1
|
Chen Z, Li H, Liu X, Zhou B, Zhang H, Kuang S, Zhang H, Yu L, Liu X, Zhang L, Ai Z. Formic Acid-Intensified Photoreduction of NOx on Iron Minerals Triggers Daytime HONO Formation through Active Hydrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18295-18303. [PMID: 39363448 DOI: 10.1021/acs.est.4c05974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Nitrous acid (HONO) is crucial in atmospheric chemistry as a precursor to morning peak hydroxyl radicals and significantly affects urban air quality by forming secondary pollutants, yet the mechanisms of its daytime formation is not fully understood. This study investigates the role of formic acid (HCOOH), a prevalent electron and proton donor, in the transformation of nitrogen oxides (NOx) and the formation of HONO on photoactive mineral dust. Exploiting hematite (Fe2O3) as an environmental indicator, we demonstrate that HCOOH significantly promotes the photoreduction of NO2 to HONO, while suppressing nitrate accumulation. This occurs through the formation of a surface ≡Fe-OOCH complex, where sunlight activates the C-H bond to generate and transfer active hydrogen, directly converting NO2 to HONO. Additionally, HCOOH can trigger the photolysis of nitrates as predeposited on Fe2O3, further increasing HONO production. These findings show that HCOOH-mediated photochemical reactions on iron minerals may contribute to elevated atmospheric HONO levels, highlighting a crucial pathway with broad effects on atmospheric chemistry and public health.
Collapse
Affiliation(s)
- Ziyue Chen
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xupeng Liu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Biao Zhou
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hao Zhang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Siya Kuang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hao Zhang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Linghao Yu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiao Liu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhihui Ai
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
2
|
Li Q, Ma S, Liu Y, Wu X, Fu H, Tu X, Yan S, Zhang L, George C, Chen J. Phase State Regulates Photochemical HONO Production from NaNO 3/Dicarboxylic Acid Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7516-7528. [PMID: 38629947 DOI: 10.1021/acs.est.3c10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.
Collapse
Affiliation(s)
- Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, PR China
| | - Yu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Xinyuan Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, PR China
- Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Shanghai 202162, PR China
| | - Xiang Tu
- Jiangxi Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330000, PR China
| | - Shuwen Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
3
|
Xu J, He C, Li J, Zhao L, Chen Y, Bai Y, Li J, Wang H, Chen Z, Qiu Z. Spatial-temporal distribution characteristics of pollutants of heavy-duty diesel vehicles in urban road networks: a case study of Kunming City. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:126072-126087. [PMID: 38010542 DOI: 10.1007/s11356-023-31084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
With the continuous promotion of urbanization in China, the economic level of small and medium-sized cities has been further improved. The transportation industry is crucial in promoting urban-rural integration and construction. Still, motor vehicle emissions also bring air pollution problems to cities, with heavy-duty diesel vehicle emissions severely impacting the urban environment. This study used a bottom-up approach to analyze the spatial emission characteristics of heavy-duty diesel vehicles under different road types in Kunming, a typical medium-sized city in China. A high-resolution emission inventory (1 km × 1 km) of heavy-duty diesel vehicles was developed using the vehicle emission inventory model (VEIN) and ArcGIS, and the vehicle emission standards were determined by the Weibull survival rate curve. The VEIN emission model was optimized using a velocity correction curve. The results showed that heavy-duty vehicles had a more significant impact on the emissions during the morning and evening peak hours, with low emission levels during the day and high emission levels at night and early morning. The total daily emissions of carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), and particulate matter (PM10 and PM2.5) from heavy-duty diesel vehicles in Motorway, Trunk, Primary, Secondary, and Tertiary were 14.44 tons, 5.26 tons, 4.78 tons, 7.02 tons, and 3.83 tons, respectively. China III heavy-duty diesel vehicles mainly contributed to CO, HC, NOx, and PM emissions. This study can be used as an essential reference for controlling the exhaust emissions of HDDVs in Kunming.
Collapse
Affiliation(s)
- Jiachen Xu
- School of Machinery and Transportation, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory of Motor Vehicle Environmental Protection and Safety in Plateau Mountainous Areas of Yunnan Province, Kunming, 650224, China
| | - Chao He
- School of Machinery and Transportation, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory of Motor Vehicle Environmental Protection and Safety in Plateau Mountainous Areas of Yunnan Province, Kunming, 650224, China
| | - Jiaqiang Li
- School of Machinery and Transportation, Southwest Forestry University, Kunming, 650224, China.
- Key Laboratory of Motor Vehicle Environmental Protection and Safety in Plateau Mountainous Areas of Yunnan Province, Kunming, 650224, China.
| | - Longqing Zhao
- School of Machinery and Transportation, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory of Motor Vehicle Environmental Protection and Safety in Plateau Mountainous Areas of Yunnan Province, Kunming, 650224, China
| | - Yanlin Chen
- School of Machinery and Transportation, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory of Motor Vehicle Environmental Protection and Safety in Plateau Mountainous Areas of Yunnan Province, Kunming, 650224, China
| | - Yangyang Bai
- School of Machinery and Transportation, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory of Motor Vehicle Environmental Protection and Safety in Plateau Mountainous Areas of Yunnan Province, Kunming, 650224, China
| | - Ju Li
- School of Machinery and Transportation, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory of Motor Vehicle Environmental Protection and Safety in Plateau Mountainous Areas of Yunnan Province, Kunming, 650224, China
| | - Hao Wang
- School of Machinery and Transportation, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory of Motor Vehicle Environmental Protection and Safety in Plateau Mountainous Areas of Yunnan Province, Kunming, 650224, China
| | - Zhenyu Chen
- School of Machinery and Transportation, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory of Motor Vehicle Environmental Protection and Safety in Plateau Mountainous Areas of Yunnan Province, Kunming, 650224, China
| | - Zhenyu Qiu
- School of Machinery and Transportation, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory of Motor Vehicle Environmental Protection and Safety in Plateau Mountainous Areas of Yunnan Province, Kunming, 650224, China
| |
Collapse
|
4
|
Pei WX, Ma SS, Chen Z, Zhu Y, Pang SF, Zhang YH. Heterogeneous uptake of NO 2 by sodium acetate droplets and secondary nitrite aerosol formation. J Environ Sci (China) 2023; 127:320-327. [PMID: 36522064 DOI: 10.1016/j.jes.2022.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/17/2023]
Abstract
The high NO3- concentration in fine particulate matters (PM2.5) during heavy haze events has attracted much attention, but the formation mechanism of nitrates remains largely uncertain, especially concerning heterogeneous uptake of NOX by aqueous phase. In this work, the heterogeneous uptake of NO2 by sodium acetate (NaAc) droplets with different NO2 concentrations and relative humidity (RH) conditions is investigated by microscopic Fourier transform infrared spectrometer (micro-FTIR). The IR feature changes of aqueous droplets indicate the acetate depletion and nitrite formation in humid environment. This implies that acetate droplets can provide the alkaline aqueous circumstances caused by acetate hydrolysis and acetic acid (HAc) volatilization for nitrite formation during the NO2 heterogeneous uptake. Meanwhile, the nitrite formation will exhibit a pH neutralizing effect on acetate hydrolysis, further facilitating HAc volatilization and acetate depletion. The heterogeneous uptake coefficient increases from 5.2 × 10-6 to 1.27 × 10-5 as RH decreases from 90% to 60% due to the enhanced HAc volatilization. Furthermore, no obvious change in uptake coefficient with different NO2 concentrations is observed. This work may provide a new pathway for atmospheric nitrogen cycling and secondary nitrite aerosol formation.
Collapse
Affiliation(s)
- Wen-Xiu Pei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai-Shuai Ma
- College of Chemistry and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Zhe Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yue Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shu-Feng Pang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yun-Hong Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
5
|
Jin S, Kong L, Yang K, Wang C, Xia L, Wang Y, Tan J, Wang L. Combined effects of high relative humidity and ultraviolet irradiation: Enhancing the production of gaseous NO 2 from the photolysis of NH 4NO 3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156480. [PMID: 35675886 DOI: 10.1016/j.scitotenv.2022.156480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Free radicals and nitrogen-containing species produced by nitrate photolysis can affect various atmospheric chemical processes, and thereby the photochemical behavior of atmospheric nitrate aerosols has been attracting much attention. However, the photolysis mechanism of NH4NO3 and its products under different atmospheric conditions remain unclear. In this study, the effects of relative humidity (RH), pH, NH3, ultraviolet (UV) light intensity and halogen ions (Cl-, Br- and I-) on the photolysis of particulate NH4NO3 have been investigated through a flow tube reactor. The results show that RH can significantly enhance the production of gaseous NO2 from the photolysis of NH4NO3 when RH is higher than its deliquescence RH, but almost no NO2 is generated under dry conditions. Under high RH and UV light, the main product of NH4NO3 photolysis is NO2, rather than NO and HONO, and another main species HNO3 which mainly comes from the hydrolysis of product NO2 in the gas path was detected. Almost no NO2 and HNO3 are produced under high RH without UV light or low RH with UV light, showing the combined effect of high RH and UV irradiation on the photolysis of NH4NO3. In addition, under high RH, the lower the pH and the stronger the light intensity, the higher the NO2 production. Furthermore, surprising yields of NO and HONO are detected in the presence of halogen ions, especially in the presence of I-, indicating the important role of halogen ion in the nitrate photolysis. These results provide new insights into the photolysis of atmospheric nitrate aerosols, and may contribute to elucidating the formation and migration of atmospheric nitrate aerosols and the potential mechanisms of the occurrence and evolution of atmospheric pollution and ozone pollution.
Collapse
Affiliation(s)
- Shengyan Jin
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Lingdong Kong
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China; Shanghai Institute of Eco-Chongming (SIEC), No.3663 Northern Zhongshan Road, Shanghai 200062, China.
| | - Kejing Yang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Chao Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Lianghai Xia
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Yuwen Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Jie Tan
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Lin Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
6
|
Photocatalytic Reduction of Nitrates and Combined Photodegradation with Ammonium. Catalysts 2022. [DOI: 10.3390/catal12030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bare titania and metal-promoted TiO2 catalysts were employed in the treatment of nitrates, which are ubiquitous pollutants of wastewater. The results show that the process can be carried out under visible light (from a white light LED lamp) and, in the best case, 23.5% conversion of nitrate was obtained over 4 h with full selectivity towards N2 by employing 0.1 mol% Ag/TiO2 prepared by flame spray pyrolysis. Moreover, the performance was worse when testing the same catalysts with tap water (11.3% conversion), due to the more complex composition of the matrix. Finally, it was found that photoreduction of nitrate can be effectively performed in combination with photo-oxidation of ammonium without loss in the activity, opening up the possibility of treating highly polluted wastewater with a single process. The latter treatment employs the two contaminants simultaneously as electron and holes scavengers, with very good selectivity, in a completely new process that we may call Photo-Selective Catalytic Reduction (Photo-SCR).
Collapse
|