1
|
Pfund B, Gejsnæs-Schaad D, Lazarevski B, Wenger OS. Picosecond reactions of excited radical ion super-reductants. Nat Commun 2024; 15:4738. [PMID: 38834625 DOI: 10.1038/s41467-024-49006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
Classical photochemistry requires nanosecond excited-state lifetimes for diffusion-controlled reactions. Excited radicals with picosecond lifetimes have been implied by numerous photoredox studies, and controversy has arisen as to whether they can actually be catalytically active. We provide direct evidence for the elusive pre-association between radical ions and substrate molecules, enabling photoinduced electron transfer beyond the diffusion limit. A strategy based on two distinct light absorbers, mimicking the natural photosystems I and II, is used to generate excited radicals, unleashing extreme reduction power and activating C(sp2)-Cl and C(sp2)-F bonds. Our findings provide a long-sought mechanistic understanding for many previous synthetically-oriented works and permit more rational future photoredox reaction development. The newly developed excitation strategy pushes the current limits of reactions based on multi-photon excitation and very short-lived but highly redox active species.
Collapse
Affiliation(s)
- Björn Pfund
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Bruno Lazarevski
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Chow JCL, Ruda HE. Mechanisms of Action in FLASH Radiotherapy: A Comprehensive Review of Physicochemical and Biological Processes on Cancerous and Normal Cells. Cells 2024; 13:835. [PMID: 38786057 PMCID: PMC11120005 DOI: 10.3390/cells13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The advent of FLASH radiotherapy (FLASH-RT) has brought forth a paradigm shift in cancer treatment, showcasing remarkable normal cell sparing effects with ultra-high dose rates (>40 Gy/s). This review delves into the multifaceted mechanisms underpinning the efficacy of FLASH effect, examining both physicochemical and biological hypotheses in cell biophysics. The physicochemical process encompasses oxygen depletion, reactive oxygen species, and free radical recombination. In parallel, the biological process explores the FLASH effect on the immune system and on blood vessels in treatment sites such as the brain, lung, gastrointestinal tract, skin, and subcutaneous tissue. This review investigated the selective targeting of cancer cells and the modulation of the tumor microenvironment through FLASH-RT. Examining these mechanisms, we explore the implications and challenges of integrating FLASH-RT into cancer treatment. The potential to spare normal cells, boost the immune response, and modify the tumor vasculature offers new therapeutic strategies. Despite progress in understanding FLASH-RT, this review highlights knowledge gaps, emphasizing the need for further research to optimize its clinical applications. The synthesis of physicochemical and biological insights serves as a comprehensive resource for cell biology, molecular biology, and biophysics researchers and clinicians navigating the evolution of FLASH-RT in cancer therapy.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
3
|
Wellauer J, Ziereisen F, Sinha N, Prescimone A, Velić A, Meyer F, Wenger OS. Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. J Am Chem Soc 2024; 146. [PMID: 38598280 PMCID: PMC11046485 DOI: 10.1021/jacs.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.
Collapse
Affiliation(s)
- Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Fabienne Ziereisen
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Ajdin Velić
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Lu C, Kobayashi M, Fujitsuka M. Direct Investigation of Excited C 60 Dianion and Its Intramolecular Electron Transfer Behaviors. J Phys Chem A 2023; 127:8330-8337. [PMID: 37767560 DOI: 10.1021/acs.jpca.3c04381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
For the first time, the dynamics of excited fullerene dianions and associated intramolecular electron transfer (ET) were directly investigated by using femtosecond pump-probe laser flash photolysis on selectively reduced C60, pyrrolidino[60]fullerene (C60H), and dyads including C60-naphthalenediimide (NDI) and C60-pyromellitimide (PI). Upon near-infrared laser excitation, the excited dianion of C60 or C60H displayed two states with lifetimes of less than one and several tens of ps, attributed to prompt internal conversion from the theoretically predicted Sn state. Furthermore, the ET processes from the excited C602- in dyad molecules, including C602--NDI•- and C602--PI•-, were confirmed with varied ET rate constants due to the difference in the driving force for ET. The current findings provide a clear description of the hitherto uncharted excited-state and photoinduced ET characteristics of fullerene dianions, paving the way for photochemical studies of excited multi-ions (excited multi-polarons) and their application in organic semiconducting materials.
Collapse
Affiliation(s)
- Chao Lu
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki ,Osaka 567-0047, Japan
| | - Masakazu Kobayashi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki ,Osaka 567-0047, Japan
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki ,Osaka 567-0047, Japan
| |
Collapse
|
5
|
Chu C, Yan Y, Ma J, Jin S, Spinney R, Dionysiou DD, Zhang H, Xiao R. Implementation of laser flash photolysis for radical-induced reactions and environmental implications. WATER RESEARCH 2023; 244:120526. [PMID: 37672949 DOI: 10.1016/j.watres.2023.120526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Confronted with the imperative crisis of water quality deterioration, the pursuit of state-of-the-art decontamination technologies for a sustainable future never stops. Fitting into the framework of suitability, advanced oxidation processes have been demonstrated as powerful technologies to produce highly reactive radicals for the degradation of toxic and refractory contaminants. Therefore, investigations on their radical-induced degradation have been the subject of scientistic and engineering interests for decades. To better understand the transient nature of these radical species and rapid degradation processes, laser flash photolysis (LFP) has been considered as a viable and powerful technique due to its high temporal resolution and rapid response. Although a number of studies exploited LFP for one (or one class of) specific reaction(s), reactions of many possible contaminants with radicals are largely unknown. Therefore, there is a pressing need to critically review its implementation for kinetic quantification and mechanism elucidation. Within this context, we introduce the development process and milestones of LFP with emphasis on compositions and operation principles. We then compare the specificity and suitability of different spectral modes for monitoring radicals and their decay kinetics. Radicals with high environmental relevance, namely hydroxyl radical, sulfate radical, and reactive chlorine species, are selected, and we discuss their generation, detection, and implications within the frame of LFP. Finally, we highlight remaining challenges and future perspectives. This review aims to advance our understandings of the implementation of LFP in radical-induced transient processes, and yield new insights for extrapolating this pump-probe technique to make significant strides in environmental implications.
Collapse
Affiliation(s)
- Chu Chu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Junye Ma
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Richard Spinney
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio, 45221, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Haijun Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
6
|
Zeng L, Zhang T, Liu R, Tian W, Wu K, Zhu J, Wang Z, He C, Feng J, Guo X, Douka AI, Duan C. Chalcogen-bridged coordination polymer for the photocatalytic activation of aryl halides. Nat Commun 2023; 14:4002. [PMID: 37414824 DOI: 10.1038/s41467-023-39540-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/16/2023] [Indexed: 07/08/2023] Open
Abstract
The ability to deliver electrons is vital for dye-based photocatalysts. Conventionally, the aromatic stacking-based charge-transfer complex increases photogenerated electron accessibility but decreases the energy of excited-state dyes. To circumvent this dilemma, here we show a strategy by tuning the stacking mode of dyes. By decorating naphthalene diimide with S-bearing branches, the S···S contact-linked naphthalene diimide string is created in coordination polymer, thereby enhancing electron mobility while simultaneously preserving competent excited-state reducing power. This benefit, along with in situ assembly between naphthalene diimide strings and exogenous reagent/reactant, improves the accessibility of short-lived excited states during consecutive photon excitation, resulting in greater efficiency in photoinduced electron-transfer activation of inert bonds in comparison to other coordination polymers with different dye-stacking modes. This heterogeneous approach is successfully applied in the photoreduction of inert aryl halides and the successive formation of CAr-C/S/P/B bonds with potential pharmaceutical applications.
Collapse
Affiliation(s)
- Le Zeng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Tiexin Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Renhai Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenming Tian
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kaifeng Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jingyi Zhu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhonghe Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jing Feng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiangyang Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Abdoulkader Ibro Douka
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
7
|
Corbin DA, Cremer C, Puffer KO, Newell BS, Patureau FW, Miyake GM. Effects of the Chalcogenide Identity in N-Aryl Phenochalcogenazine Photoredox Catalysts. ChemCatChem 2022; 14:e202200485. [PMID: 36245968 PMCID: PMC9541587 DOI: 10.1002/cctc.202200485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/06/2022] [Indexed: 11/06/2022]
Abstract
Phenochalcogenazines such as phenoxazines and phenothiazines have been widely employed as photoredox catalysts (PCs) in small molecule and polymer synthesis. However, the effect of the chalcogenide in these catalysts has not been fully investigated. In this work, a series of four phenochalcogenazines is synthesized to understand how the chalcogenide impacts catalyst properties and performance. Increasing the size of the chalcogenide is found to distort the PC structure, ultimately impacting the properties of each PC. For example, larger chalcogenides destabilize the PC radical cation, possibly resulting in catalyst degradation. In addition, PCs with larger chalcogenides experience increased reorganization during electron transfer, leading to slower electron transfer. Ultimately, catalyst performance is evaluated in organocatalyzed atom transfer radical polymerization and a photooxidation reaction for C(sp2)-N coupling. Results from these experiments highlight that a balance of PC properties is most beneficial for catalysis, including a long-lived excited state, a stable radical cation, and a low reorganization energy.
Collapse
Affiliation(s)
- Daniel A. Corbin
- Department of ChemistryColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| | - Christopher Cremer
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Katherine O. Puffer
- Department of ChemistryColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| | - Brian S. Newell
- Analytical Resources Core, Materials and Molecular Analysis CenterColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| | - Frederic W. Patureau
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Garret M. Miyake
- Department of ChemistryColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| |
Collapse
|
8
|
Glaser F, Wenger OS. Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. JACS AU 2022; 2:1488-1503. [PMID: 35783177 PMCID: PMC9241018 DOI: 10.1021/jacsau.2c00265] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 05/11/2023]
Abstract
Photoredox catalysis typically relies on the use of single chromophores, whereas strategies, in which two different light absorbers are combined, are rare. In photosystems I and II of green plants, the two separate chromophores P680 and P700 both absorb light independently of one another, and then their excitation energy is combined in the so-called Z-scheme, to drive an overall reaction that is thermodynamically very demanding. Here, we adapt this concept to perform photoredox reactions on organic substrates with the combined energy input of two red photons instead of blue or UV light. Specifically, a CuI bis(α-diimine) complex in combination with in situ formed 9,10-dicyanoanthracenyl radical anion in the presence of excess diisopropylethylamine catalyzes ca. 50 dehalogenation and detosylation reactions. This dual photoredox approach seems useful because red light is less damaging and has a greater penetration depth than blue or UV radiation. UV-vis transient absorption spectroscopy reveals that the subtle change in solvent from acetonitrile to acetone induces a changeover in the reaction mechanism, involving either a dominant photoinduced electron transfer or a dominant triplet-triplet energy transfer pathway. Our study illustrates the mechanistic complexity in systems operating under multiphotonic excitation conditions, and it provides insights into how the competition between desirable and unwanted reaction steps can become more controllable.
Collapse
|
9
|
Beckwith JS, Aster A, Vauthey E. The excited-state dynamics of the radical anions of cyanoanthracenes. Phys Chem Chem Phys 2021; 24:568-577. [PMID: 34904984 PMCID: PMC8694058 DOI: 10.1039/d1cp04014f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022]
Abstract
The radical anion of 9,10-dicyanoanthracene (DCA) has been suggested to be a promising chromophore for photoredox chemistry, due to its nanosecond excited-state lifetime determined from indirect measurements. Here, we investigate the excited-state dynamics of the radical anion of three cyanoanthracenes, including DCA˙-, produced by photoinduced electron transfer in liquid using both pump-probe and pump-pump probe transient electronic absorption spectroscopy. All three excited radical ions are characterised by a 3-5 ps lifetime, due to efficient non-radiative deactivation to the ground state. The decay pathway most probably involves D1/D0 conical intersection(s), whose presence is favoured by the enhanced flexibility of the radical anions relative to their neutral counterparts. The origin of the discrepancy with the nanosecond lifetime of DCA˙-* reported previously is discussed. These very short lifetimes limit, but do not preclude, photochemical applications of the cyanoanthracene anions.
Collapse
Affiliation(s)
- Joseph S Beckwith
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Alexander Aster
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
10
|
Grilj J, Beckwith JS, Vauthey E. Excited-state Dynamics of Radical Ions in Liquids. Chimia (Aarau) 2021; 75:856-861. [PMID: 34728012 DOI: 10.2533/chimia.2021.856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thomas Bally has acquired international recognition for his work on the photochemistry of reactive intermediates, which include radical ions. Here, we present a brief overview of our investigations of the excited-state dynamics of radical ions in liquids at room temperature, which are still poorly documented. A better understanding of these dynamics is most relevant, as open-shell ions in the excited state are being increasingly used in redox photochemistry and have been proposed to play a key role in highly exergonic photoinduced electron transfer reactions.
Collapse
Affiliation(s)
- Jakob Grilj
- Dept. of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1220 Geneva; Present address: AWK Group AG, Leutschenbachstrasse 45, CH-8050 Zurich, Switzerland
| | - Joseph S Beckwith
- Dept. of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1220 Geneva; Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Eric Vauthey
- Dept. of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1220 Geneva;,
| |
Collapse
|
11
|
Wu J, Gao Y, Guo T, Luo N, Li G, An T. Insights into the Photodegradation of the Contact Allergen Fragrance Cinnamyl Alcohol: Kinetics, Mechanism, and Toxicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2705-2714. [PMID: 34255880 DOI: 10.1002/etc.5156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Fragrances can cause general health issues, and special concerns exist surrounding the issue of skin safety. Cinnamyl alcohol (CAL) is a frequent fragrance contact allergen that has various toxic effects on indiscriminate animals. In the present study, the photodegradation transformation mechanism of CAL and toxicity evolution during this process were examined. The results showed that CAL (50 μM) can be completely degraded after 90-min ultraviolet (UV) irradiation with a degradation rate of 0.086 min-1 . Increased toxicity on bioluminescent bacteria was observed during this process, with lethality increasing from 10.6% (0 min) to 50.2% (90 min) under UV light irradiation. Further, the photodegradation mechanisms of CAL were explored to find the reason behind the increased toxicity observed. Laser flash photolysis and quenching experiments showed that O2•- , 1 O2 , and • OH were mainly responsible for CAL photodegradation, together with 3 CAL* and eaq- . The 5 main photodegradation products were cinnamyl aldehyde, benzaldehyde, benzenepropanal, cinnamic acid, and toluene, as identified using gas chromatography-mass spectrometry and liquid chromatography-quadrupole-time-of-flight-mass spectrometry. Once exposed to air, CAL was found to be easily oxidized to cinnamyl aldehyde and subsequently to cinnamic acid by O2•- - or 1 O2 -mediated pathways, leading to increased toxicity. Benzaldehyde exhibited bioreactive toxicity, increasing the toxicity through • OH-mediated pathways. Theoretical prediction of skin irritation indicated that cinnamyl aldehyde (0.83), benzenepropanal (0.69), cinnamyl aldehyde (0.69), and benzaldehyde (0.70) were higher than CAL (0.63), which may cause a profound impact on an individual's health and well-being. Overall, the present study advances the understanding of the photodegradation processes and health impacts of fragrance ingredients. Environ Toxicol Chem 2021;40:2705-2714. © 2021 SETAC.
Collapse
Affiliation(s)
- Junji Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Teng Guo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Chernowsky CP, Chmiel AF, Wickens ZK. Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity*. Angew Chem Int Ed Engl 2021; 60:21418-21425. [PMID: 34288312 PMCID: PMC8440429 DOI: 10.1002/anie.202107169] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Herein, we disclose that electrochemical stimulation induces new photocatalytic activity from a range of structurally diverse conventional photocatalysts. These studies uncover a new electron-primed photoredox catalyst capable of promoting the reductive cleavage of strong C(sp2 )-N and C(sp2 )-O bonds. We illustrate several examples of the synthetic utility of these deeply reducing but otherwise safe and mild catalytic conditions. Finally, we employ electrochemical current measurements to perform a reaction progress kinetic analysis. This technique reveals that the improved activity of this new system is a consequence of an enhanced catalyst stability profile.
Collapse
Affiliation(s)
- Colleen P. Chernowsky
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706
| |
Collapse
|
13
|
Chernowsky CP, Chmiel AF, Wickens ZK. Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Colleen P. Chernowsky
- Department of Chemistry University of Wisconsin-Madison 1101 University Ave Madison WI 53706 USA
| | - Alyah F. Chmiel
- Department of Chemistry University of Wisconsin-Madison 1101 University Ave Madison WI 53706 USA
| | - Zachary K. Wickens
- Department of Chemistry University of Wisconsin-Madison 1101 University Ave Madison WI 53706 USA
| |
Collapse
|
14
|
Rieth AJ, Gonzalez MI, Kudisch B, Nava M, Nocera DG. How Radical Are "Radical" Photocatalysts? A Closed-Shell Meisenheimer Complex Is Identified as a Super-Reducing Photoreagent. J Am Chem Soc 2021; 143:14352-14359. [PMID: 34432978 DOI: 10.1021/jacs.1c06844] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Super-reducing excited states have the potential to activate strong bonds, leading to unprecedented photoreactivity. Excited states of radical anions, accessed via reduction of a precatalyst followed by light absorption, have been proposed to drive photoredox transformations under super-reducing conditions. Here, we investigate the radical anion of naphthalene monoimide as a photoreductant and find that the radical doublet excited state has a lifetime of 24 ps, which is too short to facilitate photoredox activity. To account for the apparent photoreactivity of the radical anion, we identify an emissive two-electron reduced Meisenheimer complex of naphthalene monoimide, [NMI(H)]-. The singlet excited state of [NMI(H)]- is a potent reductant (-3.08 V vs Fc/Fc+), is long-lived (20 ns), and its emission can be dynamically quenched by chloroarenes to drive a radical photochemistry, establishing that it is this emissive excited state that is competent for reported C-C and C-P coupling reactivity. These results provide a mechanistic basis for photoreactivity at highly reducing potentials via singlet excited state manifolds and lays out a clear path for the development of exceptionally reducing photoreagents derived from electron-rich closed-shell anions.
Collapse
Affiliation(s)
- Adam J Rieth
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Miguel I Gonzalez
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Bryan Kudisch
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Matthew Nava
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
15
|
Tsokkou D, Cheng CY, Krainova N, Mukhopadhyay S, Giebink NC, Banerji N. Ultrafast Charge Transfer Dynamics at the Origin of Photoconductivity in Doped Organic Solids. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:7086-7096. [PMID: 33859770 PMCID: PMC8040020 DOI: 10.1021/acs.jpcc.1c01990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/10/2021] [Indexed: 06/12/2023]
Abstract
In spite of their growing importance for optoelectronic devices, the fundamental properties and photophysics of molecularly doped organic solids remain poorly understood. Such doping typically leads to a small fraction of free conductive charges, with most electronic carriers remaining Coulombically bound to the ionized dopant. Recently, we have reported photocurrent for devices containing vacuum-deposited TAPC (1,1-bis(4-bis(4-methylphenyl)aminophenyl)cyclohexane) doped with MoO3, showing that photoexcitation of charged TAPC molecules increases the concentration of free holes that contribute to conduction. Here, we elucidate the excited-state dynamics of such doped TAPC films to unravel the key mechanisms responsible for this effect. We demonstrate that excitation of different electronic transitions in charged and neutral TAPC molecules allows bound holes to overcome the Coulombic attraction to their MoO3 counterions, resulting in an enhanced yield of long-lived free carriers. This is caused by ultrafast back-and-forth shuffling of charges and excitation energy between adjacent cations and neutral molecules, competing with relatively slow nonradiative decay from higher excited states of TAPC•+. The light-induced generation of conductive carriers requires the coexistence of cationic and neutral TAPC, a favorable energy level alignment, and intermolecular interactions in the solid state.
Collapse
Affiliation(s)
- Demetra Tsokkou
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Chiao-Yu Cheng
- Department
of Electrical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Nina Krainova
- Department
of Electrical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Sukrit Mukhopadhyay
- The
Dow Chemical Company, 1776 Building, Midland, Michigan 48674, United
States
| | - Noel C. Giebink
- Department
of Electrical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Natalie Banerji
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
16
|
Yoshioka D, Fukuda D, Kobayashi Y. Green and far-red-light induced electron injection from perylene bisimide to wide bandgap semiconductor nanocrystals with stepwise two-photon absorption process. NANOSCALE 2021; 13:1823-1831. [PMID: 33434250 DOI: 10.1039/d0nr08493j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stepwise two-photon absorption (2PA) processes are becoming an important technique because it can achieve high reductive photochemical reactions with visible and near infrared light and intensity-gated high spatiotemporal selectivity with much lower power thresholds than those of the simultaneous 2PA. However, excited states generated by stepwise 2PA (higher excited states and excited states of transient species) are so short-lived that the efficiency for the stepwise 2PA induced photochemical reactions is usually quite low, which limits the versatility for this technique. Here, we demonstrated that the electron of the higher excited state can be efficiently extracted in a nanohybrid of organic molecules and wide bandgap semiconductor nanocrystals (NCs). Using perylene bisimide (PBI)-coordinated CdS NCs as a model compound, we demonstrated that the electron of the higher excited state of PBI generated by stepwise 2PA can be extracted to the conduction band of CdS NCs with a quantum yield of ∼0.5-0.7. Moreover, the extracted electron survives at the conduction band of CdS NCs over nanoseconds, which is more than hundred times longer than the lifetime of the S2 state of PBI. This method can be applied to other organic molecules and larger wide bandgap semiconductors, and therefore, will expand the versatility for the photochemical reactions utilizing the short-lived excited states.
Collapse
Affiliation(s)
- Daisuke Yoshioka
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| | | | | |
Collapse
|
17
|
Wu S, Žurauskas J, Domański M, Hitzfeld PS, Butera V, Scott DJ, Rehbein J, Kumar A, Thyrhaug E, Hauer J, Barham JP. Hole-mediated photoredox catalysis: tris(p-substituted)biarylaminium radical cations as tunable, precomplexing and potent photooxidants. Org Chem Front 2021. [DOI: 10.1039/d0qo01609h] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triarylamines are demonstrated as novel, tunable electroactivated photocatalysts that use dispersion precomplexation to harness the full potential of the visible photon (>4.0 V vs. SCE) in anti-Kasha photo(electro)chemical super-oxidations of arenes.
Collapse
Affiliation(s)
- Shangze Wu
- Universität Regensburg
- Fakültat für Chemie und Pharmazie
- 93040 Regensburg
- Germany
| | - Jonas Žurauskas
- Universität Regensburg
- Fakültat für Chemie und Pharmazie
- 93040 Regensburg
- Germany
| | - Michał Domański
- Universität Regensburg
- Fakültat für Chemie und Pharmazie
- 93040 Regensburg
- Germany
| | - Patrick S. Hitzfeld
- Universität Regensburg
- Fakültat für Chemie und Pharmazie
- 93040 Regensburg
- Germany
| | - Valeria Butera
- Central European Institute of Technology
- CEITEC
- 61200 Brno
- Czech Republic
| | - Daniel J. Scott
- Universität Regensburg
- Fakültat für Chemie und Pharmazie
- 93040 Regensburg
- Germany
| | - Julia Rehbein
- Universität Regensburg
- Fakültat für Chemie und Pharmazie
- 93040 Regensburg
- Germany
| | - Ajeet Kumar
- Technische Universität München
- Fakültat für Chemie
- 85748 Garching b. München
- Germany
| | - Erling Thyrhaug
- Technische Universität München
- Fakültat für Chemie
- 85748 Garching b. München
- Germany
| | - Jürgen Hauer
- Technische Universität München
- Fakültat für Chemie
- 85748 Garching b. München
- Germany
| | - Joshua P. Barham
- Universität Regensburg
- Fakültat für Chemie und Pharmazie
- 93040 Regensburg
- Germany
| |
Collapse
|
18
|
Hirakawa K, Takai S, Horiuchi H, Okazaki S. Photooxidation Activity Control of Dimethylaminophenyl-tris-( N-methyl-4-pridinio)porphyrin by pH. ACS OMEGA 2020; 5:27702-27708. [PMID: 33134734 PMCID: PMC7594313 DOI: 10.1021/acsomega.0c04303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 05/07/2023]
Abstract
To control the activity of photodynamic agents by pH, an electron donor-connecting cationic porphyrin, meso-(N',N'-dimethyl-4-aminophenyl)-tris(N-methyl-p-pyridinio)porphyrin (DMATMPyP), was designed and synthesized. The photoexcited state (singlet excited state) of DMATMPyP was deactivated through intramolecular electron transfer under a neutral condition. The pK a of the protonated DMATMPyP was 4.5, and the fluorescence intensity and singlet oxygen-generating activity increased under an acidic condition. Furthermore, the protonation of DMATMPyP enhanced the biomolecule photooxidative activity through electron extraction. Photodamage of human serum albumin (HSA) was observed under a neutral condition because a hydrophobic HSA environment can reverse the deactivation of photoexcited DMATMPyP. However, an HSA-damaging mechanism of DMATMPyP under a neutral condition was explained by singlet oxygen production. Therefore, it is indicated that the protein photodamaging activity of DMATMPyP goes into an OFF state under a neutral hypoxic condition. Under an acidic condition, the HSA photodamaging quantum yield by DMATMPyP through electron extraction could be preserved in the presence of a singlet oxygen quencher. Photooxidation of nicotinamide adenine dinucleotide by DMATMPyP was also enhanced under an acidic condition. This study demonstrated the concept of using pH to control photosensitizer activity via inhibition of the intramolecular electron transfer deactivation and enhancement of the oxidative activity through the electron extraction mechanism. Specifically, biomolecule oxidation through electron extraction may play an important role in photodynamic therapy to treat tumors under a hypoxic condition.
Collapse
Affiliation(s)
- Kazutaka Hirakawa
- Applied
Chemistry and Biochemical Engineering Course, Department of Engineering,
Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu 432-8561, Japan
- Department
of Optoelectronics and Nanostructure Science, Graduate School of Science
and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu 432-8561, Japan
| | - Syunsuke Takai
- Applied
Chemistry and Biochemical Engineering Course, Department of Engineering,
Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu 432-8561, Japan
| | - Hiroaki Horiuchi
- Division
of Molecular Science, Graduate School of Science and Technology, Gunma University, Tenjin-cho 1-5-1, Kiryu 376-8515, Japan
| | - Shigetoshi Okazaki
- Preeminent
Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
19
|
Costentin C, Fortage J, Collomb MN. Electrophotocatalysis: Cyclic Voltammetry as an Analytical Tool. J Phys Chem Lett 2020; 11:6097-6104. [PMID: 32635738 DOI: 10.1021/acs.jpclett.0c01662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrophotocatalysis (e-PC) is currently experiencing a renewed interest. By taking advantage of the highly oxidizing or reducing power of excited state of electrogenerated ion radicals, it allows thermodynamically difficult redox reactions to be performed. However, e-PC is facing various specific issues, such as its fundamentally heterogeneous nature, implying that mass transport is coupled to chemical reactions and light absorption; back electron transfer of the ion radical excited state with the electrode; and local heating near the electrode surface modifying mass transport conditions. Herein, we address these issues in the context of cyclic voltammetry as an analytical tool and we provide a rational framework for kinetic studies of electrophotocatalytic reactions under realistic conditions and hypothesis based on literature data. This approach may be beneficial to rationalize the design and the efficiency of present and future e-PC systems.
Collapse
Affiliation(s)
- Cyrille Costentin
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- Université de Paris, 75013 Paris, France
| | | | | |
Collapse
|
20
|
Barham JP, König B. Synthetic Photoelectrochemistry. Angew Chem Int Ed Engl 2020; 59:11732-11747. [PMID: 31805216 PMCID: PMC7383880 DOI: 10.1002/anie.201913767] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Indexed: 01/06/2023]
Abstract
Photoredox catalysis (PRC) and synthetic organic electrochemistry (SOE) are often considered competing technologies in organic synthesis. Their fusion has been largely overlooked. We review state-of-the-art synthetic organic photoelectrochemistry, grouping examples into three categories: 1) electrochemically mediated photoredox catalysis (e-PRC), 2) decoupled photoelectrochemistry (dPEC), and 3) interfacial photoelectrochemistry (iPEC). Such synergies prove beneficial not only for synthetic "greenness" and chemical selectivity, but also in the accumulation of energy for accessing super-oxidizing or -reducing single electron transfer (SET) agents. Opportunities and challenges in this emerging and exciting field are discussed.
Collapse
Affiliation(s)
- Joshua P. Barham
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Burkhard König
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| |
Collapse
|
21
|
Krainova N, Grede AJ, Tsokkou D, Banerji N, Giebink NC. Polaron Photoconductivity in the Weak and Strong Light-Matter Coupling Regime. PHYSICAL REVIEW LETTERS 2020; 124:177401. [PMID: 32412265 DOI: 10.1103/physrevlett.124.177401] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/14/2020] [Indexed: 05/03/2023]
Abstract
We investigate the potential for cavity-modified electron transfer in a doped organic semiconductor through the photocurrent that arises from exciting charged molecules (polarons). When the polaron optical transition is strongly coupled to a Fabry-Perot microcavity mode, we observe polaron polaritons in the photoconductivity action spectrum and find that their magnitude depends differently on applied electric field than photocurrent originating from the excitation of uncoupled polarons in the same cavity. Crucially, moving from positive to negative detuning causes the upper and lower polariton photocurrents to swap their field dependence, with the more polaronlike branch resembling that of an uncoupled excitation. These observations are understood on the basis of a phenomenological model in which strong coupling alters the Onsager dissociation of polarons from their dopant counterions by effectively increasing the thermalization length of the photoexcited charge carrier.
Collapse
Affiliation(s)
- Nina Krainova
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alex J Grede
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Demetra Tsokkou
- Department of Chemistry and Biochemistry, University of Bern, Bern, CH-3012, Switzerland
| | - Natalie Banerji
- Department of Chemistry and Biochemistry, University of Bern, Bern, CH-3012, Switzerland
| | - Noel C Giebink
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
22
|
Affiliation(s)
- Joshua P. Barham
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Burkhard König
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| |
Collapse
|
23
|
Zeman CJ, Kim S, Zhang F, Schanze KS. Direct Observation of the Reduction of Aryl Halides by a Photoexcited Perylene Diimide Radical Anion. J Am Chem Soc 2020; 142:2204-2207. [DOI: 10.1021/jacs.9b13027] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charles J. Zeman
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Soojin Kim
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Fang Zhang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Kirk S. Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
24
|
Kerzig C, Guo X, Wenger OS. Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis. J Am Chem Soc 2019; 141:2122-2127. [PMID: 30672694 DOI: 10.1021/jacs.8b12223] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hydrated electron is experiencing a renaissance as a superreductant in lab-scale reductions driven by light, both for the degradation of recalcitrant pollutants and for challenging chemical reactions. However, examples for its sustainable generation under mild conditions are scarce. By combining a water-soluble Ir catalyst with unique photochemical properties and an inexpensive diode laser as light source, we produce hydrated electrons through a two-photon mechanism previously thought to be unimportant for laboratory applications. Adding cheap sacrificial donors turns our new hydrated electron source into a catalytic cycle operating in pure water over a wide pH range. Not only is that catalytic system capable of detoxifying a chlorinated model compound with turnover numbers of up to 200, but it can also be employed for two novel hydrated electron reactions, namely, the decomposition of quaternary ammonium compounds and the conversion of trifluoromethyl to difluoromethyl groups.
Collapse
Affiliation(s)
- Christoph Kerzig
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Xingwei Guo
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| |
Collapse
|
25
|
Protti S, Ravelli D, Fagnoni M. Wavelength dependence and wavelength selectivity in photochemical reactions. Photochem Photobiol Sci 2019; 18:2094-2101. [DOI: 10.1039/c8pp00512e] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our study describes how organic photochemists can modify the outcome of a reaction by tuning the wavelength.
Collapse
Affiliation(s)
- Stefano Protti
- PhotoGreen Lab
- Department of Chemistry
- University of Pavia
- 27100 Pavia
- Italy
| | - Davide Ravelli
- PhotoGreen Lab
- Department of Chemistry
- University of Pavia
- 27100 Pavia
- Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab
- Department of Chemistry
- University of Pavia
- 27100 Pavia
- Italy
| |
Collapse
|
26
|
Fujitsuka M, Kayahara E, Lu C, Yamago S, Majima T. Significant structural relaxations of excited [n]cycloparaphenylene dications (n = 5-9). Phys Chem Chem Phys 2018; 20:29207-29211. [PMID: 30426986 DOI: 10.1039/c8cp04860f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hoop-shaped macrocycles such as cycloparaphenylenes ([n]CPPs, where n denotes the number of phenylene rings) have attracted considerable attention in recent years because of their interesting properties arising from the highly strained aromatic structure and radially oriented p-orbitals. While the radical cation and dication states of [n]CPPs have been characterized, there is no information available about their excited states, which are expected to exhibit enhanced redox properties. In this study, we investigated the S1 state of [n]CPP2+ by transient absorption measurements in the visible and near-IR regions. The energy of the transient absorption peak exhibited a linear relationship with the reciprocal of the repeating unit, which indicated that the distribution of the excited state expanded with the size of the ring. In addition, smaller CPP2+s showed longer excited state lifetimes. Theoretical calculations suggested that there was a substantial structural relaxation of the smaller CPP2+s accompanying the changes in the charge distribution. Therefore, it was concluded that the smaller Franck-Condon factor resulting from the considerable structural change and larger S1 energy were responsible for the longer S1 state lifetime of smaller CPP2+s.
Collapse
Affiliation(s)
- Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | | | |
Collapse
|
27
|
Christensen JA, Phelan BT, Chaudhuri S, Acharya A, Batista VS, Wasielewski MR. Phenothiazine Radical Cation Excited States as Super-oxidants for Energy-Demanding Reactions. J Am Chem Soc 2018; 140:5290-5299. [DOI: 10.1021/jacs.8b01778] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Joseph A. Christensen
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brian T. Phelan
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Subhajyoti Chaudhuri
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Yale University, New Haven, Connecticut 06520, United States
| | - Atanu Acharya
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Yale University, New Haven, Connecticut 06520, United States
| | - Victor S. Batista
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Yale University, New Haven, Connecticut 06520, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|