1
|
Ma Q, Yang X, Zhao Y. Development of a Coumarin-Based Schiff Base Fluorescent Probe and its Application in Detection of Cu²⁺. J Fluoresc 2025:10.1007/s10895-024-04114-9. [PMID: 39776091 DOI: 10.1007/s10895-024-04114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
A highly practical Schiff base fluorescent probe, (E)-3-amino-N'-((7-(diethylamino)-2-oxo-2 H-chromen-3-yl)methylene)thiophene-2-carbohydrazide (M), with a facile synthetic route has been successfully developed. M has been utilized for the specific detection of Cu2+ in THF/H2O Tris buffer solution (v/v = 9:1, 0.01 M, pH = 7.4) via the fluorescence quenching mechanism. The detection of Cu2+ by M has been largely unaffected by interfering ions and has demonstrated a distinct dual-channel response in both colorimetry and fluorescence. The response time of M towards Cu2+ is remarkably fast, taking only 30 s. Additionally, M exhibits exceptional sensitivity with a limit of detection (LOD) as low as 1.76 × 10- 7 M. The stoichiometric ratio between M and Cu2+ has been determined to be 1:1 through Job's Plot, while the binding constant has been calculated as 1.19 × 104 M- 1 using the Benesi-Hildebrand equation. The structure of M has been elucidated by 1H NMR and ESI-MS analyses, thereby confirming the binding mode between M and Cu2+. Further validation has been achieved through DFT calculations. The test paper based on M has finally been prepared for the rapid and convenient detection of Cu2+. The M has also been utilized for the detection of Cu2+ in real samples, including lake water, onions, and coffee, demonstrating favorable recovery rates. Moreover, successful visual detection has been achieved in food samples such as bean sprouts and rice. The aforementioned examples have collectively illustrated the practical applicability of M in authentic samples.
Collapse
Affiliation(s)
- Qiurui Ma
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xinli Yang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yingying Zhao
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Jain A, De S, Mukherjee D, Haribabu J, Santibanez JF, Barman P. A substituent-modified new salicylaldehyde-diphenyl-azine based AIEgen: A promising skeleton for copper ion sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124824. [PMID: 39029203 DOI: 10.1016/j.saa.2024.124824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
In this study, we have reported a novel 4-bromo-salicylaldehyde-diphenyl-azine (B-1), a new member of salicylaldehyde-diphenyl-azine (SDPA) family known for its excellent sensing properties. In contrast to the previously reported AIEgens, we found that the bromo-substitution at the 4th position of the salicylaldehyde moiety blue-shifted the emission by 10 and 15 nm as compared to the unsubstituted (Tong et.al 2017) and Bromo at the 5th position (Jain et.al 2023) respectively. Moreover, B-1 crystallizes instantly as the cooling process starts, which was not observed in the previously reported scaffolds. The sensing investigation again demonstrated the precise and ultrasensitive behavior of B-1 for copper ions. B-1 has a very low LOD value i.e. 29.2 x 10-8 M with a high association constant and binds with copper ion in 2:1 mode. This time we also analyzed the practical applicability in the solid phase using cotton swabs and performed the real-time estimation of copper ions in water and biological samples like urine and blood serum. The excellent percentage recovery and the RSD value suggest the precision of the experiments. Further, we also perform the sensing in living cancer HeLa cells. Altogether, we found that the SDPA skeleton is precise and ultrasensitive for copper ions and versatile which can be used variously to detect copper ions in the real world. This research will surely help in developing new specific skeleton-based AIEgens with desirable emission properties and precise applications in the future.
Collapse
Affiliation(s)
- Abhinav Jain
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India
| | - Debanggana Mukherjee
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile; Chennai Institute of Technology (CIT), Chennai 600069, India
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11029, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago 8370993, Chile
| | - Pranjit Barman
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India.
| |
Collapse
|
3
|
Hassan N, Sanfui MH, Chowdhury D, Roy S, Ghosh NN, Rahaman M, Chang M, Hasnat MA, Chattopadhyay PK, Singha NR. Synthesis of Intrinsically-Fluorescent Aliphatic Tautomeric Polymers for Proton-Conductivity, Dual-State Emission, and Sensing/Oxidation-Reduction of Metal Ions. Macromol Rapid Commun 2024; 45:e2400363. [PMID: 38950314 DOI: 10.1002/marc.202400363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/15/2024] [Indexed: 07/03/2024]
Abstract
Herein, fluorescent conducting tautomeric polymers (FCTPs) are developed by polymerizing 2-methylprop-2-enoic acid (MPEA), methyl-2-methylpropenoate (MMP), N-(propan-2-yl)prop-2-enamide (PPE), and in situ-anchored 3-(N-(propan-2-yl)prop-2-enamido)-2-methylpropanoic acid (PPEMPA). Among as-synthesized FCTPs, the most promising characteristics in FCTP3 are confirmed by NMR and Fourier transform infrared (FTIR) spectroscopies, luminescence enhancements, and computational studies. In FCTP3, ─C(═O)NH─, -C(═O)N<, ─C(═O)OH, and ─C(═O)OCH3 subluminophores are identified by theoretical calculations and experimental analyses. These subluminophores facilitate redox characteristics, solid state emissions, aggregation-enhanced emissions (AEEs), excited-state intramolecular proton transfer (ESIPT), and conductivities in FCTP3. The ESIPT-associated dual emission/AEEs of FCTP3 are elucidated by time correlated single photon counting (TCSPC) investigation, solvent polarity effects, concentration-dependent emissions, dynamic light scattering (DLS) measurements, field emission scanning electron microscopy images, and computational calculations. The cyclic voltammetry measurements of FCTP3 indicate cumulative redox efficacy of ─C(═O)OH, ─C(═O)NH─/-C(═O)N<, ─C(─O─)═NH+─/─C(─O─)═N+, and ─C(═N)OH functionalities. In FCTP3, ESIPT-associated dual-emission enable in the selective detection of Cr(III)/Cu(II) at λem1/λem2 with the limit of detection of 0.0343/0.079 ppb. The preferential interaction of Cr(III)/Cu(II) with FCTP3 (amide)/FCTP3 (imidol) and oxidation/reduction of Cr(III)/Cu(II) to Cr(VI)/Cu(I) are further supported by NMR-titration; FTIR and X-ray photoelectron spectroscopy analyses; TCSPC/electrochemical/DLS measurement; alongside theoretical calculations. The proton conductivity of FCTP3 is explored by electrochemical impedance spectroscopy and I-V measurements.
Collapse
Affiliation(s)
- Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | | | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, P.O. Box 2455, Saudi Arabia
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| |
Collapse
|
4
|
Bhandari R, Rai R, Kaleem M, Pratap R, Shraogi N, Patnaik S, Bhattacharya S, Misra A. Boron-Salphen Conjugate based Molecular Probe Exhibiting Fluorescence On-Off-On Response in Detection of Cu 2+ and ATP through Displacement Approach. Chem Asian J 2024; 19:e202400398. [PMID: 38775649 DOI: 10.1002/asia.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Synthesis and photophysical properties of a fluorescent probe HBD is described. Probe upon interaction with metal ions, anions and nucleoside pyrophosphates (NPPs) showed fluorescence quenching with Cu2+ due to chelation enhanced quenching effect (CHEQ). Moreover, interaction of ensemble HBD.Cu2+ with anions and NPPs showed fluorescence "turn-On" response with ATP selectively. "On-Off-On" responses observed with Cu2+ and ATP is attributed to an interplay between ESIPT and TICT processes. Cyclic voltammogram of probe exhibited quasi-reversible redox behaviour with three oxidation and two reduction potentials and the change in band gaps of probe suggested the interaction with Cu2+ and ATP. The 2 : 1 and 1 : 1 binding stoichiometry for an interaction between probe and Cu2+ (LOD, 62 nM) and ensemble, HBD.Cu2+ with ATP (LOD, 0.4 μM) respectively are realised by Job's plot and HRMS data. Cell imaging studies carried out to detect Cu2+ and ATP in HeLa cells. Also, the output emission observed with Cu2+ and ATP is utilized to construct an implication (IMP) logic gate. Test paper strips showed naked-eye visible color responses to detect Cu2+ and ATP. In real water samples probe successfully detected copper (0.03 μM) between 5-6.5 ppb level (ICP-MS method).
Collapse
Affiliation(s)
- Rimpi Bhandari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ravisen Rai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Mohammed Kaleem
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Rajesh Pratap
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Nikita Shraogi
- Nano Laboratory, Drug and Chemical Toxicology Group, FEST Division, Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Satyakam Patnaik
- Nano Laboratory, Drug and Chemical Toxicology Group, FEST Division, Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subrato Bhattacharya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Arvind Misra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| |
Collapse
|
5
|
Udhayakumari D. Mechanistic Innovations in Fluorescent Chemosensors for Detecting Toxic Ions: PET, ICT, ESIPT, FRET and AIE Approaches. J Fluoresc 2024:10.1007/s10895-024-03843-1. [PMID: 39018001 DOI: 10.1007/s10895-024-03843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Fluorescent chemosensors have become vital tools for detecting toxic ions due to their exceptional sensitivity, selectivity, and rapid response times. These sensors function through various mechanisms, each providing unique advantages for specific applications. This review offers a comprehensive overview of the mechanistic innovations in fluorescent chemosensors, emphasizing five key approaches: Photoinduced Electron Transfer (PET), Fluorescence Resonance Energy Transfer (FRET), Intramolecular Charge Transfer (ICT), Aggregation-Induced Emission (AIE), and Excited-State Intramolecular Proton Transfer (ESIPT). We highlight the substantial progress made in developing these chemosensors, discussing their design principles, sensing mechanisms, and practical applications, with a particular focus on their use in detecting toxic ions relevant to environmental and biological contexts.
Collapse
|
6
|
Li M, Li N, Shao F, Wang R, Chen M, Liu YJ, Zhao Y, Li R. Synthesis of a super-low detection limit fluorescent probe for Al 3+ and its application in fluorescence imaging of zebrafish and cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123676. [PMID: 38039642 DOI: 10.1016/j.saa.2023.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
A novel fluorescent probe N'-(2-hydroxybenzylidene)-indole-3-formylhydrazine (JHK) was designed and synthesized based on the condensation reaction of indole-3-formylhydrazine and salicylaldehyde. The probe JHK solution could highly selectively recognize Al3+ by the obvious fluorescence enhancement (288-fold) after adding Al3+. And the probe solution with Al3+ had a very high fluorescence quantum yield (89.29 %). The detection limit was calculated to be 1.135 nM, which was significantly lower than many reported detection limits, indicating that the probe JHK had pretty good sensitivity. The ratio of JHK to Al3+ (1:1) and the sensing mechanism were determined by Job's plot, 1H NMR spectra, FTIR spectra, ESI-MS and Gaussian calculation. The probe solution and medium-speed filter paper were successfully used to make test papers for more convenient detection of Al3+. Furthermore, the probe JHK had been successfully applied to the detection of Al3+ in real water, zebrafish and living cells.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Na Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Feng Shao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Rui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Miao Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Yuan-Jun Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Yu Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China.
| | - Rong Li
- Qingdao Women and Children 's Hospital, No. 217 Liaoyang West Road, Qingdao, Shandong 226034, PR China.
| |
Collapse
|
7
|
Chen M, Zhong M, Huang S, Chen Y, Cao F, Hu H, Huang W, Ji D, Zhu M. α-Cyanostilbene-based sensor with “AIE and ESIPT” features emitting long-wavelength intense red-fluorescence for highly selective and sensitive detection of Cu2+. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Liu Y, Cui H, Wei K, Kang M, Liu P, Yang X, Pei M, Zhang G. A new Schiff base derived from 5-(thiophene-2-yl)oxazole as "off-on-off" fluorescence sensor for monitoring indium and ferric ions sequentially and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122376. [PMID: 36709682 DOI: 10.1016/j.saa.2023.122376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A new Schiff base sensor (E)-N'-((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)-5-(thiophen-2-yl)oxazole-4-carbohydrazide (TOQ) was synthesized and found to emit yellowish green fluorescence upon introduction of In3+. Furthermore, the resulting complex TOQ-In3+ was quenched selectively by Fe3+. The detection limits of TOQ for In3+ and Fe3+ were 1.75 × 10-10 M and 8.45 × 10-9 M, respectively. The complex stoichiometry of TOQ with target ions was determined to be 1:2 via Job's plot analysis, which further was verified by ESI-MS titration and theoretical calculations. Moreover, TOQ can be used for the determination of target ions in environmental water samples. A portable paper sensor of TOQ was successfully developed for detecting In3+ to assess its applicability.
Collapse
Affiliation(s)
- Yuanying Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Huanxia Cui
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia 472000, China.
| | - Kehui Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingyi Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
9
|
Hou X, Song Y, Lv Y, Wang P, Chen K, Li G, Guo L. Preparation of temperature-responsive nanomicelles with AIE property as fluorescence probe for detection of Fe 3+ and Fe 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122254. [PMID: 36577245 DOI: 10.1016/j.saa.2022.122254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Temperature-responsive nanomicelles with aggregation induced emission (AIE) property were prepared by the host-guest complexation of ferrocene functionalized tetraphenyl (TPE-Fc) and β-cyclodextrin-poly (N-isopropylacrylamide) (β-CD-(PNIPAM)7). The AIE chromophore TPE-Fc bound to the hydrophobic cavity of cyclodextrin serves as the core of micelles, and temperature sensitive PNIPAM serves as the shell to give the micelles good solubility. The size of the nanomicelles is about 100 nm. At the excitation wavelength of 340 nm, the strongest fluorescent emission peak was 421 nm. The introduction of cyclodextrin star polymer increased the fluorescence intensity of nanomicelles, thus improving the recognition of probe to Fe3+ and Fe2+. The fluorescent probe can quickly detect Fe3+ and Fe2+ in water within 5 min even in the presence of various interfering ions. The detection limits of Fe3+ and Fe2+ were 1.04 μM and 0.78 μM, respectively in the range of 10-90 μM. The formation of complex between the probe and Fe3+/Fe2+ was supported by Job's plot. The probe was successfully applied to the detection of Fe3+and Fe2+ in actual water sample with a good recovery. In addition, a possible sensing mechanism for the interaction of iron ions with amide bond groups of nanomicelles was proposed.
Collapse
Affiliation(s)
- Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yifan Song
- Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China
| | - Yupeng Lv
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Peiyao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Kun Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Lei Guo
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
10
|
Kistwal T, Dasgupta S, Chowdhury A, Datta A. Disruption of aggregates of a Zn2+-complex of a schiff base in water by surfactants: Insights from fluorescence spectroscopy in ensemble and single molecule levels. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Patel DA, Ashok Kumar S, Sahoo SK. Aggregation-induced emission active salicylaldehyde hydrazone with multipurpose sensing applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
12
|
Economically viable multi-responsive probes for fluorimetric detection of trace levels of Ga3+, Al3+ and PPi in near aqueous medium. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
A novel oxazole-based fluorescence sensor towards Ga3+ and PPi for sequential determination and application. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
AIE+ESIPT Active Hydroxybenzothiazole for Intracellular Detection of Cu 2+: Anticancer and Anticounterfeiting Applications. Molecules 2022; 27:molecules27227678. [PMID: 36431779 PMCID: PMC9699452 DOI: 10.3390/molecules27227678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Here, in the present work, a new hydroxybenzothiazole derivative (HBT 2) with AIE+ESIPT features was synthesized by Suzuki-Miyora coupling of HBT 1 with 4-formylphenylboronic acid. The AIE and ESIPT features were confirmed by optical, microscopic (AFM) and dynamic light scattering (DLS) techniques. The yellow fluorescent aggregates of HBT 2 can specifically detect Cu2+/Cu+ ions with limits of detection as low as 250 nM and 69 nM. The Job's plot revealed the formation of a 1:1 complex. The Cu2+ complexation was further confirmed by optical, NMR, AFM and DLS techniques. HBT 2 was also used for the detection of Cu2+ ions in real water samples collected from different regions of Punjab. HBT 2 was successfully used for the bio-imaging of Cu2+ ions in live A549 and its anticancer activity was checked on different cancer cell lines, such as MG63, and HeLa, and normal cell lines such as L929. We successfully utilized HBT 2 to develop security labels for anticounterfeiting applications.
Collapse
|
15
|
Chopra T, Sasan S, Devi L, Parkesh R, Kapoor KK. A comprehensive review on recent advances in copper sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Chemoselective detection based on experimental and theoretical calculations of Cu2+ ions via deprotonation of chromone derived probe and its application. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Guo X, Guo C, Xing Y, Liu Y, Wei K, Kang M, Yang X, Pei M, Zhang G. A novel Schiff base sensor through “off-on-off” fluorescence behavior for sequentially monitoring Al3+ and Cu2+. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Kumar A, Virender, Saini M, Mohan B, Shayoraj, Kamboj M. Colorimetric and Fluorescent Schiff Base Sensors for Trace Detection of Pollutants and Biologically Significant Cations: A Review (2010-2021). Microchem J 2022. [DOI: 10.1016/j.microc.2022.107798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Liu H, Ding S, Lu Q, Jian Y, Wei G, Yuan Z. a Versatile Schiff Base Chemosensor for the Determination of Trace Co 2+, Ni 2+, Cu 2+, and Zn 2+ in the Water and Its Bioimaging Applications. ACS OMEGA 2022; 7:7585-7594. [PMID: 35284732 PMCID: PMC8908528 DOI: 10.1021/acsomega.1c05960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
In this work, a simple and versatile Schiff base chemosensor (L) was developed for the detection of four adjacent row 4 metal ions (Co2+, Ni2+, Cu2+, and Zn2+) through colorimetric or fluorescent analyses. L could recognize the target ions in solutions containing a wide range of other cations and anions. The recognition mechanisms were verified with a Job's plot, HR-MS assays, and 1H NMR titration experiments. Then, L was employed to develop colorimetric test strips and TLC plates for Co2+. Meanwhile, L was capable of quantitatively measuring the amount of target ions in tap water and river water samples. Notably, L was used for imaging Zn2+ in HepG2 cells, zebrafish, and tumor-bearing mice, which demonstrated its potential biological applications. Therefore, L can probably serve as a versatile tool for the detection of the target metal ions in environmental and biological applications.
Collapse
Affiliation(s)
- Hongmei Liu
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi, Guizhou Province 563000, China
- School
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou Province 563000, China
- Generic
Drug Research Center of Guizhou Province, Zunyi, Guizhou Province 563000, China
| | - Shangli Ding
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi, Guizhou Province 563000, China
- School
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou Province 563000, China
- Generic
Drug Research Center of Guizhou Province, Zunyi, Guizhou Province 563000, China
| | - Quan Lu
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi, Guizhou Province 563000, China
- School
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou Province 563000, China
- Generic
Drug Research Center of Guizhou Province, Zunyi, Guizhou Province 563000, China
| | - Yue Jian
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi, Guizhou Province 563000, China
- School
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou Province 563000, China
- Generic
Drug Research Center of Guizhou Province, Zunyi, Guizhou Province 563000, China
| | - Gang Wei
- Commonwealth
Scientific and Industrial Research Organization Manufacturing, Lindfield, New South Wales 2070, Australia
| | - Zeli Yuan
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi, Guizhou Province 563000, China
- School
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou Province 563000, China
- Generic
Drug Research Center of Guizhou Province, Zunyi, Guizhou Province 563000, China
| |
Collapse
|
20
|
Bhardwaj V, Ashok Kumar S, Sahoo SK. Fluorescent sensing (Cu2+ and pH) and visualization of latent fingerprints using an AIE-active naphthaldehyde-pyridoxal conjugated Schiff base. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Jindal G, Vashisht P, Kaur N. Benzimidazole appended optical sensors for ionic species: Compilation of literature reports from 2017 to 2022. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|