1
|
Chen Z, Zhang Y, Teng R, Li M, Ding C, Huang Y. AIE multifunctional probe empowering colorimetric-fluorescence dual-mode biosensor for early diabetic screening. Biosens Bioelectron 2025; 269:116941. [PMID: 39550780 DOI: 10.1016/j.bios.2024.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Diabetes mellitus (DM) is a serious chronic disease characterized by abnormally high blood glucose (Glu) levels, which can cause organ malfunction and metabolic disturbances. However, traditional biomarkers like Glu face limitations due to intraday fluctuations and inability to detect early stages of DM. To tackle these challenges, this study has introduced a colorimetric-fluorescence dual-mode biosensor utilizing α-glucosidase (α-GAA), which enables early diabetes screening without being influenced by physiological fluctuations in blood glucose levels. Specifically, chitosan-modified copper nanoclusters (Cu NC@CS-Ce3+: AP-CuCC) with exceptional peroxidase (POD) activity and Ce3+-induced aggregate-induced luminescence (AIE) properties have been synthesized. The targeted hydrolysis of the α-GAA substrate, 4-nitrophenyl-α-D-glucopyranoside (pNGP), results in the formation of p-nitrophenol (p-NP) and Glu. While p-NP statically quenches an increase in AP-CuCC fluorescence signal, Glu facilitates the production of H2O2 by glucose oxidase during AP-CuCC POD enzyme reactions, triggering colorimetric changes in the reaction. The detection limits for colorimetric and fluorescence measurements were determined to be 0.03 U/L and 0.02 U/L, respectively. By integrating fluorescence analysis, this method cleverly mitigates the confusing effects of normal blood Glu levels on colorimetric outcomes, allowing for the consideration of abnormal Glu levels as a supplementary diagnostic tool. Compared to relying solely on colorimetry, this dual-mode approach reduces false positive rates by 50% and false negative rates by 25%. Leveraging the sensor's colorimetric and fluorescent capabilities provides a versatile platform for precise and reliable evaluation of aberrant expression markers across various clinical settings.
Collapse
Affiliation(s)
- Zikang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yuhan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Ruomei Teng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Ming Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Caiping Ding
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
2
|
You S, Di J, Zhang T, Chen Y, Yang R, Gao Y, Li Y, Gai X. Activation of Peroxymonosulfate by Co-Ni-Mo Sulfides/CNT for Organic Pollutant Degradation. Molecules 2024; 29:3633. [PMID: 39125039 PMCID: PMC11313894 DOI: 10.3390/molecules29153633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
To explore advanced oxidation catalysts, peroxymonosulfate (PMS) activation by Co-Ni-Mo/carbon nanotube (CNT) composite catalysts was investigated. A compound of NiCo2S4, MoS2, and CNTs was successfully prepared using a simple one-pot hydrothermal method. The results revealed that the activation of PMS by Co-Ni-Mo/CNT yielded an exceptional Rhodamine B decolorization efficiency of 99% within 20 min for the Rhodamine B solution. The degradation rate of Co-Ni-Mo/CNT was 4.5 times higher than that of Ni-Mo/CNT or Co-Mo/CNT, and 1.9 times as much than that of Co-Ni/CNT. Additionally, radical quenching experiments revealed that the principal active groups were 1O2, surface-bound SO4•-, and •OH radicals. Furthermore, the catalyst exhibited low metal ion leaching and favorable stability. Mechanism studies revealed that Mo4+ on the surface of MoS2 participated in the oxidation of PMS and the transformation of Co3+/Co2+ and Ni3+/Ni2+. The synergism between MoS2 and NiCo2S4 reduces the charge transfer resistance between the catalyst and solution interface, thus accelerating the reaction rate. Interconnected structures composed of metal sulfides and CNTs can also enhance the electron transfer process and afford sufficient active reaction sites. Our work provides a further understanding of the design of multi-metal sulfides for wastewater treatment.
Collapse
Affiliation(s)
- Shihao You
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (S.Y.); (T.Z.); (Y.C.); (R.Y.)
| | - Jing Di
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (S.Y.); (T.Z.); (Y.C.); (R.Y.)
| | - Tao Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (S.Y.); (T.Z.); (Y.C.); (R.Y.)
| | - Yufeng Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (S.Y.); (T.Z.); (Y.C.); (R.Y.)
| | - Ruiqin Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (S.Y.); (T.Z.); (Y.C.); (R.Y.)
| | - Yesong Gao
- China Construction Eco-Environmental Group Co., Ltd., Beijing 100037, China;
| | - Yin Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China;
| | - Xikun Gai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (S.Y.); (T.Z.); (Y.C.); (R.Y.)
| |
Collapse
|
3
|
Wu H, Han X, Guo X, Wen Y, Zheng B, Liu B. MnFe 2O 4/MoS 2 catalyst used for ozonation: optimization and mechanism analysis of phenolic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45588-45601. [PMID: 38967847 DOI: 10.1007/s11356-024-33984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
The performance of catalytic ability of MFe2O4/MoS2 in the ozonation process was investigated in this work. The synthesized MnFe2O4/MoS2 was optimize prepared and then characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photo-electron spectroscopy, and magnetic saturation strength. The results showed that when Cphenol = 200 mg/L, initial pH = 9.0, Q = 0.10 L/min, and CMnFe2O4/MoS2 = 0.10 g/L, MnFe2O4/MoS2 addition improved the degradation efficiency of phenol by 20.0%. The effects of pH, catalyst dosage, and inorganic ions on the phenol removal by the MnFe2O4/MoS2 catalytic ozonation were investigated. Five cycle experiments proved that MnFe2O4/MoS2 had good recyclability and stability. MnFe2O4/MoS2 also showed good catalytic performance in the treatment of coal chemical wastewater pesticide wastewater. The MnFe2O4 doped with MoS2 could provide abundant surface active sites for ozone and promote the stable cycle of Mn2+/Mn3+and Fe2+/Fe3+, thus generating large amounts of •OH and improving the degradation of phenol by ozonation. The MnFe2O4/MoS2/ozonation treatment system provides a technical reference and theoretical basis for industrial wastewater treatment.
Collapse
Affiliation(s)
- Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Xiao Han
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Xinrui Guo
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Yiyun Wen
- Jiangsu Hejiahai Environmental Design and Research Institute Co., Ltd, Nanjing, 210012, PR China
| | - Bin Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Biming Liu
- School of Energy and Environment, Anhui University of Technology, Ma Anshan, 243002, PR China.
| |
Collapse
|
4
|
Yanykin D, Paskhin M, Ashikhmin AA, Bolshakov MA. Carotenoid-dependent singlet oxygen photogeneration in light-harvesting complex 2 of Ectothiorhodospira haloalkaliphila leads to the formation of organic hydroperoxides and damage to both pigments and protein matrix. PeerJ 2024; 12:e16615. [PMID: 38250719 PMCID: PMC10798160 DOI: 10.7717/peerj.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024] Open
Abstract
Earlier, it was suggested that carotenoids in light-harvesting complexes 2 (LH2) can generate singlet oxygen, further oxidizing bacteriochlorophyll to 3-acetyl-chlorophyll. In the present work, it was found that illumination of isolated LH2 preparations of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with light in the carotenoid absorption region leads to the photoconsumption of molecular oxygen, which is accompanied by the formation of hydroperoxides of organic molecules in the complexes. Photoformation of two types of organic hydroperoxides were revealed: highly lipophilic (12 molecules per one LH2) and relatively hydrophobic (68 per one LH2). It has been shown that illumination leads to damage to light-harvesting complexes. On the one hand, photobleaching of bacteriochlorophyll and a decrease in its fluorescence intensity are observed. On the other hand, the photoinduced increase in the hydrodynamic radius of the complexes, the reduction in their thermal stability, and the change in fluorescence intensity indicate conformational changes occurring in the protein molecules of the LH2 preparations. Inhibition of the processes described above upon the addition of singlet oxygen quenchers (L-histidine, Trolox, sodium L-ascorbate) may support the hypothesis that carotenoids in LH2 preparations are capable of generating singlet oxygen, which, in turn, damage to protein molecules.
Collapse
Affiliation(s)
- Denis Yanykin
- Institute of Basic Biological Problems, FRC PSCBR, Pushchino, Moscow, Russia
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Moscow, Russia
| | - Mark Paskhin
- Institute of Basic Biological Problems, FRC PSCBR, Pushchino, Moscow, Russia
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Moscow, Russia
| | | | | |
Collapse
|
5
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
6
|
Liu C, Huang Z, Zhu J, Liu X, Zhu B, Zheng D, Yang B, Tao R, Cai C, Chen X, Liu J, Deng Z. Near-ultraviolet irradiation to stimulate unmodified polyether ether ketone to achieve stable and sustainable antibacterial activity. Colloids Surf B Biointerfaces 2023; 229:113441. [PMID: 37422990 DOI: 10.1016/j.colsurfb.2023.113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES This study aims to investigate the cytotoxicity and sustainable antibacterial activity of unmodified PEEK under specific wavelength light treatment (365 nm), and its antibacterial mechanism was also preliminarily discussed. METHODS A near-ultraviolet source with a wavelength of 365 nm and a power of 5 W were selected. The irradiation time was 30 min, and the distance was 100 mm. A water contact angle tester was used to characterize the surface of the PEEK after 1-15 light treatments. MC3TC-E1 cells were used to evaluate the cytotoxicity of the materials under light treatment. Five kinds of common oral bacteria were detected in vitro, and antibacterial efficiency was determined by colony-forming unit (CFU) and scanning electron microscope (SEM). The antibacterial mechanism of PEEK under light was preliminarily discussed by spectrophotometry. The membrane rupture of Staphylococcus aureus and Escherichia coli was detected by lactate dehydrogenase. Staphylococcus aureus and Staphylococcus mutans were selected for the cyclic antibacterial test. Statistical analysis was performed by one-way analysis of variance and Tukey multiple range test. A significance level of 0.05 was considered (α = 0.05). RESULTS The results of the cell experiment showed that PEEK had no cytotoxicity (P > 0.05). CFU results showed that PEEK had an obvious antibacterial effect on Staphylococcus aureus, Staphylococcus mutans, Staphylococcus gordonii and Staphylococcus sanguis, but had no antibacterial effect on Escherichia coli (P < 0.05). The SEM results also verified the above antibacterial effect. The existence of singlet oxygen was confirmed by spectrophotometry. Meanwhile, the rupture of Staphylococcus aureus membrane was verified by lactate dehydrogenase assay. The water contact angle of the PEEK surface did not change significantly after 15 cycles of light treatment. Cyclic antibacterial experiments showed that the antibacterial effect was sustainable. CONCLUSIONS This study showed that PEEK has good cytocompatibility with stable and sustainable antibacterial properties under near-ultraviolet. It provides a new idea to solve the non-antibacterial property of PEEK, and also provides a theoretical basis for its further application in dentistry.
Collapse
Affiliation(s)
- Chongxing Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuo Huang
- Department of Stomatology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Jinlei Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiangzhi Liu
- Clinical medical college of Tianjin medical university, Tianjin 300010, China
| | - Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Dongyang Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Bingqian Yang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Ran Tao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Chenxi Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Chen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China.
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
7
|
Reactivity of a nitrosyl ruthenium complex and its potential impact on the fate of DNA - An in vitro investigation. J Inorg Biochem 2023; 238:112052. [PMID: 36334365 DOI: 10.1016/j.jinorgbio.2022.112052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The role of metal complexes on facing DNA has been a topic of major interest. However, metallonitrosyl compounds have been poorly investigated regarding their reactivities and interaction with DNA. A nitrosyl compound, cis-[Ru(bpy)2(SO3)(NO)](PF6)(A), showed a variety of promising biological activities catching our attention. Here, we carried out a series of studies involving the interaction and damage of DNA mediated by the metal complex A and its final product after NO release, cis-[Ru(bpy)2(SO3)(H2O](B). The fate of DNA with these metal complexes was investigated upon light or chemical stimuli using electrophoresis, electronic absorption spectroscopy, circular dichroism, size-exclusion resin, mass spectrometry, electron spin resonance (ESR) and viscometry. Since many biological disorders involve the production of oxidizing species, it is important to evaluate the reactivity of these compounds under such conditions as well. Indeed, the metal complex B exhibited important reactivity with H2O2 enabling DNA degradation, with detection of an unusual oxygenated intermediate. ESR spectroscopy detected mainly the DMPO-OOH adduct, which only emerges if H2O2 and O2 are present together. This result indicated HOO• as a key radical likely involved in DNA damage as supported by agarose gel electrophoresis. Notably, the nitrosyl ruthenium complex did not show evidence of direct DNA damage. However, its aqua product should be carefully considered as potentially harmful to DNA deserving further in vivo studies to better address any genotoxicity.
Collapse
|
8
|
Dastborhan M, Khataee A, Arefi-Oskoui S, Yoon Y. Synthesis of flower-like MoS 2/CNTs nanocomposite as an efficient catalyst for the sonocatalytic degradation of hydroxychloroquine. ULTRASONICS SONOCHEMISTRY 2022; 87:106058. [PMID: 35716466 PMCID: PMC9213255 DOI: 10.1016/j.ultsonch.2022.106058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 05/12/2023]
Abstract
Contamination of water resources by pharmaceutical residues, especially during the time of pandemics, has become a serious problem worldwide and concerns have been raised about the efficient elimination of these compounds from aquatic environments. This study has focused on the development and evaluation of the sonocatalytic activity of a flower-like MoS2/CNTs nanocomposite for the targeted degradation of hydroxychloroquine (HCQ). This nanocomposite was prepared using a facile hydrothermal route and characterized with various analytical methods, including X-ray diffraction and electron microscopy, which results confirmed the successful synthesis of the nanocomposite. Moreover, the results of the Brunauer-Emmett-Teller and diffuse reflectance spectroscopy analyses showed an increase in the specific surface area and a decrease in the band gap energy of the nanocomposite when compared with those of MoS2. Nanocomposites with different component mass ratios were then synthesized, and MoS2/CNTs (10:1) was identified to have the best sonocatalytic activity. The results indicated that 70% of HCQ with the initial concentration of 20 mg/L could be degraded using 0.1 g/L of MoS2/CNTs (10:1) nanocomposite within 120 min of sonocatalysis at the pH of 8.7 (natural pH of the HCQ solution). The dominant reactive species in the sonocatalytic degradation process were identified using various scavengers and the intermediates generated during the process were detected using GC-MS analysis, enabling the development of a likely degradation scheme. In addition, the results of consecutive sonocatalytic cycles confirmed the stability and reusability of this nanocomposite for sonocatalytic applications. Thus, our data introduce MoS2/CNTs nanocomposite as a proficient sonocatalyst for the treatment of pharmaceutical contaminants.
Collapse
Affiliation(s)
- Mahsa Dastborhan
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey
- Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation
- Corresponding authors: (A. Khataee), (Y. Yoon)
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
- Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
- Corresponding authors: (A. Khataee), (Y. Yoon)
| |
Collapse
|
9
|
Di J, Jamakanga R, Chen Q, Li J, Gai X, Li Y, Yang R, Ma Q. Degradation of Rhodamine B by activation of peroxymonosulfate using Co 3O 4-rice husk ash composites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147258. [PMID: 34088077 DOI: 10.1016/j.scitotenv.2021.147258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Rice husk is an agricultural residue in rice producing process with a worldwide annual output of more than 190 million tons. To investigate the possibility of disposal method, rice husk ash (RHA) derived from the rice husk residue was treated as a support material thus synthesizing a Co-based heterogeneous catalyst for peroxymonosulfate activation. The interconnected architecture of the Co3O4 nanoflakes grown vertically on the surface of RHA provided high surface area and structure stability. The as-synthesized heterogeneous catalyst exhibited enhanced ability for peroxymonosulfate activation towards Rhodamine B degradation. Degradation efficiency of Rhodamine B achieved 96.3% within 60 min by using Co3O4-0.5 RHA catalyst, while only 44.1% Rhodamine B was degraded for bare Co3O4. The effects of pH, catalyst dosage, peroxymonosulfate dosage, Rhodamine B concentration, inorganic ions and temperature were evaluated. Radical scavenging experiments revealed that 1O2 and O2•- other than SO4•- and •OH were the main active species. Furthermore, the addition of rice husk ash proved to be capable of reducing the dissolution of Co and extended the lifetime of the catalyst. This study elucidated a new opportunity for both utilizing agricultural residue and reducing contaminants in wastewater.
Collapse
Affiliation(s)
- Jing Di
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| | - Ropafadzo Jamakanga
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Qiang Chen
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Jiayi Li
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Xikun Gai
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yin Li
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Ruiqin Yang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| |
Collapse
|
10
|
Zhang L, Ouyang H, Zhang D, Fu Z. Novel cobalt-based metal-organic frameworks with superior catalytic performance on N-(4-aminobutyl)-N-ethylisoluminol chemiluminescent reaction. Anal Chim Acta 2021; 1148:238174. [PMID: 33516386 DOI: 10.1016/j.aca.2020.12.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
Novel cobalt-based metal-organic frameworks (Co MOFs) were synthesized by a facile "controlled synthesis" strategy. The MOFs displayed superior catalytic performance on the chemiluminescent (CL) reaction between N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and H2O2. UV-vis absorption, CL spectrum, ESR, and radical scavenger experiments were conducted for clarifying the catalytic mechanism of Co MOFs. All results revealed that Co MOFs can accelerate decomposition of H2O2 and production of OH•, O2•-as well as 1O2 radicals. The rapid reaction between these reactive oxygen species and ABEI resulted in the generation of ABEI-ox∗. The excited-state oxidation product emitted a very intensive CL signal with a maximal emission wavelength of 430 nm as it returned to the ground state. To explore their application potential in CL assay, Co MOFs were used as powerful CL reaction catalyst for establishing a very sensitive method for immunoassay of aflatoxin B1. The detection range was 0.05-60 ng mL-1, and the limit of detection was 4.3 pg mL-1. The result for detecting herbal medicine samples demonstrates the acceptable reliability of the Co MOFs-based CL immunoassay. The proof-of-principle work verifies the application potential of Co MOFs on boosting intensive CL signal, and meets the demand for high sensitivity in various bioassay fields.
Collapse
Affiliation(s)
- Lvxia Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Dan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
11
|
Dyer JM. Oxidative Modification of Trichocyte Keratins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1054:205-218. [PMID: 29797276 DOI: 10.1007/978-981-10-8195-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Oxidation of keratin results in a range of deleterious effects, including discolouration and compromised physical and mechanical properties. Keratin oxidative degradation is driven by molecular-level events, with accumulation of modifications at the protein primary level resulting directly in changes to secondary, tertiary and quaternary structure, as well as eventually changes in the observable physical and chemical properties. Advances in proteomic analysis techniques provide an increasingly clearer insight into the cascade of molecular modification underpinning keratin oxidation and how this translates through to higher order changes in properties. This chapter summarises the effects of oxidation on keratin-based materials, the types of molecular modification associated with this, and advances in techniques and approaches for characterising this modification.
Collapse
|
12
|
Sjöberg B, Foley S, Staicu A, Pascu A, Pascu M, Enescu M. Protein reactivity with singlet oxygen: Influence of the solvent exposure of the reactive amino acid residues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 159:106-10. [PMID: 27045278 DOI: 10.1016/j.jphotobiol.2016.03.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 02/05/2023]
Abstract
The singlet oxygen quenching rate constants were measured for three model proteins, bovine serum albumin, β-lactoglobulin and lysozyme. The results were analyzed by comparing them with the corresponding singlet oxygen quenching rate constants for a series of tripeptides with the basic formula GlyAAGly where the central amino acid (AA) was the oxidizable amino acid, tryptophan, tyrosine, methionine and histidine. It was found that the reaction rate constant in proteins can be satisfactorily modelled by the sum of the individual contributions of the oxidizable AA residues corrected for the solvent accessible surface area (SASA) effects. The best results were obtained when the SASA of the AA residues were determined by averaging over molecular dynamics simulated trajectories of the proteins. The limits of this geometrical correction of the AA residue reactivity are also discussed.
Collapse
Affiliation(s)
- Béatrice Sjöberg
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
| | - Sarah Foley
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France.
| | - Angela Staicu
- National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Str., Magurele, Ilfov 077125, Romania
| | - Alexandru Pascu
- National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Str., Magurele, Ilfov 077125, Romania
| | - Mihail Pascu
- National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Str., Magurele, Ilfov 077125, Romania
| | - Mironel Enescu
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
| |
Collapse
|
13
|
Theoretical and experimental investigation of carnosine and its oxygenated adducts. The reaction with the nickel ion. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Ishigami T, Suga K, Umakoshi H. Chiral Recognition of L-Amino Acids on Liposomes Prepared with L-Phospholipid. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21065-72. [PMID: 26339952 DOI: 10.1021/acsami.5b07198] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this study, we demonstrated that liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) can recognize several l-amino acids, but not their d-enantiomers, by analyzing their adsorptive behavior and using circular dichroism spectroscopy. Changes in liposomal membrane properties, determined based on fluorescent probe analysis and differential scanning calorimetry, were induced by l-amino acid binding. UV resonance Raman spectroscopy analysis suggested that the chiral recognition was mediated by electrostatic, hydrophobic, and hydrogen bond interactions, where the recognition site could therefore be constructed on the DPPC membrane. Our findings clearly indicate the potential function of liposomes in asymmetric recognition.
Collapse
Affiliation(s)
- Takaaki Ishigami
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
15
|
Onyango AN. Alternatives to the 'water oxidation pathway' of biological ozone formation. J Chem Biol 2015; 9:1-8. [PMID: 26855676 DOI: 10.1007/s12154-015-0140-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
Recent studies have shown that ozone (O3) is endogenously generated in living tissues, where it makes both positive and negative physiological contributions. A pathway for the formation of both O3 and hydrogen peroxide (H2O2) was previously proposed, beginning with the antibody or amino acid-catalyzed oxidation of water by singlet oxygen ((1)O2) to form hydrogen trioxide (H2O3) as a key intermediate. A key pillar of this hypothesis is that some of the H2O2 molecules incorporate water-derived oxygen atoms. However, H2O3 decomposes extremely readily in water to form (1)O2 and water, rather than O3 and H2O2. This article highlights key literature indicating that the oxidation of organic molecules such as the amino acids methionine, tryptophan, histidine, and cysteine by (1)O2 is involved in ozone formation. Based on this, an alternative hypothesis for ozone formation is developed involving a further reaction of singlet oxygen with various oxidized organic intermediates. H2O2 having water-derived oxygen atoms is subsequently formed during ozone decomposition in water by known reactions.
Collapse
Affiliation(s)
- Arnold N Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000, 00200 Nairobi, Kenya
| |
Collapse
|
16
|
Sehmi SK, Noimark S, Bear JC, Peveler WJ, Bovis M, Allan E, MacRobert AJ, Parkin IP. Lethal photosensitisation of Staphylococcus aureus and Escherichia coli using crystal violet and zinc oxide-encapsulated polyurethane. J Mater Chem B 2015; 3:6490-6500. [DOI: 10.1039/c5tb00971e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bactericidal polymer surfaces were prepared by crystal violet and ZnO nanoparticle encapsulation, demonstrating 99.9% dark kill ofE. coli.
Collapse
Affiliation(s)
- Sandeep K. Sehmi
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London
- UK
| | - Sacha Noimark
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London
- UK
| | - Joseph C. Bear
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London
- UK
| | - William J. Peveler
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London
- UK
| | - Melissa Bovis
- UCL Division of Surgery and Interventional Science
- University College London
- London
- UK
| | - Elaine Allan
- Division of Microbial Diseases
- UCL Eastman Dental Institute
- University College London
- London
- UK
| | | | - Ivan P. Parkin
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London
- UK
| |
Collapse
|
17
|
Feng T, Grusenmeyer TA, Lupin M, Schmehl RH. Following Oxygen Consumption in Singlet Oxygen Reactions via Changes in Sensitizer Phosphorescence. Photochem Photobiol 2014; 91:705-13. [DOI: 10.1111/php.12381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/27/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Tingting Feng
- Department of Chemistry; Tulane University; New Orleans LA
| | | | - Max Lupin
- Department of Chemistry; Tulane University; New Orleans LA
| | | |
Collapse
|
18
|
Song B, Wu Y, Yu M, Zhao P, Zhou C, Kiefer GE, Sherry AD. A europium(III)-based PARACEST agent for sensing singlet oxygen by MRI. Dalton Trans 2013; 42:8066-9. [PMID: 23575743 DOI: 10.1039/c3dt50194a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A europium(III) DOTA-tetraamide complex was designed as a MRI sensor of singlet oxygen ((1)O2). The water soluble, thermodynamically stable complex reacts rapidly with (1)O2 to form an endoperoxide derivative that results in an ∼3 ppm shift in the position of the Eu(III)-bound water chemical exchange saturation transfer (CEST) peak. The potential of using this probe to detect accumulation of the endoperoxide derivative in biological media by ratiometric CEST imaging was demonstrated.
Collapse
Affiliation(s)
- Bo Song
- Department of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Méndez-Hurtado J, López R, Suárez D, Menéndez MI. Theoretical study of the oxidation of histidine by singlet oxygen. Chemistry 2012; 18:8437-47. [PMID: 22639301 DOI: 10.1002/chem.201103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Indexed: 11/11/2022]
Abstract
Herein we present a theoretical study of the reaction of singlet oxygen with histidine performed both in the gas phase and in aqueous solution. The potential energy surface of the reactive system was explored at the B3LYP/cc-pVTZ level of theory and the electronic energies were refined by means of single-point CCSD(T)/cc-pVTZ(-f) calculations. Solvent effects were taken into account by using a solvent continuum model (COSMO) and by adding explicit water molecules. The results show that the first step in the reaction mechanism corresponds to a nearly symmetric Diels-Alder addition of the singlet oxygen molecule to the imidazole ring to yield an endoperoxide, in agreement with experimental evidence. The intermediate formed can evolve along two different reaction paths leading to two isomeric hydroperoxides and, eventually, to open-chain or internally cyclised oxidised products. Water plays a significant role in stabilising the reaction structures by solvation and by acting as a bifunctional catalyst in the elimination/addition reaction steps. Our results explain why substituents at the N1-imidazole ring can hamper the evolution of the initial endoperoxide and result in Gibbs energy barriers in solution similar to those experimentally measured and suggest a likely route to the formation of peptide aggregates during the oxidation of histidine by singlet molecular oxygen.
Collapse
Affiliation(s)
- Jefferson Méndez-Hurtado
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | | | | | | |
Collapse
|
20
|
HARADA Y, SUZUKI K, HASHIMOTO M, TSUKAGOSHI K, KIMOTO H. Chemiluminescence from singlet oxygen that was detected at two wavelengths and effects of biomolecules on it. Talanta 2009; 77:1223-7. [DOI: 10.1016/j.talanta.2008.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 08/23/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|