1
|
Gul Z, Iqbal A, Shoukat J, Anila A, Rahman R, Ullah S, Zeeshan M, Ashiq MS, Altaf AA. Nanoparticles Based Sensors for Cyanide Ion Sensing, Basic Principle, Mechanism and Applications. Crit Rev Anal Chem 2023:1-15. [PMID: 38117472 DOI: 10.1080/10408347.2023.2295511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Rapidly detecting potentially toxic ions such as cyanide is paramount to maintaining a sustainable and environmentally friendly ecosystem for living organisms. In recent years, molecular sensors have been developed to detect cyanide ions, which provide a naked-eye or fluorometric response, making them an ideal choice for cyanide sensing. Nanosensors, on the other hand, have become increasingly popular over the last two decades due water solubility, quick reaction times, environmental friendliness, and straightforward synthesis. Researchers have designed many nanosensors and successfully utilized them for the detection of cyanide ions in various environmental samples. The majority of these sensors use gold and silver-based nanosensors because cyanide ions have a high affinity for these metals ions and coordinate through covalent bonds. These metal nanoparticles are typically combined or coated with fluorescent materials, which quench their fluorescence. However, adding cyanide ions etches out the metal nanoparticles, restoring their fluorescence/color. This principle has been followed by most nanosensors used for cyanide ion sensing. In this review, different nanosensors and their sensing mechanisms are discussed in relation to cyanide ions. The primary purpose is to compare the sensing abilities of these sensors, mainly their sensitivity, advantages, application and to find out research gaps for future work. In this review paper, the development made in nanosensors in the last thirteen years (2010-2023) was discussed and the nanosensors for cyanide ions were compared with molecular sensors while the nanosensors with the excellent limit of detection were highlighted.
Collapse
Affiliation(s)
- Zarif Gul
- Departments of Chemistry, Government Degree College Gulabad, Gulabad, Khyber Pakhtunkhwa, Pakistan
| | - Aqsa Iqbal
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Javeria Shoukat
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Anila Anila
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Rafia Rahman
- Department of Biological sciences, National University of Medical Science, Rawalpindi, Punjab, Pakistan
| | - Shaheed Ullah
- Department of Chemistry, Kohsar University, Murree, Punjab, Pakistan
| | - Muhammad Zeeshan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Ataf Ali Altaf
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|
2
|
Gul Z, Khan S, Ullah S, Ullah H, Khan MU, Ullah M, Altaf AA. Recent Development in Coordination Compounds as a Sensor for Cyanide Ions in Biological and Environmental Segments. Crit Rev Anal Chem 2022; 54:508-528. [PMID: 35671238 DOI: 10.1080/10408347.2022.2085027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rapid detection of toxic ions has taken great attention in the last few decades due to its importance in maintaining a greener environment for human beings. The extreme toxicity of cyanide (CN-) ions is a great environmental concern as its continued industrial use generates interest in facile and sensitive methods for CN- ions detection. Since CN- ions act as a ligand in coordination chemistry which rapidly coordinates with suitable metals and forms complexes, this ability was mainly explored in its detection. It also attacks the central metal in coordination compounds and gives a fluorimetric response. Coordination compounds behave as a sensor for the detection of important ions like CN- ions and have gained great attention due to their facile synthesis, multianalyte detection, clear detection and low detection limit. Recently, considerable efforts have been devoted to the detection and quantification of hazardous multianalyte using a single probe. Cu2+ complexes are the main complexes used for CN- ions detection; however, the complexes of many other metals are also used as sensors. Four basic types of interaction have been discussed in coordination compound sensors for CN- detection. The performances of different sensors are compared with one another and the sensors which have the lowest detection limit are highlighted. This review comprises the progress made by coordination compounds as sensors for the detection of CN- ions in the last six years (2015-2021). To the best of our knowledge, there is no review on coordination compounds as a sensor for CN- ions during this period. [Figure: see text].
Collapse
Affiliation(s)
- Zarif Gul
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | - Shaheed Ullah
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Misbah Ullah Khan
- Center for Nano-Science, University of Okara, Okara, Punjab, Pakistan
| | - Munzer Ullah
- Department of Biochemistry, University of Okara, Okara, Punjab, Pakistan
| | - Ataf Ali Altaf
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|
3
|
Isaad J, Achari AE. Sequential colorimetric sensor for copper (II) and cyanide ions via the complexation−decomplexation mechanism based on sugar pyrazolidine-3,5‑dione. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Development of a cost-effective laser diode-induced fluorescence detection instrument for cyanide detection. ANAL SCI 2022; 38:437-442. [DOI: 10.1007/s44211-022-00065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 11/01/2022]
|
5
|
Bhatt S, Vyas G, Paul P. Rosmarinic Acid-Capped Silver Nanoparticles for Colorimetric Detection of CN - and Redox-Modulated Surface Reaction-Aided Detection of Cr(VI) in Water. ACS OMEGA 2022; 7:1318-1328. [PMID: 35036793 PMCID: PMC8757454 DOI: 10.1021/acsomega.1c05946] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Rosmarinic acid-capped silver nanoparticles (Ro-AgNPs) were prepared and applied as a probe for selective colorimetric detection of cyanide (CN-) and chromium(VI) [Cr(VI)] under different conditions in aqueous media. The carbon atom of CN- interacts with the AgNPs, and the carbon atom donates electrons from the HOMO to the vacant orbitals of the coordinatively unsaturated surface atom (Ag0). After donating electrons, CN- attached onto the surface of the nanoparticles becomes very reactive and interacts with dissolved oxygen and generates reactive oxygen species (ROS) such as superoxide (O2 -), singlet oxygen (1O2), and so forth. In this process, Ag0 oxidizes to Ag+ and combines with CN- forming water-insoluble AgCN, and the ROS (O2 -) formed reacts with Ag/Ag+ to form Ag2O. The oxidation of Ag0 to Ag+ resulted in dissolution of AgNPs, which causes disappearance of the surface plasmon resonance band and color change from yellow to colorless. For detection of Cr(VI), ascorbic acid and CN- were added first; the ascorbic acid replaced the rosmarinic acid and then reduced the added Cr(VI) to Cr(III), and, in this process, ascorbic acid was oxidized to dehydroascorbic acid, which moved away from the nanoparticles' surface. CN- then interacted with the surface Ag0 atom, got activated, and interacted with dissolved oxygen forming Ag+ and ROS, which then followed the same process as described for CN- to form AgCN and Ag2O with a color change. The limits of detection were found to be 0.01 and 0.03 μM for CN- and Cr(VI), respectively. The material was also used for sensing CN- and Cr(VI) in real samples, and the results obtained were satisfactory. For field application, agarose-based strips were prepared by immobilizing the nanoparticles onto the agarose film and successfully used for the detection of CN- and Cr(VI) in water.
Collapse
Affiliation(s)
- Shreya Bhatt
- Analytical
and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gaurav Vyas
- Analytical
and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parimal Paul
- Analytical
and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Amputu MN, Naimhwaka J, Uahengo V. An ESIPT-ICT steered naphthylthioic-based ionic probe with dual emissive channels exhibiting CHEF and CHEQ effects. RSC Adv 2022; 12:27022-27043. [PMID: 36320834 PMCID: PMC9490809 DOI: 10.1039/d2ra04568k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
A naphthylthioic-based emissive probe (M) bearing a hydroxyl and amine group was designed and synthesized via a one-step Schiff base reaction process. The probe was characterized spectroscopically using 1H NMR, UV-Vis and fluorescence spectrophotometers. The probe turned out to be spectroscopically and colorimetrically selective and sensitive to multiple cations and anions. Interestingly, the probe displayed characteristics of excited-state intramolecular proton transfer (ESIPT)-driven dual emissive channels; experiencing fluorescence enhancement upon the molar additions of Al3+ as well as the anions used, events presumably ascribed to chelation fluorescence enhancement (CHEF), hydrogen bonding and deprotonation effects. Moreover, the fluorometric titration with Hg2+ resulted in ratiometric spectral behaviors of M, with the disappearance of the peak at 450 nm, concomitant with the appearance of a new peak at 520 nm, distinguished by a clear isosbestic point, the same behaviors exhibited by Sn2+ and Ag+ analytes towards M. The introduction of all other cations used, resulted in fluorescence quenching, attributable to chelation enhanced fluorescence quenching (CHEQ), thereby inhibiting the ESIPT process. The experiments were all carried out in the aqueous environment medium of DMSO–H2O (9 : 1) at ambient temperature. Theoretical density functional theory calculations were carried out to gain insight into the interaction of M with cations and anions, and their influence on the HOMO–LUMO energy gaps. A naphthylthioic-based emissive probe (M) bearing a hydroxyl and amine group was designed and synthesized via a one-step Schiff base reaction process.![]()
Collapse
Affiliation(s)
- Martha N. Amputu
- Department of Physics, Chemistry and Material Science, University of Namibia, 340 Mandume Ndemufayo Avenue, Windhoek, 9000, Namibia
| | - Johannes Naimhwaka
- Department of Physics, Chemistry and Material Science, University of Namibia, 340 Mandume Ndemufayo Avenue, Windhoek, 9000, Namibia
| | - Veikko Uahengo
- Department of Physics, Chemistry and Material Science, University of Namibia, 340 Mandume Ndemufayo Avenue, Windhoek, 9000, Namibia
| |
Collapse
|
7
|
Naked eye detection of cyanide ion in water: highly selective azo-azomethine chromogenic receptor immobilized onto solid scaffolds. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02419-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Endjala PT, Naimhwaka J, Uahengo V. Investigation of fluorenyl-thioic-based ditopic as a functional colorimetric probe for heavy metal cations and anions with higher selectivity towards Cu2+ followed by Zn2+, displaying logic functions: Experimental and computational studies. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01736-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Tang Q, Dan F, Ma S, Zeng X, Lan H. A Colorimetric and Fluorescent Probe Based on Quinoline‐Indolium for Detection of CN
−
in Aqueous Media. ChemistrySelect 2021. [DOI: 10.1002/slct.202101532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qian Tang
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang Hubei 443002 P.R. China
| | - Feijun Dan
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang Hubei 443002 P.R. China
| | - Shanghu Ma
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang Hubei 443002 P.R. China
| | - Xiaoyan Zeng
- College of Chemistry Central China Normal University Wuhan Hubei 430079 P.R. China
| | - Haichuang Lan
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang Hubei 443002 P.R. China
| |
Collapse
|
10
|
Hishimone PN, Hamukwaya E, Uahengo V. The C 2-Symmetry Colorimetric Dye Based on a Thiosemicarbazone Derivative and its Cadmium Complex for Detecting Heavy Metal Cations (Ni 2+, Co 2+, Cd 2+, and Cu 2+) Collectively, in DMF. J Fluoresc 2021; 31:999-1008. [PMID: 33880707 DOI: 10.1007/s10895-021-02734-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
The field of chemosensing has been experiencing an exponential expansion in recent times, due to increased demands for simpler and user-friendly analytical techniques, in order to combat and confront the challenges of industrial pollutions in the twenty-first century. Metal complex-based chemosensors have received little attention while exhibiting excellent sensing properties, comparing to their organic counterparts. Thus, a thiosemicarbazone-based (H) and its cadmium complex (P) were synthesized, characterized and their photophysical and chemosensing properties were investigated in DMF solvent. The addition of molar equivalents of selected cations (of nitrates or chloride salts) to H and P, produced visually detectable colour changes as well as remarkable spectral shifts. Explicitly, the two probes (H and P) were able to collectively discriminate heavy metal cations such as Cd2+, Co2+, Zn2+, Cu2+, Ni2+, and Ag+, both in DMF, among all other heavy metal cations tested. None of the anions could be detected by H or P, even when the tetrabutylammonium salts (TBAs) were used, the action presumably ascribed to the solvent effect. Thus, H and P can be used to selectively and sensitively detect the presence of heavy metal cations, via naked-eye detectable colour changes in an aqueous soluble solvent such as DMF.
Collapse
Affiliation(s)
- Philipus N Hishimone
- Department of Chemistry and Biochemistry, University of Namibia, 340 Mandume Ndemufayo Avenue, Windhoek, 9000, Namibia
| | - Eunike Hamukwaya
- Department of Chemistry and Biochemistry, University of Namibia, 340 Mandume Ndemufayo Avenue, Windhoek, 9000, Namibia
| | - Veikko Uahengo
- Department of Chemistry and Biochemistry, University of Namibia, 340 Mandume Ndemufayo Avenue, Windhoek, 9000, Namibia.
| |
Collapse
|
11
|
Morikawa Y, Nishiwaki K, Suzuki S, Yasaka N, Okada Y, Nakanishi I. A new chemosensor for cyanide in blood based on the Pd complex of 2-(5-bromo-2-pyridylazo)-5-[ N-n-propyl- N-(3-sulfopropyl)amino]phenol. Analyst 2021; 145:7759-7764. [PMID: 33006340 DOI: 10.1039/d0an01554g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new indirect chemosensor for the detection of cyanide in blood is developed. 2-(5-Bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol, a yellow dye, forms a blue-coloured complex with palladium ions. The yellow colour of this complex is regained upon reaction with cyanide ions. The complex shows high selectivity for the detection of cyanide over 16 other anions. The system was applied to two different methods for the detection of cyanide in human whole blood. As a quantitative absorbance method, blood samples were mixed with acid, and the resulting vaporised hydrogen cyanide was absorbed in an alkaline solution containing the complex in a Conway cell. The resulting absorbance response of the solution at 450 nm is linear over the range 4-40 μM (R2 = 1.000), and the limit of detection is 0.6 μM. Furthermore, the complex-soaked paper is applicable as a test strip for cyanide detection. When a test strip is used with 0.5 mL of blood, the limit of detection is 15 μM. The detection limits of these two methods are below the toxic blood cyanide concentration (19 μM). Therefore, both methods allow the quantification and screening of cyanide in blood samples. Furthermore, the test strip is low cost and enables on-site analysis.
Collapse
Affiliation(s)
- Yasuhiro Morikawa
- Forensic Science Laboratory, Kyoto Prefectural Police H.Q., 85-3, 85-4, Yabunouchi-cho, Kamigyo-ku, Kyoto, Japan 602-8550.
| | | | | | | | | | | |
Collapse
|
12
|
Kumar PS, Ciattini S, Laura C, Elango KP. A new highly selective and sensitive chemodosimeter for dual-channel detection of cyanide in aquo-organic solutions – Solvent effects on photophysical and kinetic properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Zabihi FS, Mohammadi A. Synthesis and application of a new chemosensor based on the thiazolylazo-quinazolinone hybrid for detection of F - and S 2- in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118439. [PMID: 32387917 DOI: 10.1016/j.saa.2020.118439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
A new chemosensor based on the thiazolylazo-quinazolinone hybrid (TAQH) was designed and synthesized for naked-eye sensitive detection of F- and S2-in aqueous acetonitrile solution. Spectral characterization of TAQH using FT-IR, 1H NMR, and 13C NMR analysis revealed that the probe TAQH was successfully synthesized using a two steps reaction, including the diazotization-coupling and condensation reactions, respectively. The ion sensing ability of TAQH toward a wide range of anions and metal ions was evaluated by naked-eye detection method and UV-Vis absorption spectroscopy. The chemosensor TAQH displayed a fast and clear color change from yellow to red in the presence of F- and S2- ions, enabling easily detect with the naked eye. This clear color change is due to the effective interaction of the basic F- and S2- anions with hydroxyl group of chemosensor as a binding site. The experimental data also revealed that the F- and S2- ions were sensed by the probe TAQH over a wide pH range from 3 to 8. The results also confirmed that the TAQH has a wide linear detection range for F- and S2- ions. From UV-vis titration experiment, the limit of detection (LOD) for F- and S2- ions was found to be 3.1 μM and 5.7 μM, respectively. For quantitative measurements, the paper test strips containing TAQH were successfully fabricated and applied to detect F- and S2- ions in aqueous solutions. Furthermore, Job's plot based on spectroscopic data showed one-to-one stoichiometry for the interaction of anions with probe TAQH. Therefore, the proposed chemosensor with excellent features like the cost-effective, high sensitively and selectively and short response times can be utilized in any physical and biological conditions.
Collapse
Affiliation(s)
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
14
|
Maji TK, Bagchi D, Pan N, Sayqal A, Morad M, Ahmed SA, Karmakar D, Pal SK. A combined spectroscopic and ab initio study of the transmetalation of a polyphenol as a potential purification strategy for food additives. RSC Adv 2020; 10:5636-5647. [PMID: 35497419 PMCID: PMC9049538 DOI: 10.1039/c9ra10596d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/20/2020] [Indexed: 11/21/2022] Open
Abstract
Recently, metal exchange (transmetalation) techniques have become popular for the post-synthesis modification of metal organic complexes (MOCs). Here, we have explored the possibility of toxic metal ion (mercury (Hg)) exchange from a model polyphenol, curcumin, which is a very important food additive, using a much less toxic counterpart (copper). While the attachment of different metals on the polyphenol was confirmed using a picosecond resolved fluorescence technique, the surface plasmon resonance (SPR) band of the Ag nanoparticle (NP) was employed as a tool to detect uncoupled Hg ions in aqueous media. Furthermore, a microscopic understanding of the experimental observations was achieved through density functional theory (DFT) based theoretical studies. The presence of Cu ions in the vicinity of Hg-curcumin, upon ground state optimization, was observed to extrude most of the Hg from the curcumin complex and replace its position in the complex. The study may find relevance in the development of a purification strategy for food additives heavily contaminated with toxic metals.
Collapse
Affiliation(s)
- Tuhin Kumar Maji
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector III, Salt Lake Kolkata 700 106 India
| | - Damayanti Bagchi
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector III, Salt Lake Kolkata 700 106 India
| | - Nivedita Pan
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector III, Salt Lake Kolkata 700 106 India
| | - Ali Sayqal
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Moataz Morad
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Saleh A Ahmed
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| | - Debjani Karmakar
- Technical Physics Division, Bhabha Atomic Research Centre Mumbai 400085 India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector III, Salt Lake Kolkata 700 106 India
| |
Collapse
|
15
|
Khoshsoroor S, Mohammadi A, Khalili B, Mohammadi S. A novel uracil-based chemosensor for sequential detection of copper (II) and cyanide ions and its application in real samples. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112208] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Kaushik R, Sakla R, Ghosh A, Dama S, Mittal A, Jose DA. Copper Complex-Embedded Vesicular Receptor for Selective Detection of Cyanide Ion and Colorimetric Monitoring of Enzymatic Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47587-47595. [PMID: 31741372 DOI: 10.1021/acsami.9b17316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Detection of environmentally important ion cyanide (CN-) has been done by a new method involving displacement of both metal and indicator, metal indicator displacement approach (MIDA) on the vesicular interface. Terpyridine unit was selected as the binding site for metal (Cu2+), whereas Eosin-Y (EY) was preferred as an indicator. About 150 nm sized nanoscale vesicular ensemble (Lip-1.Cu) has shown good selectivity and sensitivity for CN- without any interference from other biologically and environmentally important anions. Otherwise, copper complexes are known for the interferences of binding with phosphates and amino acids. The Lip-1.Cu nanoreceptor also has the possibility to be used for real-time colorimetric scanning for the released HCN via enzymatic reactions. Lip-1.Cu has several superiorities over the other reported sensor systems. It has worked in 100% aqueous environment, fast response time with colorimetric monitoring of enzymatic reaction, and low detection limit.
Collapse
Affiliation(s)
- Rahul Kaushik
- Department of Chemistry , National Institute of Technology (NIT)-Kurukshetra , Kurukshetra 136119 , Haryana , India
| | - Rahul Sakla
- Department of Chemistry , National Institute of Technology (NIT)-Kurukshetra , Kurukshetra 136119 , Haryana , India
| | - Amrita Ghosh
- Department of Chemistry , National Institute of Technology (NIT)-Kurukshetra , Kurukshetra 136119 , Haryana , India
| | - Sapna Dama
- Skeletal Muscle Lab, Institute of Integrated and Honors Studies , Kurukshetra University , Kurukshetra 136119 , Haryana , India
| | - Ashwani Mittal
- Skeletal Muscle Lab, Institute of Integrated and Honors Studies , Kurukshetra University , Kurukshetra 136119 , Haryana , India
| | - D Amilan Jose
- Department of Chemistry , National Institute of Technology (NIT)-Kurukshetra , Kurukshetra 136119 , Haryana , India
| |
Collapse
|
17
|
Mohammadi A, Khalili B, Haghayegh AS. A novel chromone based colorimetric sensor for highly selective detection of copper ions: Synthesis, optical properties and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117193. [PMID: 31174147 DOI: 10.1016/j.saa.2019.117193] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/18/2019] [Accepted: 05/26/2019] [Indexed: 05/19/2023]
Abstract
In this work, a new chromone based colorimetric sensor (ChrCS) was developed for highly selective detection of copper ions in semi-aqueous media. Evaluation of color and spectral changes displayed by the developed sensor shows that the sensor can be applied to detect copper ions in the presence of other competing metal ions and anions. The developed sensor, which contains biologically active chromone ring, shows excellent selectivity at microlevel for Cu2+ with a color change from colorless to yellow. Job's plot based on spectroscopic data showed the complex formation between ChrCS and Cu2+ ions has the stoichiometric ratio of 1:1 (ChrCS-Cu2+ complex). In addition, the binding constant of the ChrCS to Cu2+ was determined using the Benesi-Hildebrand equation. Furthermore, the test papers of the developed ChrCS were successfully prepared and employed to detect different concentration Cu2+ (10-3 M to 10-7 M) in aqueous solution. Importantly, sensor ChrCS was applied to detect Cu2+ ions in real water samples. To better understand the optical character of ChrCS and the effect of metal ion titration, density functional theory (DFT) calculations at the B3LYP/6-31 + G(d,p) level were performed for ChrCS and its complex ChrCS-Cu2+. Furthermore, on the basis of the Job's plot analysis DFT calculations, and reversible nature of the developed sensor, the sensing mechanism was demonstrated.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Behzad Khalili
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | | |
Collapse
|
18
|
Abdinejad T, Zamanloo MR, Mahmoodi NO, Alizadeh T, Shamkhali AN. Colorimetric sensing of cyanide ion by pyromellitic diimides synthesized in one step from commercially available reactants. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|