1
|
Elshahawy MF, Ahmed NA, Gad YH, Ali AEH. Efficient photocatalytic remediation of lerui acid brilliant blue dye using radiation- prepared carboxymethyl cellulose/acrylic acid hydrogel supported by ZnO@Ag. Int J Biol Macromol 2024; 262:129946. [PMID: 38340936 DOI: 10.1016/j.ijbiomac.2024.129946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Organic dye pollution from textiles and other industries presents a substantial risk to people and aquatic life. The use of photocatalysis to decolorize water using the strength of UV light is one of the most important remediation techniques. In the present study, a novel nanocomposites hydrogel including carboxymethyl cellulose (CMC), acrylic acid (AAc), Zinc oxide (ZnO), and silver (Ag) nanoparticles was produced using an eco-friendly γ-irradiation technique for photocatalytic decolorization applications. ZnO and Ag nanoparticles were distributed in the CMC/AAc hydrogel matrix without significant aggregation. SEM, XRD, EDX, TEM, and FTIR analyses were used to assess the physicochemical characteristics of the nanocomposite samples. Carboxymethyl cellulose/acrylic acid/Zinc oxide doped silver (CMC/PAAc/ZnO@Ag) nanocomposite hydrogels were developed and utilized in the photocatalytic decolorization of the lerui acid brilliant blue dye (LABB) when exposed to ultraviolet (UV) radiation. UV- Vis spectrophotometry was utilized to analyze the optical properties of the produced nanostructure. Regarding the decolorization of the LABB, the impacts of operational variables were investigated. The optimum conditions for decolorization (93 %) were an initial concentration of 50 mg/L, pH = 4, catalyst dosage of 50 g/L, and exposure time of 90 min. The results illustrated that the LABB acidic dye from wastewater was remarkably decolored.
Collapse
Affiliation(s)
- Mai F Elshahawy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nehad A Ahmed
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Yasser H Gad
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Amr El-Hag Ali
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
de Araujo GF, do Espírito Santo DG, Júnior SFS, Correia FV, Saggioro EM. Toxicological approaches as tool to assess the effects of a mixture of photocatalytic degradation products originated from the unregulated neonicotinoid acetamiprid employing a terrestrial organism (Eisenia andrei). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167271. [PMID: 37777123 DOI: 10.1016/j.scitotenv.2023.167271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Acetamiprid (ACT) has been detected in several water sources in Latin America. The presence of its degradation products in the environment is not negligible and transformation products (TPs) significantly contribute to environmental health risks. Although advanced oxidative processes are promising for the treatment of this neocotinoid, effects of these are still unknown. In this context, the effects of a mixture of photocatalytic degradation products resulting from an ACT treatment for 90 min employing TiO2/UV on cytotoxicity and oxidative stress parameters in Eisenia andrei earthworms in acute and chronic experiments using typical Latin American soil were assessed. Acute contact tests were performed (72 h) using a filter paper moistened with an ACT solution and a chronic test was performed using Oxisoil (200 g) moistened with an ACT solution for 45 days. Catalase (CAT) and glutathione-S-transferase (GST) activities, reduced glutathione (GSH) levels and cytotoxicity (cellular eleocyte and amoebocyte assessments) were investigated. Over 75 % of ACT was degraded within the first 15 min of treatment, with levels below the limit of detection after 60 min. The acute test revealed greater cytotoxic effects associated with the effluents treated for T0 and T15 min, with decreased cell density noted after 48 h of exposure, in addition to CAT induction (in all treatments) and GST induction following T0, T15 and T90 min exposures. Concerning the chronic assay, decreases in cell density (T0, T15, T60 and T90 min) and viability (T0, T60 and T90 min) were observed after 45 days, in addition to induced CAT activity following T0, T15 and T60 exposures and GST induction following the T60 min exposure. Reduced glutathione levels were unaltered, comprising the least sensitive biomarker among the investigated parameters to the treated effluent exposures. The mixture of ACT degradation products can cause toxic effects to non-target organisms, despite parent compound degradation, alerting for the need for ecotoxicological tests to prove decreased effluent toxicity, in addition to the improvement of degradation techniques.
Collapse
Affiliation(s)
- Gabriel Farias de Araujo
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Danielli Gundes do Espírito Santo
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Sidney Fernandes Sales Júnior
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Fábio Veríssimo Correia
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil; UNIRIO, Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, 22290-20 Rio de Janeiro, Brazil; Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil; Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, 21040-360 Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Subagyo R, Yudhowijoyo A, Sholeha NA, Hutagalung SS, Prasetyoko D, Birowosuto MD, Arramel A, Jiang J, Kusumawati Y. Recent advances of modification effect in Co 3O 4-based catalyst towards highly efficient photocatalysis. J Colloid Interface Sci 2023; 650:1550-1590. [PMID: 37490835 DOI: 10.1016/j.jcis.2023.07.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Tricobalt tetroxide (Co3O4) has been developed as a promising photocatalyst material for various applications. Several reports have been published on the self-modification of Co3O4 to achieve optimal photocatalytic performance. The pristine Co3O4 alone is inadequate for photocatalysis due to the rapid recombination process of photogenerated (PG) charge carriers. The modification of Co3O4 can be extended through the introduction of doping elements, incorporation of supporting materials, surface functionalization, metal loading, and combination with other photocatalysts. The addition of doping elements and support materials may enhance the photocatalysis process, although these modifications have a slight effect on decreasing the recombination process of PG charge carriers. On the other hand, combining Co3O4 with other semiconductors results in a different PG charge carrier mechanism, leading to a decrease in the recombination process and an increase in photocatalytic activity. Therefore, this work discusses recent modifications of Co3O4 and their effects on its photocatalytic performance. Additionally, the modification effects, such as enhanced surface area, generation of oxygen vacancies, tuning the band gap, and formation of heterojunctions, are reviewed to demonstrate the feasibility of separating PG charge carriers. Finally, the formation and mechanism of these modification effects are also reviewed based on theoretical and experimental approaches to validate their formation and the transfer process of charge carriers.
Collapse
Affiliation(s)
- Riki Subagyo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Azis Yudhowijoyo
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Novia Amalia Sholeha
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| | | | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore
| | - Arramel Arramel
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia.
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China.
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia.
| |
Collapse
|
4
|
Elango D, Manikandan V, Packialakshmi JS, Hatamleh AA, Alnafisi BK, Liu X, Zhang F, Jayanthi P. Synthesizing Ag 2O x(3 wt%)-loaded ZnFe 2O 4 photocatalysts for efficiently saving polluted aquatic ecosystems. CHEMOSPHERE 2023; 311:136983. [PMID: 36306962 DOI: 10.1016/j.chemosphere.2022.136983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report an Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts synthesized by co-precipitation and incipient wet impregnation approach for acetamiprid degradation, antibacterial, antioxidant, and toxicity assay. Initially, bare ZnFe2O4 nanostructures were made through a simple co-precipitation method. In the second step, 3 wt% of various transition metal oxides (CuOx, ZrOx, and Ag2Ox) were embedded on the surface of ZnFe2O4 photocatalysts via a wet impregnation method. Further, the prepared photocatalysts were systematically characterized using XRD, FTIR, FE-SEM, BET, HRTEM, and XPS analysis. The optimum Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts revealed higher degradation efficiencies for acetamiprid under sunlight irradiation. Additionally, the Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts showed more effective antioxidant and antibacterial activity than blank and bare ZnFe2O4 nanomaterials. The enriched catalytic efficiency can be accredited to the 3 wt% of Ag2Ox NPs loaded on ZnFe2O4 nanomaterials, possibly due to the boosted transport properties of the electron-hole pairs. This study will provide a new avenue for the development of simple and effective photocatalysts for efficiently saving polluted aquatic ecosystems.
Collapse
Affiliation(s)
- Duraisamy Elango
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Environmental Science, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Velu Manikandan
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Food Science and Technology, Seoul Women's University, 621 Hwarangno, Nowon-gu, Seoul, South Korea; Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, 600 077, India
| | | | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bassam Khalid Alnafisi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, 602105, Tamilnadu, India.
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| | - Palaniyappan Jayanthi
- Department of Environmental Science, Periyar University, Salem, 636011, Tamil Nadu, India.
| |
Collapse
|
5
|
John KI, Adeleye AT, Adeniyi AG, Sani LA, Abesa S, Orege IJ, Adenle AA, Elawad M, Omorogie MO. Screening of Zeolites series: H-β/H-MOR/H-ZSM-5 as potential templates for photocatalyst heterostructure composites through photocatalytic degradation of tetracycline. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Warshagha MA, Muneer M. Direct Z-Scheme AgBr/β-MnO 2 Photocatalysts for Highly Efficient Photocatalytic and Anticancer Activity. ACS OMEGA 2022; 7:30171-30183. [PMID: 36061726 PMCID: PMC9434753 DOI: 10.1021/acsomega.2c03260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 05/28/2023]
Abstract
The preparation of visible light-responsive efficient photocatalysts for removing organic contaminants from water and killing cancer cells has gotten a lot of attention due to the growing global concern. In this study, we have successfully fabricated an efficient AgBr/β-MnO2 nanocomposite via a facile deposition and precipitation method at room temperature. Techniques such as XRD, SEM-EDS, TEM, DRS, PL, EIS, ESR, and FTIR were used to determine the crystalline, structural, morphological, optical, and other properties. The SEM and TEM analyses reveal that AgBr NPs are decorated on the surface of β-MnO2, which possesses rods with a sphere-like structure for AgBr/β-MnO2. The EDX analysis confirms the existence of Mn, O, Ag, and Br elements in the nanocomposites without an extra peak, indicating that the synthesized samples are highly pure. The high photocatalytic performance of AgBr/β-MnO2 could be attributed to the formation of Ag NPs and the construction of the Z-scheme heterojunction between AgBr and β-MnO2. This may enhance fast light absorption and efficient photogenerated (e-/h+) pairs, as indicated by EIS and photoluminescence measurements, which in turn achieved high activity for the decomposition of MB (97%, in 12 min), RhB (98.9%, in 9 min), and paracetamol (80%, in 180 min), respectively. The kinetic model study proposed that the first-order model showed a better fit than the zero- and second-order for the photocatalytic decolorization of RhB dye. XRD analysis of 0.2 AgBr/β-MnO2 before and after recycling confirms the high stability of the catalyst. HPLC results showed that no detectable by-products are produced through the decomposition of paracetamol. Interestingly, 0.2 AgBr/β-MnO2 nanocomposites showed visible light-induced anticancer activity against A549 cancer cell lines. The mechanistic degradation pathway has been proposed using the involvement of active species like superoxide radicals (-•O2) and photoinduced holes (h+). The proposed work focuses on synthesizing effective photocatalysts in a less hazardous environment with superior biological activity.
Collapse
|
7
|
Lofrano G, Ubaldi F, Albarano L, Carotenuto M, Vaiano V, Valeriani F, Libralato G, Gianfranceschi G, Fratoddi I, Meric S, Guida M, Romano Spica V. Antimicrobial Effectiveness of Innovative Photocatalysts: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2831. [PMID: 36014697 PMCID: PMC9415964 DOI: 10.3390/nano12162831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Waterborne pathogens represent one of the most widespread environmental concerns. Conventional disinfection methods, including chlorination and UV, pose several operational and environmental problems; namely, formation of potentially hazardous disinfection by-products (DBPs) and high energy consumption. Therefore, there is high demand for effective, low-cost disinfection treatments. Among advanced oxidation processes, the photocatalytic process, a form of green technology, is becoming increasingly attractive. A systematic review was carried out on the synthesis, characterization, toxicity, and antimicrobial performance of innovative engineered photocatalysts. In recent decades, various engineered photocatalysts have been developed to overcome the limits of conventional photocatalysts using different synthesis methods, and these are discussed together with the main parameters influencing the process behaviors. The potential environmental risks of engineered photocatalysts are also addressed, considering the toxicity effects presented in the literature.
Collapse
Affiliation(s)
- Giusy Lofrano
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Francesca Ubaldi
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Luisa Albarano
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; (L.A.); (G.L.); (M.G.)
| | - Maurizio Carotenuto
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.C.); (V.V.)
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.C.); (V.V.)
| | - Federica Valeriani
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; (L.A.); (G.L.); (M.G.)
| | - Gianluca Gianfranceschi
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sureyya Meric
- Department of Environmental Engineering, Tekirdag Namik Kemal University, Corlu 59860, Turkey;
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; (L.A.); (G.L.); (M.G.)
| | - Vincenzo Romano Spica
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| |
Collapse
|
8
|
Voskresenskaya OO. Hydrolysis and Complex Formation of Cerium(IV) with Dioxysuccinic Acid in Sulfate Solutions. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622070233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Ag/AgCl@Tubular g-C3N4 nanostructure as an enhanced visible light photocatalyst for the removal of organic dye compounds and biomedical waste under visible light. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113700] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Rathi A, Barman S, Basu S, Arya RK. Post-fabrication structural changes and enhanced photodegradation activity of semiconductors@zeolite composites towards noxious contaminants. CHEMOSPHERE 2022; 288:132609. [PMID: 34687683 DOI: 10.1016/j.chemosphere.2021.132609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
This review article provides the recent progress in semiconductor-based zeolite photoactive materials for the application of noxious contaminants removal. The rapidly expanding industrialization and globalization cause serious threats to the environment or water bodies. The semiconductor@zeolite photocatalysts were implemented for water quality management/sustainment. The exclusive properties of zeolite material have been elaborated with their role in the photocatalysis process. The photoactive material's properties like single-atom catalysts (SACs), distribution of metal in the zeolite crystal were elaborated along with their role in catalytic reactions. Differently prepared semiconductor@zeolite composites such as TiO2@zeolite, binary and ternary composites, Fe/Ag/bismuth-modified/ZnO/ZnS/NiO/g-C3N4/core-shell/quantum dots modified zeolite composites, were systematically summarized. The research progress in morphologies, structural effect, degradation mechanism were recapitulated and tabulated form of % degradation with their optimal parameters such as catalyst dose, pollutant concentrations, pH, light source intensities were also provided. The significance of zeolite frameworks, the structural properties of semiconductor@zeolite photoactive materials to enhance the degradation efficiencies was explored. Analysis of the intermediate products of Norfloxacin, TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), TCDF (2,3,7,8-tetrachlorodibenzofuran), diclofenac contaminants were systematically represented and structurally identified by GC-MS/HPLC-MS techniques.
Collapse
Affiliation(s)
- Aanchal Rathi
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, India
| | - Sanghamitra Barman
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, India.
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
11
|
Fauzi AA, Jalil AA, Hassan NS, Aziz FFA, Azami MS, Hussain I, Saravanan R, Vo DVN. A critical review on relationship of CeO 2-based photocatalyst towards mechanistic degradation of organic pollutant. CHEMOSPHERE 2022; 286:131651. [PMID: 34346345 DOI: 10.1016/j.chemosphere.2021.131651] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/21/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Nanostructured photocatalysts commonly offered opportunities to solve issues scrutinized with the environmental challenges caused by steep population growth and rapid urbanization. This photocatalyst is a controllable characteristic, which can provide humans with a clean and sustainable ecosystem. Over the last decades, one of the current thriving research focuses on visible-light-driven CeO2-based photocatalysts due to their superior characteristics, including unique fluorite-type structure, rigid framework, and facile reducing oxidizing properties of cerium's tetravalent (Ce4+) and trivalent (Ce3+) valence states. Notwithstanding, owing to its inherent wide energy gap, the solar energy utilization efficiency is low, which limits its application in wastewater treatment. Numerous modifications of CeO2 have been employed to enhance photodegradation performances, such as metals and non-metals doping, adding support materials, and coupling with another semiconductor. Besides, all these doping will form a different heterojunction and show a different way of electron-hole migration. Compared to conventional heterojunction, advanced heterojunction types such as p-n heterojunction, Z-scheme, Schottky junction, and surface plasmon resonance effect exhibit superior performance for degradation owing to their excellent charge carrier separation, and the reaction occurs at a relatively higher redox potential. This review attends to providing deep insights on heterojunction mechanisms and the latest progress on photodegradation of various contaminants in wastewater using CeO2-based photocatalysts. Hence, making the CeO2 photocatalyst more foresee and promising to further development and research.
Collapse
Affiliation(s)
- A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, UTM Johor Bahru, 81310, Johor, Malaysia.
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - F F A Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - M S Azami
- Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Malaysia
| | - I Hussain
- Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Malaysia
| | - R Saravanan
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775 Arica, Chile
| | - D-V N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
12
|
Mao X, Li M, Li M. Fabrication of Bi 4O 5Br 2 photocatalyst for carbamazepine degradation under visible-light irradiation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:77-88. [PMID: 34280156 DOI: 10.2166/wst.2021.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bi4O5Br2 with irregular flake shape was synthesized by a facile and energy-saving hydrolysis method. Its band gap energy (Eg) was 2.1 eV. The formation mechanism was proposed. The Bi4O5Br2 exhibited superb visible-light-induced photocatalytic activity (>90%) toward the oxidation of carbamazepine. The kinetics rate constant (k) attained 0.0196 min-1. The effect of Bi4O5Br2 dosage, initial solution pH value, and inorganic anions on carbamazepine degradation was investigated. During the oxidation process, photogenerated holes (h+) and superoxide radical anions (•O2-) were the main active species. Based on the reaction intermediates results determined through a combined system of liquid chromatography and mass spectrometry, a possible reaction mechanism was speculated. The degree of contamination of carbamazepine solution after treatment was evaluated through the teratogenic effect experiment. After 120 min of visible light exposure, the carbamazepine solution is free of pollution. Also, the as-synthesized Bi4O5Br2 maintains good chemical stability and could be reused in the photodegradation process, indicating its potential in practical applications.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Chemistry, Changzhi University, Changzhi, 046011, China
| | - Min Li
- Department of Chemistry, Changzhi University, Changzhi, 046011, China
| | - Mengyao Li
- Department of Chemistry, Changzhi University, Changzhi, 046011, China
| |
Collapse
|
13
|
A kinetic study of the photooxidation of water by aqueous cerium(IV) in sulfuric acid using a diode array spectrophotometer. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Efficient photocatalytic degradation of environmental pollutant with enhanced photocarrier separation in novel Z-scheme a-MnO2 nanorod/a-MoO3 nanocomposites. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112787] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Heidarpour H, Golizadeh M, Padervand M, Karimi A, Vossoughi M, Tavakoli MH. In-situ formation and entrapment of Ag/AgCl photocatalyst inside cross-linked carboxymethyl cellulose beads: A novel photoactive hydrogel for visible-light-induced photocatalysis. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112559] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|