmaterialsau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 01/16/2024]
Abstract
Radical prostatectomy is a primary treatment option for localized prostate cancer (PCa), although high rates of recurrence are commonly observed postsurgery. Photodynamic therapy (PDT) has demonstrated efficacy in treating nonmetastatic localized PCa with a low incidence of adverse events. However, its limited efficacy remains a concern. To address these issues, various organic polymeric nanoparticles (OPNPs) loaded with photosensitizers (PSs) that target prostate cancer have been developed. However, further optimization of the OPNP design is necessary to maximize the effectiveness of PDT and improve its clinical applicability. This Review provides an overview of the design, preparation, methodology, and oncological aspects of OPNP-based PDT for the treatment of PCa.
Collapse
Affiliation(s)
- Jiacheng Ling
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Rongrong Gu
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Lulu Liu
- School
of Resources and Environment, Anhui Agricultural
University, 130 Changjiang
West Road, Hefei 230036, China
| | - Ruixi Chu
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junchao Wu
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Rongfang Zhong
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Sheng Ye
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jian Liu
- Inner
Mongolia University Hohhot, Inner
Mongolia 010021, China
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- DICP-Surrey
Joint Centre for Future Materials, Department of Chemical and Process
Engineering and Advanced Technology Institute, University of Surrey, Guilford,
Surrey GU27XH, U.K.
| | - Song Fan
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| |
Collapse
|
3
|
Diaz-Uribe C, Rangel D, Vallejo W, Valle R, Hidago-Rosa Y, Zarate X, Schott E. Photophysical characterization of tetrahydroxyphenyl porphyrin Zn(II) and V(IV) complexes: experimental and DFT study. Biometals 2023; 36:1257-1272. [PMID: 37344742 DOI: 10.1007/s10534-023-00514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Photodynamic therapy (PDT) is a promising technique for the treatment of various diseases. In this sense, the singlet oxygen quantum yield (Φ∆) is a physical-chemical property that allows to stablish the applicability of a potential photosensitizers (PS) as a drug for PDT. In the herein report, the Φ∆ of three photosensitizers was determined: metal-free tetrahydroxyphenyl porphyrin (THPP), THPP-Zn and the THPP-V metal complexes. Their biological application was also evaluated. Therefore, the in vitro study was carried out to assess their biological activity against Escherichia coli. The metal-porphyrin complexes exhibited highest activities against the bacterial strain Escherichia coli. at the highest concentration (175 μg/mL) and show better activity than the free base ligand (salts and blank solution). Results indicated a relation between Φ∆ and the inhibitory activity against Escherichia coli, thus, whereas higher is the Φ∆, higher is the inhibitory activity. The values of the Φ∆ and the inhibitory activity follows the tendency THPP-Zn > THPP > THPP-V. Furthermore, quantum chemical calculations allowed to gain deep insight into the electronic and optical properties of THPP-Zn macrocycle, which let to verify the most probable energy transfer pathway involved in the singlet oxygen generation.
Collapse
Affiliation(s)
- Carlos Diaz-Uribe
- Grupo de Investigación en Fotoquímica y Fotobiología. Programa de Química. Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia.
| | - Daily Rangel
- Grupo de Investigación en Fotoquímica y Fotobiología. Programa de Química. Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| | - William Vallejo
- Grupo de Investigación en Fotoquímica y Fotobiología. Programa de Química. Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| | - Roger Valle
- Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| | - Yoan Hidago-Rosa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia, Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile
- Facultad de Ingeniería, Universidad Finis Terrae, Av. Pedro de Valdivia, 1509, Santiago, Providencia, Chile
| | - Ximena Zarate
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile.
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia, Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
- Millennium Nucleus in Catalytic Processes Towards Sustainable Chemistry (CSC), Santiago, Chile.
| |
Collapse
|
4
|
Moura NMM, Moreira X, Da Silva ES, Faria JL, Neves MGPMS, Almeida A, Faustino MAF, Gomes ATPC. Efficient Strategies to Use β-Cationic Porphyrin-Imidazolium Derivatives in the Photoinactivation of Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:15970. [PMID: 37958951 PMCID: PMC10647407 DOI: 10.3390/ijms242115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Bacterial resistance to antibiotics is a critical global health issue and the development of alternatives to conventional antibiotics is of the upmost relevance. Antimicrobial photodynamic therapy (aPDT) is considered a promising and innovative approach for the photoinactivation of microorganisms, particularly in cases where traditional antibiotics may be less effective due to resistance or other limitations. In this study, two β-modified monocharged porphyrin-imidazolium derivatives were efficiently incorporated into polyvinylpyrrolidone (PVP) formulations and supported into graphitic carbon nitride materials. Both porphyrin-imidazolium derivatives displayed remarkable photostability and the ability to generate cytotoxic singlet oxygen. These properties, which have an important impact on achieving an efficient photodynamic effect, were not compromised after incorporation/immobilization. The prepared PVP-porphyrin formulations and the graphitic carbon nitride-based materials displayed excellent performance as photosensitizers to photoinactivate methicillin-resistant Staphylococcus aureus (MRSA) (99.9999% of bacteria) throughout the antimicrobial photodynamic therapy. In each matrix, the most rapid action against S. aureus was observed when using PS 2. The PVP-2 formulation needed 10 min of exposure to white light at 5.0 µm, while the graphitic carbon nitride hybrid GCNM-2 required 20 min at 25.0 µm to achieve a similar level of response. These findings suggest the potential of graphitic carbon nitride-porphyrinic hybrids to be used in the environmental or clinical fields, avoiding the use of organic solvents, and might allow for their recovery after treatment, improving their applicability for bacteria photoinactivation.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Xavier Moreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Eliana Sousa Da Silva
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (E.S.D.S.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joaquim Luís Faria
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (E.S.D.S.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria G. P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Maria A. F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Ana T. P. C. Gomes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
5
|
Nair RR, Seo EW, Hong S, Jung KO, Kim D. Pentafluorobenzene: Promising Applications in Diagnostics and Therapeutics. ACS APPLIED BIO MATERIALS 2023; 6:4081-4099. [PMID: 37721519 DOI: 10.1021/acsabm.3c00676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Pentafluorobenzene (PFB) represents a class of aromatic fluorine compounds employed exclusively across a spectrum of chemical and biological applications. PFBs are credited with developing various chemical synthesis techniques, networks and biopolymers, bioactive materials, and targeted drug delivery systems. The first part of this review delves into recent developments in PFB-derived molecules for diagnostic purposes. In the latter segment, PFB's role in the domain of theragnostic applications is discussed. The review elucidates different mechanisms and interaction strategies applied in leveraging PFBs to formulate diagnostic and theragnostic tools, substantiated by proper examples. The utilization of PFBs emerges as an enabler, facilitating manifold reactions, improving materials' properties, and even opening avenues for explorative research.
Collapse
Affiliation(s)
- Ratish R Nair
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun Woo Seo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seongje Hong
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dokyoung Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- UC San Diego Materials Research Science and Engineering Center, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Gergely LP, Yüceel Ç, İşci Ü, Spadin FS, Schneider L, Spingler B, Frenz M, Dumoulin F, Vermathen M. Comparing PVP and Polymeric Micellar Formulations of a PEGylated Photosensitizing Phthalocyanine by NMR and Optical Techniques. Mol Pharm 2023; 20:4165-4183. [PMID: 37493236 PMCID: PMC10410667 DOI: 10.1021/acs.molpharmaceut.3c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Phthalocyanines are ideal candidates as photosensitizers for photodynamic therapy (PDT) of cancer due to their favorable chemical and photophysical properties. However, their tendency to form aggregates in water reduces PDT efficacy and poses challenges in obtaining efficient forms of phthalocyanines for therapeutic applications. In the current work, polyvinylpyrrolidone (PVP) and micellar formulations were compared for encapsulating and monomerizing a water-soluble zinc phthalocyanine bearing four non-peripheral triethylene glycol chains (Pc1). 1H NMR spectroscopy combined with UV-vis absorption and fluorescence spectroscopy revealed that Pc1 exists as a mixture of regioisomers in monomeric form in dimethyl sulfoxide but forms dimers in an aqueous buffer. PVP, polyethylene glycol castor oil (Kolliphor RH40), and three different triblock copolymers with varying proportions of polyethylene and polypropylene glycol units (termed P188, P84, and F127) were tested as micellar carriers for Pc1. 1H NMR chemical shift analysis, diffusion-ordered spectroscopy, and 2D nuclear Overhauser enhancement spectroscopy was applied to monitor the encapsulation and localization of Pc1 at the polymer interface. Kolliphor RH40 and F127 micelles exhibited the highest affinity for encapsulating Pc1 in the micellar core and resulted in intense Pc1 fluorescence emission as well as efficient singlet oxygen formation along with PVP. Among the triblock copolymers, efficiency in binding and dimer dissolution decreased in the order F127 > P84 > P188. PVP was a strong binder for Pc1. However, Pc1 molecules are rather surface-attached and exist as monomer and dimer mixtures. The results demonstrate that NMR combined with optical spectroscopy offer powerful tools to assess parameters like drug binding, localization sites, and dynamic properties that play key roles in achieving high host-guest compatibility. With the corresponding adjustments, polymeric micelles can offer simple and easily accessible drug delivery systems optimizing phthalocyanines' properties as efficient photosensitizers.
Collapse
Affiliation(s)
- Lea P. Gergely
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern 3012, Switzerland
| | - Çiğdem Yüceel
- Department
of Chemical Engineering, Gebze Technical
University, Gebze 41400 Kocaeli, Turkey
| | - Ümit İşci
- Department
of Chemistry, Gebze Technical University, Gebze 41400 Kocaeli, Turkey
- Marmara
University, Faculty of Technology, Department
of Metallurgical & Materials Engineering, Istanbul 34722, Turkey
| | | | - Lukas Schneider
- Department
of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Bernhard Spingler
- Department
of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Martin Frenz
- Institute
of Applied Physics, University of Bern, Bern 3012, Switzerland
| | - Fabienne Dumoulin
- Faculty
of Engineering and Natural Sciences, Biomedical Engineering Department, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Turkey
| | - Martina Vermathen
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
7
|
Castro KADF, Moura NMM, Simões MMQ, Mesquita MMQ, Ramos LCB, Biazzotto JC, Cavaleiro JAS, Faustino MAF, Neves MGPMS, da Silva RS. A Comparative Evaluation of the Photosensitizing Efficiency of Porphyrins, Chlorins and Isobacteriochlorins toward Melanoma Cancer Cells. Molecules 2023; 28:4716. [PMID: 37375269 DOI: 10.3390/molecules28124716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Skin cancer is one of the cancers that registers the highest number of new cases annually. Among all forms of skin cancer, melanoma is the most invasive and deadliest. The resistance of this form of cancer to conventional treatments has led to the employment of alternative/complementary therapeutic approaches. Photodynamic therapy (PDT) appears to be a promising alternative to overcome the resistance of melanoma to conventional therapies. PDT is a non-invasive therapeutic procedure in which highly reactive oxygen species (ROS) are generated upon excitation of a photosensitizer (PS) when subjected to visible light of an adequate wavelength, resulting in the death of cancer cells. In this work, inspired by the efficacy of tetrapyrrolic macrocycles to act as PS against tumor cells, we report the photophysical characterization and biological assays of isobacteriochlorins and their corresponding chlorins and porphyrins against melanoma cancer cells through a photodynamic process. The non-tumoral L929 fibroblast murine cell line was used as the control. The results show that the choice of adequate tetrapyrrolic macrocycle-based PS can be modulated to improve the performance of PDT.
Collapse
Affiliation(s)
- Kelly A D F Castro
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 05508-220, Brazil
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno M M Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mário M Q Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana M Q Mesquita
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Loyanne C B Ramos
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 05508-220, Brazil
| | - Juliana C Biazzotto
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 05508-220, Brazil
| | - José A S Cavaleiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Roberto S da Silva
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 05508-220, Brazil
| |
Collapse
|
8
|
Monteiro CJP, Neves MGPMS, Nativi C, Almeida A, Faustino MAF. Porphyrin Photosensitizers Grafted in Cellulose Supports: A Review. Int J Mol Sci 2023; 24:3475. [PMID: 36834886 PMCID: PMC9967812 DOI: 10.3390/ijms24043475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cellulose is the most abundant natural biopolymer and owing to its compatibility with biological tissues, it is considered a versatile starting material for developing new and sustainable materials from renewable resources. With the advent of drug-resistance among pathogenic microorganisms, recent strategies have focused on the development of novel treatment options and alternative antimicrobial therapies, such as antimicrobial photodynamic therapy (aPDT). This approach encompasses the combination of photoactive dyes and harmless visible light, in the presence of dioxygen, to produce reactive oxygen species that can selectively kill microorganisms. Photosensitizers for aPDT can be adsorbed, entrapped, or linked to cellulose-like supports, providing an increase in the surface area, with improved mechanical strength, barrier, and antimicrobial properties, paving the way to new applications, such as wound disinfection, sterilization of medical materials and surfaces in different contexts (industrial, household and hospital), or prevention of microbial contamination in packaged food. This review will report the development of porphyrinic photosensitizers supported on cellulose/cellulose derivative materials to achieve effective photoinactivation. A brief overview of the efficiency of cellulose based photoactive dyes for cancer, using photodynamic therapy (PDT), will be also discussed. Particular attention will be devoted to the synthetic routes behind the preparation of the photosensitizer-cellulose functional materials.
Collapse
Affiliation(s)
- Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal
| | | | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Adelaide Almeida
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | |
Collapse
|
9
|
Aebisher D, Osuchowski M, Bartusik-Aebisher D, Krupka-Olek M, Dynarowicz K, Kawczyk-Krupka A. An Analysis of the Effects of In Vitro Photodynamic Therapy on Prostate Cancer Tissue by Histopathological Examination and Magnetic Resonance Imaging. Int J Mol Sci 2022; 23:ijms231911354. [PMID: 36232657 PMCID: PMC9570148 DOI: 10.3390/ijms231911354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer can significantly shorten the lifetime of a patient, even if he is diagnosed at an early stage. The development of minimally-invasive focal therapies such as photodynamic therapy to reduce the number of neoplastic cells while sparing delicate structures is extremely advantageous for treating prostate cancer. This study investigates the effect of photodynamic therapy performed in prostate tissue samples in vitro, using quantitative magnetic resonance imaging and histopathological analysis. Prostate tissue samples were treated with oxygenated solutions of Rose Bengal (RB) or protoporphyrin IX disodium salt (PpIX), illuminated with visible light, and then analyzed for changes in morphology by microscopy and by measurement of spin–lattice and spin–spin relaxation times at 1.5 Tesla. In the treated prostate tissue samples, histopathological images revealed chromatin condensation and swelling of the stroma, and in some cases, thrombotic necrosis and swelling of the stroma accompanied by pyknotic nuclei occurred. Several samples had protein fragments in the stroma. Magnetic resonance imaging of the treated prostate tissue samples revealed differences in the spin–lattice and spin–spin relaxation times prior to and post photodynamic action.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Michał Osuchowski
- Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Magdalena Krupka-Olek
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Correspondence:
| |
Collapse
|
10
|
Xue Q, Zhang J, Jiao J, Qin W, Yang X. Photodynamic therapy for prostate cancer: Recent advances, challenges and opportunities. Front Oncol 2022; 12:980239. [PMID: 36212416 PMCID: PMC9538922 DOI: 10.3389/fonc.2022.980239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Over the past two decades, there has been a tendency toward early diagnosis of prostate cancer due to raised awareness among the general public and professionals, as well as the promotion of prostate-specific antigen (PSA) screening. As a result, patients with prostate cancer are detected at an earlier stage. Due to the risks of urine incontinence, erectile dysfunction, etc., surgery is not advised because the tumor is so small at this early stage. Doctors typically only advise active surveillance. However, it will bring negative psychological effects on patients, such as anxiety. And there is a higher chance of cancer progression. Focal therapy has received increasing attention as an alternative option between active monitoring and radical therapy. Due to its minimally invasive, oncological safety, low toxicity, minimal effects on functional outcomes and support by level 1 evidence from the only RCT within the focal therapy literature, photodynamic treatment (PDT) holds significant promise as the focal therapy of choice over other modalities for men with localized prostate cancer. However, there are still numerous obstacles that prevent further advancement. The review that follows provides an overview of the preclinical and clinical published research on PDT for prostate cancer from 1999 to the present. It focuses on clinical applications of PDT and innovative techniques and technologies that address current problems, especially the use of nanoparticle photosensitizers in PDT of prostate cancer.
Collapse
Affiliation(s)
| | - Jingliang Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | | | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaojian Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
11
|
Photodynamic Therapy-Adjunctive Therapy in the Treatment of Prostate Cancer. Diagnostics (Basel) 2022; 12:diagnostics12051113. [PMID: 35626269 PMCID: PMC9139878 DOI: 10.3390/diagnostics12051113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022] Open
Abstract
The alarming increase in the number of advanced-stage prostate cancer cases with poor prognosis has led to a search for innovative methods of treatment. In response to the need for implementation of new and innovative methods of cancer tissue therapy, we studied photodynamic action in excised prostate tissue in vitro as a model for photodynamic therapy. To ascertain the effects of photodynamic action in prostate tissue, Rose Bengal (0.01 to 0.05 mM) was used as a photosensitizer in the presence of oxygen and light to generate singlet oxygen in tissues in vitro. Five preset concentrations of Rose Bengal were chosen and injected into prostate tissue samples (60 samples with 12 replications for each RB concentration) that were subsequently exposed to 532 nm light. The effects of irradiation of the Rose Bengal infused tissue samples were determined by histopathological analysis. Histopathological examination of prostate samples subjected to photodynamic action revealed numerous changes in the morphology of the neoplastic cells and the surrounding tissues. We conclude that the morphological changes observed in the prostate cancer tissues were a result of the photogeneration of cytotoxic singlet oxygen. The tissue damage observed post photodynamic action offers an incentive for continued in vitro investigations and future in vivo clinical trials.
Collapse
|