1
|
Kaewnok N, Chailek N, Thavornpradit S, Wangngae S, Petdum A, Panchan W, Kamkaew A, Sirirak J, Sooksimuang T, Sanmanee N, Maitarad P, Wanichacheva N. Propargylic-linked [5]helicene derivative for selective Au 3+ detection in near-perfect aqueous media with applications in diverse real samples, paper test strips, and human cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125594. [PMID: 39700548 DOI: 10.1016/j.saa.2024.125594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Gold is classified as a heavy metal, and its ion (Au3+) can manifest adverse impacts on ecological and human health. Thus, an effective method for Au3+ detection is highly required. In this work, a new [5]helicene-based fluorescence sensor (M202P) was synthesized and applied for Au3+ monitoring in near-perfect aqueous media. M202Prapidly detected Au3+ through a fluorescence quenching response and furnished a large Stokes shift of 157 nm. The Au3+ sensing ability of M202P allowed it to withstand interference from other metal ions, with a detection limit for Au3+ of 8.0 ppb. The mechanism underlying its Au3+ detection was the coordination of Au3+ with the alkyne and carbonyl oxygen, leading to the later hydration of alkynyl moiety, as thoroughly proven by FTIR, 1H NMR, 13C NMR, and HRMS, with the stoichiometric ratio of 1:1 according to Job's plot. In addition, M202P can be used for the quantitative analysis and qualitative fluorescence assay of Au3+ levels in environmental waters and fertilizer solutions. This sensor also demonstrated high potential as a fluorescence tracking agent in human cells and was utilized in fabricating a paper test strip.
Collapse
Affiliation(s)
- Nirawit Kaewnok
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nirumon Chailek
- Somdejya demonstration community school, Srinakharinwirot University, Maechaem, Chiang Mai 50270, Thailand
| | - Sopida Thavornpradit
- Division of Chemistry, Department of Physical and Material Sciences, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Sirilak Wangngae
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anuwut Petdum
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Waraporn Panchan
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thanasat Sooksimuang
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Natdhera Sanmanee
- Department of Environmental Science, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Phornphimon Maitarad
- Research Center of Nano Science & Technology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
| | - Nantanit Wanichacheva
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
2
|
de Oliveira HP. Recent advances in colorimetric and photoluminescent fibrillar devices, photonic crystals and carbon dot-based sensors for mercury (II) ion detection. Talanta 2025; 282:127018. [PMID: 39406105 DOI: 10.1016/j.talanta.2024.127018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
The escalating environmental contamination with mercury has become a pressing issue, significantly impacting human beings and nature. For instance, small-scale gold mining has led to severe contamination in the Brazilian Yanomami village, highlighting the urgent need for action. The development of fibrillar-based sensors for mercury (II) ions represents an important issue to be considered in the point-of-care and simple detection of contaminants in water. Herein, this review discussed different colorimetric/photoluminescent-based prototypes for Hg2+ ions sensors and corresponding strategies to improve selectivity and sensitivity associated with the regeneration and reuse of the devices. Given these aspects, the electrospinning technique is promising for developing advanced mercury (II) ion sensors.
Collapse
Affiliation(s)
- Helinando Pequeno de Oliveira
- Instituto de Pesquisa em Ciência dos Materiais, Universidade Federal do Vale do São Francisco, 48902-300, Juazeiro, BA, Brazil.
| |
Collapse
|
3
|
Liu XM, Xia QY, Ju XH. Theoretical study on optimizing dipeptidomimetic isocyanonaphthalene chemosensor and the fluorescence mechanism for detecting Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124835. [PMID: 39024787 DOI: 10.1016/j.saa.2024.124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
The excited (S1) state charge distribution characteristics and fluorescence mechanism of fluorescence probes benzyl (6-cyano-2-naphthoyl)-L-valinate (NPI) and benzyl (6-amino-2-naphthoyl)-L-valinate (NPA) have been discussed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). Further analysis by constructing a torsional potential energy curve (PEC) shows that a well-defined minimum energy conformation is observed when the C-C single bond between the valine benzyl ester and naphthalene ring in NPI rotates. For NPA, the most stable conformation is the naphthalene ring conformation with dihedral angle N2C1C2C3 of -30.60°, whose total energy is 0.17 kcal/mol lower than that of the second most stable conformer. The frontier molecular orbitals (FMOs) demonstrate that NPI exhibits a low degree of charge coupling, and the oscillator intensity is close to zero, indicating that it is not conducive to luminescence. However, in the S1 state, the oscillator strength of NPA is 1.2044, which is a bright state, resulting in the strong emitting. Additionally, fluorescence imaging is favored as a visual observation technique, and Stokes shift is an important physical parameter to measure fluorescence. According to the idea that changing the number and position of functional groups can affect the photophysical properties of fluorescent dyes, o-NPDI, p-NPDI and m-NPDI dyes were newly designed and o-NPDA, p-NPDA, m-NPDA produced after recognition of Hg2+. The spectral performance results show that the newly designed fluorescent dye (p-NPDA) can not only emit in the near infrared region after recognizing Hg2+, but also has a large Stokes shift (236 nm). This indirectly reflects that para-substitution is more conducive to Stokes shift, and has become one of the strategies for fluorescent dye design.
Collapse
Affiliation(s)
- Xiu-Min Liu
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Qi-Ying Xia
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China.
| | - Xue-Hai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
4
|
Leslee DBC, Karuppannan S. A Ratiometric Green Fluorescent Carbazole-Bis(hydrazinobenzothiazole) Probe for the Selective Detection of Toxic Hg 2+ Ions in Real Water Samples. Chempluschem 2024; 89:e202400203. [PMID: 38728531 DOI: 10.1002/cplu.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
A dyad Carbazolyl-bis(hydrazinobenzothiazole) was designed to form a symmetrical structure that containing two-arm active binding sites facilitates coordination with Hg2+ ion. This sensor has imparted a colorimetric and fluorometric changes in presence of Hg2+ ions. The ligand showed a selective blue shift in presence of Hg2+even in co-existence with heavy metal ions with luminescence change from colorless to blue and colorless to green under day light. Enhanced Intramolecular charge transfer process is responsible for fluorescence transformation when ligand interacts with Hg2+ ion. The emission spectra showed a ratiometric response to increasing addition of Hg2+ ions. The sensor is capable of detecting above the lower concentration of 6.8025×10-8 M. The fluorescence efficiency of CBT-2 with Hg2+ ion is quite stable under different co-metal ions and wide range of pH 6 to 9. The sensor CBT-2 forms a 1 : 1 stoichiometric complex with Hg2+ ions and the binding nature is confirmed from the 1H-NMR, FTIR, and mass spectroscopic studies. The sensor CBT-2 and its Hg2+ complex possess good binding nature to protein in Bovine Serum Albumin which could be good in biological applications. Additionally, wedevelop a practical application in real water sample analysis and electrochemical detection via oxidation potential discrimination.
Collapse
Affiliation(s)
- Denzil Britto Christopher Leslee
- Department of Science and Humanities (Chemistry), Anna University -, University College of Engineering, Dindigul, 624622, Tamil Nadu, India
| | - Sekar Karuppannan
- Department of Science and Humanities (Chemistry), Anna University -, University College of Engineering, Dindigul, 624622, Tamil Nadu, India
| |
Collapse
|
5
|
Zhang L, Bi X, Wang H, Li L, You T. Loading of AuNCs with AIE effect onto cerium-based MOFs to boost fluorescence for sensitive detection of Hg 2. Talanta 2024; 273:125843. [PMID: 38492285 DOI: 10.1016/j.talanta.2024.125843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Ligand-protected gold nanoclusters (AuNCs) have become promising nanomaterials in fluorescence (FL) methods for mercury ions (Hg2+) monitoring, but low FL efficiency hinders their widespread application. Herein, AuNCs/cerium-based metal-organic frameworks (AuNCs/Ce-MOFs) were prepared by loading 6-aza-2-thiothymine-protected AuNCs (ATT-AuNCs) with aggregation-induced emission (AIE) effect on the surface of Ce-MOFs by electrostatic attraction. This strategy improved the FL intensity of AuNCs through two aspects: (i) the AIE effect of ATT-AuNCs and (ii) the confinement effect of Ce-MOFs, which improved the restriction of intramolecular motion (RIM) of ATT-AuNCs. In addition, Ce-MOFs could adsorb and aggregate Hg2+ during detection, which might increase the local concentration. Therefore, based on the high FL signal of AuNCs/Ce-MOFs and enriched Hg2+, sensitive detection of Hg2+ could be achieved. More importantly, the strong specific recognition between AuNCs and Hg2+ could guarantee selectivity. The developed FL sensor exhibited superior detection performances with a wide linear range of 0.2-500 ng mL-1 and a low detection limit of 0.067 ng mL-1. Furthermore, the FL sensor used for sensitive and selective detection of Hg2+ in real samples, and the results agreed well with the standard method. In summary, this work proposed an effective and generalized strategy for improving the FL efficiency of AuNCs, which would greatly facilitate their application in pollutant monitoring.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Wang
- Department of Environmental Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
6
|
Mohanty P, Dash PP, Mishra S, Bhaskaran R, Jali BR. Thiourea Functionalised Receptor for Selective Detection of Mercury Ions and its Application in Serum Sample. J Fluoresc 2024:10.1007/s10895-024-03740-7. [PMID: 38739318 DOI: 10.1007/s10895-024-03740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
A thiourea functionalised fluorescent probe 1-phenyl-3-(pyridin-4-yl)thiourea was synthesized and utilised as a fluorescent turn-on chemosensor for the selective recognition of Hg2+ ion over competitive metal ions including Na+, Mn2+, Li+, Cr2+, Ni2+, Ca2+, Cd2+, Mg2+, K+, Co2+, Cu2+, Zn2+, Al3+ and Fe2+ ions based on the inter-molecular charge transfer (ICT). Intriguingly, the receptor demonstrated unique sensing capabilities for Hg2+ in DMSO: H2O (10:90, v/v). The addition of Hg2+ ions to the sensor resulted in a blue shift in the absorption intensity and also enhancement in fluorescence intensity at 435 nm. Fluorescence emission intensity increased linearly with Hg2+ concentration ranging from 0 to 80 µL. The detection limit and binding constant were determined as 0.134 × 10-6 M and 1.733 × 107 M-1, respectively. The sensing behavior of Hg2+ was further examined using DLS, SEM and FTIR. The probe could detect Hg2+ ions across a wide pH range. Furthermore, the receptor L demonstrated good sensing performance for Hg2+ in bovine serum albumin and actual water samples.
Collapse
Affiliation(s)
- Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Pragyan Parimita Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Swagatika Mishra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Renjith Bhaskaran
- Department of Chemistry, Madanapalle Institute of Technology & Science, Kadiri Road, Angallu, Madanapalle, Annamayya District, 517325, Andhra Pradesh, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| |
Collapse
|
7
|
Kaur G, Rani R, Raina J, Singh I. Recent Advancements and Future Prospects in NBD-Based Fluorescent Chemosensors: Design Strategy, Sensing Mechanism, and Biological Applications. Crit Rev Anal Chem 2024:1-41. [PMID: 38593050 DOI: 10.1080/10408347.2024.2337869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent years, the field of Supramolecular Chemistry has witnessed tremendous progress owing to the development of versatile optical sensors for the detection of harmful biological analytes. Nitrobenzoxadiazole (NBD) is one such scaffold that has been exploited as fluorescent probes for selective recognition of harmful analytes and their optical imaging in various cell lines including HeLa, PC3, A549, SMMC-7721, MDA-MB-231, HepG2, MFC-7, etc. The NBD-derived molecular probes are majorly synthesized from the chloro derivative of NBD via nucleophilic aromatic substitution. This general NBD moiety ligation method to nucleophiles has been leveraged to develop various derivatives for sensing analytes. NBD-derived probes are extensively used as optical sensors because of remarkable properties like excellent stability, large Stoke's shift, high efficiency and stability, visible excitation, easy use, low cost, and high quantum yield. This article reviewed NBD-based probes for the years 2017-2023 according to the sensing of analyte(s), including cations, anions, thiols, and small molecules like hydrogen sulfide. The sensing mechanism, designing of the probe, plausible binding mechanism, and biological application of chemosensors are summarized. The real-time application of optical sensors has been discussed by various methods, such as paper strips, molecular logic gates, smartphone detection, development of test kits, etc. This article will update the researchers with the in vivo and in vitro biological applicability of NBD-based molecular probes and challenges the research fraternity to design, propose, and develop better chemosensors in the future possessing commercial utility.
Collapse
Affiliation(s)
- Gurdeep Kaur
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Richa Rani
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Jeevika Raina
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
8
|
Tian J, Tian X, Gong S, Liang Y, Meng Z, Liu W, Xu X, Wang Z, Wang S. A ratiometric fluorescent probe with a large Stokes shift for the detection of Hg2+ and its applications in environmental sample and living system analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1846-1855. [PMID: 38497272 DOI: 10.1039/d3ay02106h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Toxic mercury ions (Hg2+) can cause serious environmental pollution and accumulate in living organisms via the food chain. Therefore, monitoring Hg2+ is crucial in ensuring the safety of ecosystems and organisms. In this work, a novel ratiometric fluorescent probe CMT (5-(4-(diphenylamino)phenyl)-1-(7-hydroxy-coumarin-3-yl)-4-pentene-1,3-dione) based on coumarin was developed for detecting Hg2+, which displayed obvious fluorescence changes, a low detection limit (2.24 × 10-7 M), good selectivity, and a large Stokes shift (255 nm). The CMT probe could detect Hg2+ in real environmental soil and water samples. Furthermore, the CMT probe enabled the naked-eye detection of Hg2+ using test paper experiments. CMT was also applied for fluorescence imaging in living zebrafish and plants. This work provides a highly efficient tool for monitoring Hg2+ in environmental samples and biological systems.
Collapse
Affiliation(s)
- Jixiang Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xuechun Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Weiqi Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Wang L, Ma Y, Lin W. A coumarin-based fluorescent probe for highly selective detection of hazardous mercury ions in living organisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132604. [PMID: 37757555 DOI: 10.1016/j.jhazmat.2023.132604] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
In recent years, heavy metal mercury (II) pollutants have caused serious harm to human health and ecosystems. It has become critical to develop simple and highly selective sensing solutions for monitoring mercury (II). In this work, we designed and developed a novel fluorescent probe Coa-SH using the Hg2+-induced chemical reaction as a sensing mechanism. The probe Coa-SH showed high selectivity for the detection of Hg2+ by desulfurization reactions in solution. The test strips prepared with this probe could be applied to detect mercury ions in aqueous solutions. In addition, the probe Coa-SH provided a tool to detect Hg2+ in living systems. In living cells and zebrafish, the probe turned on bright red fluorescent signals in the presence of mercury ions. Importantly, the probe Coa-SH enabled Hg2+ detection in plant onion roots. This work provides an effective method for monitoring mercury ions in the environment and in living organisms.
Collapse
Affiliation(s)
- Lin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Yanyan Ma
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, Shandong 266061, PR China
| | - Weiying Lin
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China; Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
10
|
Wang Y, Xu G, Zhang X, Yang X, Hou H, Ai W, Zhao L. N- and S-codoped carbon quantum dots for enhancing fluorescence sensing of trace Hg 2. Phys Chem Chem Phys 2023; 25:28230-28240. [PMID: 37823325 DOI: 10.1039/d3cp02924g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Carbon-quantum-dot-based fluorescence sensing of Hg2+ is a well-known cost-effective tactic with fast response and high sensitivity, while rationally constructing heteroatom-doped carbon quantum dots with improved fluorescence sensing performances through tuning the electronic and chemical structures of the reactive site still remains a challenging project for monitoring trace Hg2+ in aquatic ecosystems to avoid harm resulting from its high toxicity, nonbiodegradabilty and accumulative effects on human health. Herein, intriguing N,S-codoped carbon quantum dots were synthesized via a facile one-step hydrothermal procedure. As an admirable fluorescent probe with plentiful heteroatom-related functional groups, these N,S-codoped carbon quantum dots can exhibit an absolute fluorescence quantum yield as high as 11.6%, excellent solubility and stability over three months, remarkable sensitivity for Hg2+ detection with an attractive detection limit of 0.27 μg L-1 and admirable selectivity for Hg2+ against thirteen other metal ions. Density functional theory calculations reveal that electron-enriched meta-S of the unique graphitic N with homocyclic meta-thiophene sulfur structure can regulate this N site to have more electrons and preferable affinity towards Hg, hence achieving enhanced fluorescence quenching due to greater charge transfer from N to Hg after the coordination interaction. This strategy provides a promising avenue for precisely designing purpose-made quantum dots with the dedicated fluorescence sensing applications.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Chemistry, College of Resource and Environment, Baoshan University, Baoshan 678000, P. R. China.
| | - Guoliang Xu
- Department of Chemistry, College of Resource and Environment, Baoshan University, Baoshan 678000, P. R. China.
| | - Xinghe Zhang
- Department of Chemistry, College of Resource and Environment, Baoshan University, Baoshan 678000, P. R. China.
| | - Xiaona Yang
- Department of Chemistry, College of Resource and Environment, Baoshan University, Baoshan 678000, P. R. China.
| | - Hongbo Hou
- Department of Chemistry, College of Resource and Environment, Baoshan University, Baoshan 678000, P. R. China.
| | - Wei Ai
- Department of Chemistry, College of Resource and Environment, Baoshan University, Baoshan 678000, P. R. China.
| | - Liju Zhao
- Department of Chemistry, College of Resource and Environment, Baoshan University, Baoshan 678000, P. R. China.
| |
Collapse
|
11
|
Bashir K, Jamil F, Iqbal MA, Nazir S, Shoukat US, Bashir A, Nasrullah K, Rehman AU. Detection of different chemical moieties in aqueous media by luminescent Europium as sensor. REV INORG CHEM 2023. [DOI: 10.1515/revic-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
Detection of different chemical moieties especially trace metals is important for humans as well as water safety. In this review, different detectors synthesized by the combination of different ligands with luminescent europium complexes were discussed for the separation of metals and chemical moieties in aqueous media. These detectors displayed high sensitivity and selectivity. The limit-of-detection values were very low indicating that these detectors are best suitable for the sensing of chemical moieties and trace metals. These detectors’ luminescent changes could be noticed with the naked eye.
Collapse
Affiliation(s)
- Komal Bashir
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Faisal Jamil
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
- Department of Chemistry , Synthetic Organometallic and Coordination Chemistry Laboratory, University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Sadia Nazir
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Umar Sohail Shoukat
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Anam Bashir
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Kainat Nasrullah
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Ateeq-Ur Rehman
- Department of Physics , University of Agriculture , Faisalabad , Pakistan
| |
Collapse
|
12
|
Kaewnok N, Kraithong S, Mahaveero T, Maitarad P, Sirirak J, Wanichacheva N, Swanglap P. Silver nanoparticle incorporated colorimetric/fluorescence sensor for sub-ppb detection of mercury ion via plasmon-enhanced fluorescence strategy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Udhayakumari D. Review on fluorescent sensors-based environmentally related toxic mercury ion detection. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01138-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Ali S, Mansha M, Baig N, Khan SA. Cost-Effective and Selective Fluorescent Chemosensor (Pyr-NH@SiO2 NPs) for Mercury Detection in Seawater. NANOMATERIALS 2022; 12:nano12081249. [PMID: 35457957 PMCID: PMC9024866 DOI: 10.3390/nano12081249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 11/23/2022]
Abstract
The release of mercury into the environment has adverse effects on humans and aquatic species, even at very low concentrations. Pyrene and its derivatives have interesting fluorescence properties that can be utilized for mercury (Hg2+) ion sensing. Herein, we reported the highly selective pyrene-functionalized silica nanoparticles (Pyr-NH@SiO2 NPs) for chemosensing mercury (Hg2+) ions in a seawater sample. The Pyr-NH@SiO2 NPs were synthesized via a two-step protocol. First, a modified Stöber method was adopted to generate amino-functionalized silica nanoparticles (NH2@SiO2 NPs). Second, 1-pyrenecarboxylic acid was coupled to NH2@SiO2 NPs using a peptide coupling reaction. As-synthesized NH2@SiO2 NPs and Pyr-NH@SiO2 NPs were thoroughly investigated by 1H-NMR, FTIR, XRD, FESEM, EDS, TGA, and BET surface area analysis. The fluorescent properties were examined in deionized water under UV-light illumination. Finally, the developed Pyr-NH@SiO2 NPs were tested as a chemosensor for Hg2+ ions detection in a broad concentration range (0–50 ppm) via photoluminescence (PL) spectroscopy. The chemosensor can selectively detect Hg2+ ions in the presence of ubiquitous ions (Na+, K+, Ca2+, Mg2+, Ba2+, Ag+, and seawater samples). The quenching of fluorescence properties with Hg2+ ions (LOD: 10 ppb) indicates that Pyr-NH@SiO2 NPs can be effectively utilized as a promising chemosensor for mercury ion detection in seawater environments.
Collapse
Affiliation(s)
- Shahid Ali
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Nadeem Baig
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Safyan Akram Khan
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Correspondence: ; Tel.: +966-13-860-7261
| |
Collapse
|
15
|
Oguz M, Oguz A, Ali Bhatti A, Kocak A, Yilmaz M. “Turn-on” fluorescence probe for Al (III) and Hg (II) ions in aqueous medium: Synthesis, characterization, cytotoxicity, visual results in solution and cancer cells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Roy S, Mondal T, Dey D, Mane MV, Panja SS. A New Thiophene‐Appended Fluorescein‐Hydrazone‐Based Chromo‐Fluorogenic Sensor for the Screening of Hg
2+
Ions in Real Water Samples. ChemistrySelect 2021. [DOI: 10.1002/slct.202102692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Swapnadip Roy
- Department of Chemistry National Institute of Technology Durgapur Durgapur West Bengal 713209 India
| | - Tapashree Mondal
- Department of Chemistry National Institute of Technology Durgapur Durgapur West Bengal 713209 India
| | - Dhananjay Dey
- Department of Chemical Sciences IISER Mohali Mohali 140306 India
| | - Manoj V. Mane
- KAUST Catalysis Centre King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Sujit S. Panja
- Department of Chemistry National Institute of Technology Durgapur Durgapur West Bengal 713209 India
| |
Collapse
|
17
|
Girmatsion M, Adhanom A, Gebremedhin H, Mahmud A, Xie Y, Cheng Y, Yu H, Yao W, Guo Y, Qian H. Ultrasensitive and selective detection of Hg 2+ using fluorescent phycocyanin in an aqueous system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:886-895. [PMID: 34129421 DOI: 10.1080/10934529.2021.1935600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Hg2+ toxicity is one of the most common chemical poisonings that occurs mainly from drinking polluted water. In the current work, Phycocyanin (PC) was exploited as a fluorescent sensor for sensitive and selective detection of Hg2+ in an aqueous system. PC-Hg2+ interaction was monitored using a spectro-fluorometer under different buffered solutions at pH values of 6,7,8,9, or 10 above the isoelectric point of PC (5.18). A remarkable decrease of PC fluorescence intensity was observed under Tris-buffer at pH 6 upon the addition of increasing Hg2+ concentrations (1-120 nM). Under the maintained experimental conditions, the current sensor showed a good linear relationship with R2 = 0.9971 and a limit of detection as low as 0.7 nM was achieved. In addition, a notable selectivity of Hg2+ over other nine heavy metals (Cu2+, Zn2+, Pb2+, Mg2+, Mn4+, Li+, Fe3+, Co2+, and Al3+) was achieved in the presence of 120 nM of each metal. Moreover, the current fluorescent detection assay was also tested in real samples of pond water, and recoveries as well as relative standard deviations within the acceptable limits were recorded.
Collapse
Affiliation(s)
- Mogos Girmatsion
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technology, Massawa, Eritrea
| | - Awet Adhanom
- Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technology, Massawa, Eritrea
- Ministry of Marine Resources, Quality control laboratory, Massawa, Eritrea
| | - Henok Gebremedhin
- Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technology, Massawa, Eritrea
- Ministry of Marine Resources, Quality control laboratory, Massawa, Eritrea
| | - Abdu Mahmud
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technology, Massawa, Eritrea
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Tris(2,2′-bipyridine)ruthenium(II)/thiosemicarbazide electrochemiluminescence for the detection of thiosemicarbazide and mercury (II). Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Bhardwaj V, Nurchi VM, Sahoo SK. Mercury Toxicity and Detection Using Chromo-Fluorogenic Chemosensors. Pharmaceuticals (Basel) 2021; 14:123. [PMID: 33562543 PMCID: PMC7915024 DOI: 10.3390/ph14020123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Mercury (Hg), this non-essential heavy metal released from both industrial and natural sources entered into living bodies, and cause grievous detrimental effects to the human health and ecosystem. The monitoring of Hg2+ excessive accumulation can be beneficial to fight against the risk associated with mercury toxicity to living systems. Therefore, there is an emergent need of novel and facile analytical approaches for the monitoring of mercury levels in various environmental, industrial, and biological samples. The chromo-fluorogenic chemosensors possess the attractive analytical parameters of low-cost, enhanced detection ability with high sensitivity, simplicity, rapid on-site monitoring ability, etc. This review was narrated to summarize the mercuric ion selective chromo-fluorogenic chemosensors reported in the year 2020. The design of sensors, mechanisms, fluorophores used, analytical performance, etc. are summarized and discussed.
Collapse
Affiliation(s)
- Vinita Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, India;
| | - Valeria M. Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy
| | - Suban K. Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, India;
| |
Collapse
|
20
|
Roy SG, Mondal S, Ghosh K. Copillar[5]arene-rhodamine conjugate as a selective sensor for Hg2+ ions. NEW J CHEM 2020. [DOI: 10.1039/c9nj06264e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new copillar[5]arene-coupled rhodamine probe 1 shows selective sensing of Hg2+ ions over a series of metal ions in CH3CN by exhibiting color change of the solution as well as turn on fluorescence. It also shows interaction with Cu2+ by exhibiting different color and spectral change. Tetrabutylammonium iodide distinguishes between Hg2+ and Cu2+ ions.
Collapse
Affiliation(s)
| | - Subhendu Mondal
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| | - Kumaresh Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| |
Collapse
|