1
|
Pitton Rissardo J, Murtaza Vora N, Danaf N, Ramesh S, Shariff S, Fornari Caprara AL. Pisa Syndrome Secondary to Drugs: A Scope Review. Geriatrics (Basel) 2024; 9:100. [PMID: 39195130 DOI: 10.3390/geriatrics9040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Pisa syndrome, also known as pleurothotonus, is a neurological condition characterized by more than ten degrees of constant lateral curvature of the spine when upright. In this way, the present manuscript aims to systematically review Pisa syndrome secondary to drugs. METHODS Two reviewers identified and assessed relevant reports in six databases without language restriction between January 1990 and June 2024. RESULTS The prevalence of Pisa syndrome varied from 0.037 to 9.3%. We found 109 articles containing 191 cases of drug-induced Pisa syndrome reported in the literature. The mean and median ages were 59.70 (SD = 19.02) and 67 (range = 12-98 years). The most prevalent sex was female, 56.91% (107/188). The most frequent medications associated with Pisa syndrome were acetylcholinesterase inhibitors in 87 individuals. Of 112 individuals in which the onset time from the medication to the movement disorder occurrence was reported, 59 took place within a month. In this way, a return to baseline was observed in 45.50% of the cases, and partial recovery was observed in 14.28%. CONCLUSION We proposed new diagnostic criteria for Pisa syndrome based on previous findings in the literature. Moreover, multiple mechanisms are probably involved in balance control and the development of lateral trunk flexions.
Collapse
Affiliation(s)
| | - Nilofar Murtaza Vora
- Medicine Department, Terna Speciality Hospital and Research Centre, Navi Mumbai 400706, India
| | - Naseeb Danaf
- Medicine Department, Lebanese University, Hadath RGHC+4PR, Lebanon
| | - Saivignesh Ramesh
- Medicine Department, Terna Speciality Hospital and Research Centre, Navi Mumbai 400706, India
| | - Sanobar Shariff
- Faculty of General Medicine, Yerevan State Medical University, Yerevan 0025, Armenia
| | | |
Collapse
|
2
|
Dardiotis E, Skouras P, Varvarelis OP, Aloizou AM, Hernández AF, Liampas I, Rikos D, Dastamani M, Golokhvast KS, Bogdanos DP, Tsatsakis A, Siokas V, Mitsias PD, Hadjigeorgiou GM. Pesticides and tremor: An overview of association, mechanisms and confounders. ENVIRONMENTAL RESEARCH 2023; 229:115442. [PMID: 36758916 DOI: 10.1016/j.envres.2023.115442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 05/06/2023]
Abstract
Pesticides are a heterogeneous class of chemicals mainly used for the protection of crops from pests. Because of their very widespread use, acute or/and chronic exposure to these chemicals can lead to a plethora of sequelae inflicting diseases, many of which involve the nervous system. Tremor has been associated with pesticide exposure in human and animal studies. This review is aimed at assessing the studies currently available on the association between the various types of pesticides/insecticides and tremor, while also accounting for potential confounding factors. To our knowledge, this is the first coherent review on the subject. After appraising the available evidence, we call for more intensive research on this topic, as well as intonate the need of implementing future preventive measures to protect the exposed populations and to reduce potential disabilities and social drawbacks.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Panagiotis Skouras
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Orfeas-Petros Varvarelis
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain; Health Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios Rikos
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Metaxia Dastamani
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, Krasnoobsk, Russia, 630501
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Panayiotis D Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003, Heraklion, Greece; Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Georgios M Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
3
|
Ruangritchankul S, Chantharit P, Srisuma S, Gray LC. Adverse Drug Reactions of Acetylcholinesterase Inhibitors in Older People Living with Dementia: A Comprehensive Literature Review. Ther Clin Risk Manag 2021; 17:927-949. [PMID: 34511919 PMCID: PMC8427072 DOI: 10.2147/tcrm.s323387] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
The rising of global geriatric population has contributed to increased prevalence of dementia. Dementia is a neurodegenerative disease, which is characterized by progressive deterioration of cognitive functions, such as judgment, language, memory, attention and visuospatial ability. Dementia not only has profoundly devastating physical and psychological health outcomes, but it also poses a considerable healthcare expenditure and burdens. Acetylcholinesterase inhibitors (AChEIs), or so-called anti-dementia medications, have been developed to delay the progression of neurocognitive disorders and to decrease healthcare needs. AChEIs have been widely prescribed in clinical practice for the treatment of Alzheimer's disease, which account for 70% of dementia. The rising use of AChEIs results in increased adverse drug reactions (ADRs) such as cardiovascular and gastrointestinal adverse effects, resulting from overstimulation of peripheral cholinergic activity and muscarinic receptor activation. Changes in pharmacokinetics (PK), pharmacodynamics (PD) and pharmacogenetics (PGx), and occurrence of drug interactions are said to be major risk factors of ADRs of AChEIs in this population. To date, comprehensive reviews in ADRs of AChEIs have so far been scarcely studied. Therefore, we aimed to recapitulate and update the diverse aspects of AChEIs, including the mechanisms of action, characteristics and risk factors of ADRs, and preventive strategies of their ADRs. The collation of this knowledge is essential to facilitate efforts to reduce ADRs of AChEIs.
Collapse
Affiliation(s)
- Sirasa Ruangritchankul
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prawat Chantharit
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sahaphume Srisuma
- Ramathibodi Poison Center and Division of Clinical Pharmacology and Toxicology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Leonard C Gray
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Abstract
Cognitive decline and neurodegenerative diseases pose a significant burden on healthcare resources both in developed and developing countries which is a major socio-economic and healthcare concern. Alzheimer's disease is the most common form of progressive neurodegenerative dementia of the aged brain. Aluminum is a constituent of antacids, deodorants, kitchenware and food additives which allows easy access into the body posing risk to development of senile dementia of Alzheimer's type. Virgin coconut oil was declared as a potential cognitive strengthener. Assessment of cognitive and memory-enhancing effects of virgin coconut oil in senile and young rats to gain vital insights into its effective use in the prevention of neurodegeneration in dementia/Alzheimer's disease-like manifestations and alleviate cognitive dysfunction and learning impairment with neuronal damage imparted by daily oral intake of aluminum. Alzheimer's disease-like symptoms and memory impairment were experimentally induced using oral anhydrous aluminum chloride given daily for five successive weeks in young and old age albino rats. Treatment groups received virgin coconut oil to assess protection during the experimental period. Behavioral test, Morris water maze was conducted before/after induction/treatment. At the end of the experimental period, cholinergic, dopaminergic, noradrenergic and serotonergic neurotransmission as well as brain-derived neurotrophic factor were being investigated, in addition to immunochemical and histopathological examination of targeted brain regions. Virgin coconut oil significantly improved cholinergic activity and monoaminergic neurotransmission. Moreover, immunochemical and histopathological examination revealed marked protection with virgin coconut oil against aluminum-induced Alzheimer's disease-like pathology and cognitive deficit.
Collapse
|
5
|
Kaur H, Kaur R, Jaggi AS, Bali A. Beneficial role of central anticholinergic agent in preventing the development of symptoms in mouse model of post-traumatic stress disorder. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2019-0196. [PMID: 32712590 DOI: 10.1515/jbcpp-2019-0196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/18/2020] [Indexed: 11/15/2022]
Abstract
Objectives The present study was designed to investigate the effectiveness of trihexyphenidyl, a central anticholinergic drug, in preventing the post-traumatic stress disorder (PTSD) symptoms in a mouse model. Methods Mice were subjected to underwater trauma stress for 30 s on day 1 followed by three situational reminders (3rd, 7th and 14th day). Thereafter, the behavioral alterations including freezing behavior were noted on 21st day. The serum corticosterone levels were measured as a biochemical marker of trauma. Elevated plus maze test was done on day 1 and day 2 to assess the memory formation following exposure to trauma. Results Trauma and situational reminders were associated with a significant development of behavioral changes and freezing behavior on the 21st day. Moreover, there was also a significant decrease in the serum corticosterone levels. A single administration of trihexyphenidyl (2 and 5 mg/kg) significantly restored trauma associated-behavioral changes and serum corticosterone levels. Moreover, it significantly increased the transfer latency time on day 2 following stress exposure in comparison to normal mice suggesting the inhibition of memory formation during trauma exposure. Trihexyphenidyl also led to significant reduction in freezing behavior in response to situational reminders again suggesting the inhibition of formation of aversive fear memory. Conclusion The blockade of central muscarinic receptors may block the formation of aversive memory during the traumatic event, which may be manifested in form of decreased contextual fear response during situational reminders. Central anticholinergic agents may be potentially useful as prophylactic agents in preventing the development of PTSD symptoms.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pharmacology, Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Ravjot Kaur
- Department of Pharmacology, Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Anjana Bali
- Department of Pharmacology, Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India.,Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
6
|
Mimura Y, Kurose S, Takata T, Tabuchi H, Mimura M, Funayama M. Pisa syndrome induced by switching of a choline-esterase inhibitor treatment from donepezil to galantamine: a case report. BMC Neurol 2020; 20:183. [PMID: 32404068 PMCID: PMC7218485 DOI: 10.1186/s12883-020-01769-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/06/2020] [Indexed: 11/13/2022] Open
Abstract
Background Pisa syndrome (PS) is characterized by an abnormally sustained posture, with flexion of the body and head to one side and slight rotation of the trunk. Although PS most commonly arises as an adverse effect of antipsychotic drugs, choline-esterase inhibitors (ChEIs) are also sometimes known to induce PS. Despite the fact that the precise mechanism remains unclear, cholinergic-dopaminergic imbalance has been considered as a possible pathophysiologic mechanism underlying the genesis of PS. Case presentation We hereby report the case of a 60-year-old woman with Alzheimer’s disease who presented with the signs of PS after her treatment was switched to galantamine, a type of ChEI, even though she had received donepezil, another type of ChEI, for 5 years without any complications. To the best of our knowledge, this is the first report of PS associated with treatment switch from one to another type of ChEI. Galantamine, but not other ChEIs, can enhance striatal dopamine release through allosteric modulation of the nicotinic acetylcholine receptor, and has weaker muscarinic effects than donepezil. Therefore, we propose two novel hypotheses to explain the development of PS, as follows; galantamine, which enhances dopamine release, can induce imbalance of dopamine levels in the striatum of patients with dementia, resulting in PS, and the weaker muscarinic effects of the drug could be one of the factors predisposing to the development of PS. Conclusion The present case suggests that treatment with galantamine is associated with a higher risk of development of PS than that with other ChEIs, such as donepezil, despite the pharmacological profile of galantamine as a dopamine modulator. Also, this report provides novel insight into another plausible mechanism underlying the development of PS, besides cholinergic-dopaminergic imbalance, namely, dopamine imbalance in the striatum with muscarinic-nicotinic imbalance.
Collapse
Affiliation(s)
- Yu Mimura
- Department of Neuropsychiatry, Japanese Red Cross Ashikaga Hospital, 49-1 Yobe, Ashikaga, Tochigi, Japan. .,Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan.
| | - Shin Kurose
- Department of Neuropsychiatry, Japanese Red Cross Ashikaga Hospital, 49-1 Yobe, Ashikaga, Tochigi, Japan.,Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| | - Taketo Takata
- Department of Neuropsychiatry, Japanese Red Cross Ashikaga Hospital, 49-1 Yobe, Ashikaga, Tochigi, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| | - Michitaka Funayama
- Department of Neuropsychiatry, Japanese Red Cross Ashikaga Hospital, 49-1 Yobe, Ashikaga, Tochigi, Japan
| |
Collapse
|
7
|
Naguib S, Bernardo-Colón A, Cencer C, Gandra N, Rex TS. Galantamine protects against synaptic, axonal, and vision deficits in experimental neurotrauma. Neurobiol Dis 2020; 134:104695. [PMID: 31778813 PMCID: PMC7769189 DOI: 10.1016/j.nbd.2019.104695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/22/2019] [Accepted: 11/24/2019] [Indexed: 01/03/2023] Open
Abstract
Our goal was to investigate the neuroprotective effects of galantamine in a mouse model of blast-induced indirect traumatic optic neuropathy (bITON). Galantamine is an FDA-approved acetylcholinesterase inhibitor used to treat mild-moderate Alzheimer's disease. We exposed one eye of an anesthetized mouse to repeat bursts of over-pressurized air to induce traumatic optic neuropathy. Mice were given regular or galantamine-containing water (120 mg/L) ad libitum, beginning immediately after blast and continuing for one month. Electroretinograms and visual evoked potentials were performed just prior to endpoint collection. Histological and biochemical assessments were performed to assess activation of sterile inflammation, axon degeneration, and synaptic changes. Galantamine treatment mitigated visual function deficits induced by our bITON model via preservation of the b-wave of the electroretinogram and the N1 of the visual evoked potential. We also observed a reduction in axon degeneration in the optic nerve as well as decreased rod bipolar cell dendritic retraction. Galantamine also showed anti-inflammatory and antioxidant effects. Galantamine may be a promising treatment for blast-induced indirect traumatic optic neuropathy as well as other optic neuropathies.
Collapse
Affiliation(s)
- Sarah Naguib
- Department of Ophthalmology and Visual Sciences, 11435 MRB IV, 2213 Garland Ave, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Alexandra Bernardo-Colón
- Vanderbilt Eye Institute, 2311 Pierce Ave, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Caroline Cencer
- Department of Ophthalmology and Visual Sciences, 11435 MRB IV, 2213 Garland Ave, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Neha Gandra
- Department of Ophthalmology and Visual Sciences, 11435 MRB IV, 2213 Garland Ave, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Tonia S Rex
- Department of Ophthalmology and Visual Sciences, 11435 MRB IV, 2213 Garland Ave, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Eye Institute, 2311 Pierce Ave, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Ohno Y, Kunisawa N, Shimizu S. Antipsychotic Treatment of Behavioral and Psychological Symptoms of Dementia (BPSD): Management of Extrapyramidal Side Effects. Front Pharmacol 2019; 10:1045. [PMID: 31607910 PMCID: PMC6758594 DOI: 10.3389/fphar.2019.01045] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/19/2019] [Indexed: 11/26/2022] Open
Abstract
Antipsychotic drugs are often used for the treatment of behavioral and psychological symptoms of dementia (BPSD), especially psychosis and behavioral disturbances (e.g., aggression and agitation). They are prescribed alone or in conjunction with anti-dementia (e.g., anti-Alzheimer’s disease drugs) and other psychotropic drugs (e.g., antidepressants). However, antipsychotic drugs frequently produce serious extrapyramidal side effects (EPS) including Parkinsonian symptoms (e.g., bradykinesia, akinesia, tremor, and muscle rigidity). Therefore, appropriate drug choice and combination strategy are important in the treatment of BPSD. Among anti-Alzheimer’s disease drugs, cholinesterase inhibitors (ChEIs, e.g., donepezil and galantamine) have a propensity to potentiate EPS associated with antipsychotic treatment in a synergistic manner. In contrast, the NMDA receptor antagonist memantine reduces antipsychotic-induced EPS. Antidepressant drugs, which inhibit 5-HT reuptake into the nerve terminals, also synergistically augment antipsychotic-induced EPS, while mirtazapine (α2, 5-HT2 and 5-HT3 antagonist) reduces the EPS induction. Importantly, previous studies showed that multiple 5-HT receptors play crucial roles in modulating EPS associated with antipsychotic treatment. Specifically, activation of 5-HT1A receptors or blockade of 5-HT2, 5-HT3 and 5-HT6 receptors can alleviate EPS induction both by antipsychotics alone and by combined antipsychotic treatments with ChEIs or 5-HT reuptake inhibitors. In this article, we review antipsychotic use in treating BPSD and discuss the favorable drug selection in terms of the management of antipsychotic-induced EPS.
Collapse
Affiliation(s)
- Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Naofumi Kunisawa
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| |
Collapse
|
9
|
Iha HA, Kunisawa N, Shimizu S, Onishi M, Nomura Y, Matsubara N, Iwai C, Ogawa M, Hashimura M, Sato K, Kato M, Ohno Y. Mechanism Underlying Organophosphate Paraoxon-Induced Kinetic Tremor. Neurotox Res 2019; 35:575-583. [DOI: 10.1007/s12640-019-0007-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
|
10
|
Kunisawa N, Shimizu S, Kato M, Iha HA, Iwai C, Hashimura M, Ogawa M, Kawaji S, Kawakita K, Abe K, Ohno Y. Pharmacological characterization of nicotine-induced tremor: Responses to anti-tremor and anti-epileptic agents. J Pharmacol Sci 2018; 137:162-169. [PMID: 29945769 DOI: 10.1016/j.jphs.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
We previously showed that nicotine evoked kinetic tremor by activating the inferior olive, which is implicated in the pathogenesis of essential tremor, via α7 nicotinic acetylcholine receptors. Here, we evaluated the effects of various anti-tremor and anti-epileptic agents on nicotine-induced tremor in mice to clarify the pharmacological characteristics of nicotine tremor. Drugs effective for essential tremor, propranolol, diazepam and phenobarbital, all significantly inhibited kinetic tremor induced by an intraperitoneal (i.p.) injection of nicotine (1 mg/kg). In contrast, none of the medications for Parkinson's disease, l-DOPA, bromocriptine or trihexyphenidyl, affected the nicotine tremor. Among the anti-epileptic agents examined, valproate, carbamazepine and ethosuximide, significantly inhibited nicotine-induced tremor. In addition, a selective T-type Ca2+ channel blocker, TTA-A2, also suppressed the nicotine tremor. However, neither gabapentin, topiramate, zonisamide nor levetiracetam significantly affected nicotine-induced tremor. The present results show that nicotine-induced tremor resembles essential tremor not only on the neural basis, but also in terms of the pharmacological responses to anti-tremor agents, implying that nicotine-induced tremor can serve as a model for essential tremor. In addition, it is suggested that anti-epileptic agents, which have stimulant actions on the GABAergic system or blocking actions on voltage-gated Na+ channels and T-type Ca2+ channels, can alleviate essential tremor.
Collapse
Affiliation(s)
- Naofumi Kunisawa
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Masaki Kato
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Higor A Iha
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Chihiro Iwai
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mai Hashimura
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mizuki Ogawa
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shohei Kawaji
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazuma Kawakita
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Keisuke Abe
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
11
|
Abstract
Notwithstanding tremendous research efforts, the cause of Alzheimer's disease (AD) remains elusive and there is no curative treatment. The cholinergic hypothesis presented 35 years ago was the first major evidence-based hypothesis on the etiology of AD. It proposed that the depletion of brain acetylcholine was a primary cause of cognitive decline in advanced age and AD. It relied on a series of observations obtained in aged animals, elderly, and AD patients that pointed to dysfunctions of cholinergic basal forebrain, similarities between cognitive impairments induced by anticholinergic drugs and those found in advanced age and AD, and beneficial effects of drugs stimulating cholinergic activity. This review revisits these major results to show how this hypothesis provided the drive for the development of anticholinesterase inhibitor-based therapies of AD, the almost exclusively approved treatment in use despite transient and modest efficacy. New ideas for improving cholinergic therapies are also compared and discussed in light of the current revival of the cholinergic hypothesis on the basis of two sets of evidence from new animal models and refined imagery techniques in humans. First, human and animal studies agree in detecting signs of cholinergic dysfunctions much earlier than initially believed. Second, alterations of the cholinergic system are deeply intertwined with its reactive responses, providing the brain with efficient compensatory mechanisms to delay the conversion into AD. Active research in this field should provide new insight into development of multitherapies incorporating cholinergic manipulation, as well as early biomarkers of AD enabling earlier diagnostics. This is of prime importance to counteract a disease that is now recognized to start early in adult life.
Collapse
|
12
|
Alachkar A, Łażewska D, Kieć-Kononowicz K, Sadek B. The Histamine H3 Receptor Antagonist E159 Reverses Memory Deficits Induced by Dizocilpine in Passive Avoidance and Novel Object Recognition Paradigm in Rats. Front Pharmacol 2017; 8:709. [PMID: 29075190 PMCID: PMC5643952 DOI: 10.3389/fphar.2017.00709] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/21/2017] [Indexed: 11/30/2022] Open
Abstract
The involvement of histamine H3 receptors (H3Rs) in memory is well known, and the potential of H3R antagonists in therapeutic management of neuropsychiatric diseases, e.g., Alzheimer disease (AD) is well established. Therefore, the effects of histamine H3 receptor (H3R) antagonist E159 (2.5–10 mg/kg, i.p.) in adult male rats on dizocilpine (DIZ)-induced memory deficits were studied in passive avoidance paradigm (PAP) and in novel object recognition (NOR) using pitolisant (PIT) and donepezil (DOZ) as standard drugs. Upon acute systemic pretreatment of E159 at three different doses, namely 2.5, 5, and 10 mg/kg, i.p., 2.5 and 5 but not 10 mg/kg of E159 counteracted the DIZ (0.1 mg)-induced memory deficits, and this E159 (2.5 mg)-elicited memory-improving effects in DIZ-induced amnesic model were moderately abrogated after acute systemic administration of scopolamine (SCO), H2R antagonist zolantidine (ZOL), but not with H1R antagonist pyrilamine to the animals. Moreover, the observed memory-enhancing effects of E159 (2.5 mg/kg, i.p.) were strongly abrogated when animals were administered with a combination of SCO and ZOL. Furthermore, the E159 (2.5 mg)-provided significant memory-improving effect of in DIZ-induced short-term memory (STM) impairment in NOR was comparable to the DOZ-provided memory-enhancing effect, and was abolished when animals were injected with the CNS-penetrant histamine H3R agonist R-(α)-methylhistamine (RAMH). However, E159 at a dose of 2.5 mg/kg failed to exhibit procognitive effect on DIZ-induced long-term memory (LTM) in NOR. Furthermore, the results observed revealed that E159 (2.5 mg/kg) did not alter anxiety levels and locomotor activity of animals naive to elevated-plus maze (EPM), demonstrating that improved performances with E159 (2.5 mg/kg) in PAP or NOR are unrelated to changes in emotional responding or in spontaneous locomotor activity. These results provide evidence for the potential of drugs targeting H3Rs for the treatment of neuropsychiatric disorders, e.g., AD.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Shimizu S, Sogabe S, Yanagisako R, Inada A, Yamanaka M, Iha HA, Ohno Y. Glycine-Binding Site Stimulants of NMDA Receptors Alleviate Extrapyramidal Motor Disorders by Activating the Nigrostriatal Dopaminergic Pathway. Int J Mol Sci 2017; 18:ijms18071416. [PMID: 28671605 PMCID: PMC5535908 DOI: 10.3390/ijms18071416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 01/10/2023] Open
Abstract
Dysfunction of the N-methyl-d-aspartate (NMDA) receptor has been implicated in the pathogenesis of schizophrenia. Although agonists for the glycine-binding sites of NMDA receptors have potential as new medication for schizophrenia, their modulation of antipsychotic-induced extrapyramidal side effects (EPS) has not yet been clarified. We herein evaluated the effects of glycine-binding site stimulants of NMDA receptors on antipsychotic-induced EPS in mice and rats. d-cycloserine (DCS) and d-serine significantly improved haloperidol (HAL)-induced bradykinesia in mice, whereas glycine showed no effects. Sodium benzoate, a d-amino acid oxidase inhibitor, also attenuated HAL-induced bradykinesia. Improvements in HAL-induced bradykinesia by DCS were antagonized by the NMDA antagonist dizocilpine or nitric oxide synthase inhibitor L-NG-Nitro-l-arginine methyl ester. In addition, DCS significantly reduced HAL-induced Fos expression in the dorsolateral striatum without affecting that in the nucleus accumbens. Furthermore, a microinjection of DCS into the substantia nigra pars compacta significantly inhibited HAL-induced EPS concomitant with elevations in dopamine release in the striatum. The present results demonstrated for the first time that stimulating the glycine-binding sites of NMDA receptors alleviates antipsychotic-induced EPS by activating the nigrostriatal dopaminergic pathway, suggesting that glycine-binding site stimulants are beneficial not only for efficacy, but also for side-effect management.
Collapse
Affiliation(s)
- Saki Shimizu
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Shunsaku Sogabe
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Ryoto Yanagisako
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Akiyoshi Inada
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Megumi Yamanaka
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Higor A Iha
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Yukihiro Ohno
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
14
|
Kunisawa N, Iha HA, Nomura Y, Onishi M, Matsubara N, Shimizu S, Ohno Y. Serotonergic modulation of nicotine-induced kinetic tremor in mice. J Pharmacol Sci 2017. [DOI: 10.1016/j.jphs.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
Taïr K, Kharoubi O, Taïr OA, Hellal N, Benyettou I, Aoues A. Aluminium-induced acute neurotoxicity in rats: Treatment with aqueous extract of Arthrophytum (Hammada scoparia). JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2016.08.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Sadek B, Khan N, Darras FH, Pockes S, Decker M. The dual-acting AChE inhibitor and H3 receptor antagonist UW-MD-72 reverses amnesia induced by scopolamine or dizocilpine in passive avoidance paradigm in rats. Physiol Behav 2016; 165:383-91. [DOI: 10.1016/j.physbeh.2016.08.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 12/31/2022]
|
17
|
Mahboob A, Farhat SM, Iqbal G, Babar MM, Zaidi NUSS, Nabavi SM, Ahmed T. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory. Brain Res Bull 2016; 122:19-28. [PMID: 26912408 DOI: 10.1016/j.brainresbull.2016.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/30/2022]
Abstract
Aluminum (Al) is a neurotoxic agent which readily crosses the blood-brain-barrier (BBB) and accumulates in the brain leading to neurodegenerative disorders, characterised by cognitive impairment. Alpha-lipoic acid (ALA) is an antioxidant and has a potential to improve cognitive functions. This study aimed to evaluate the neuroprotective effect of ALA in AlCl3-induced neurotoxicity mouse model. Effect of ALA (25mg/kg/day) was evaluated in the AlCl3-induced neurotoxicity (AlCl3 150 mg/kg/day) mouse model on learning and memory using behaviour tests and on the expression of muscarinic receptor genes (using RT-PCR), in hippocampus and amygdala. Following ALA treatment, the expression of muscarinic receptor genes M1, M2 and choline acetyltransferase (ChaT) were significantly improved (p<0.05) relative to AlCl3-treated group. ALA enhanced fear memory (p<0.01) and social novelty preference (p<0.001) comparative to the AlCl3-treated group. Fear extinction memory was remarkably restored (p<0.001) in ALA-treated group demonstrated by reduced freezing response as compared to the AlCl3-treated group which showed higher freezing. In-silico analysis showed that racemic mixture of ALA has higher binding affinity for M1 and M2 compared to acetylcholine. These novel findings highlight the potential role of ALA in cognitive functions and cholinergic system enhancement thus presenting it an enviable therapeutic candidate for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Aamra Mahboob
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Syeda Mehpara Farhat
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Ghazala Iqbal
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Mustafeez Mujtaba Babar
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Najam-us-Sahar Sadaf Zaidi
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan.
| |
Collapse
|
18
|
Ohno Y, Shimizu S, Tokudome K, Kunisawa N, Sasa M. New insight into the therapeutic role of the serotonergic system in Parkinson's disease. Prog Neurobiol 2015; 134:104-21. [DOI: 10.1016/j.pneurobio.2015.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/17/2015] [Accepted: 09/05/2015] [Indexed: 11/30/2022]
|
19
|
The dual-acting H3 receptor antagonist and AChE inhibitor UW-MD-71 dose-dependently enhances memory retrieval and reverses dizocilpine-induced memory impairment in rats. Behav Brain Res 2015; 297:155-64. [PMID: 26467607 DOI: 10.1016/j.bbr.2015.10.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 11/24/2022]
Abstract
Both the histamine H3 receptor (H3R) and acetylcholine esterase (AChE) are involved in the regulation of release and metabolism of acetylcholine and several other central neurotransmitters. Therefore, dual-active H3R antagonists and AChE inhibitors (AChEIs) have shown in several studies to hold promise to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting H3R antagonist and AChEI 7-(3-(piperidin-1-yl)propoxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline (UW-MD-71) with excellent selectivity profiles over both the three other HRs as well as the AChE's isoenzyme butyrylcholinesterase (BChE) shows high and balanced in vitro affinities at both H3R and AChE with IC50 of 33.9nM and hH3R antagonism with Ki of 76.2nM, respectively. In the present study, the effects of UW-MD-71 (1.25-5mg/kg, i.p.) on acquisition, consolidation, and retrieval in a one-trial inhibitory avoidance task in male rats were investigated applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. Furthermore, the effects of UW-MD-71 on memory deficits induced by the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were tested. Our results indicate that administration of UW-MD-71 before the test session dose-dependently increased performance and enhanced procognitive effect on retrieval. However neither pre- nor post-training acute systemic administration of UW-MD-71 facilitated acquisition or consolidation. More importantly, UW-MD-71 (2.5mg/kg, i.p.) ameliorated the DIZ-induced amnesic effects. Furthermore, the procognitive activity of UW-MD-71 in retrieval was completely reversed and partly abrogated in DIZ-induced amnesia when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL), but not with the CNS penetrant H1R antagonist pyrilamine (PYR). These results demonstrate the procognitive effects of UW-MD-71 in two in vivo memory models, and are to our knowledge the first demonstration in vivo that a potent dual-acting H3R antagonist and AChEI is effective in improving retrieval processes in the one-trial inhibitory avoidance task and provide evidence to such compounds to treat cognitive disorders.
Collapse
|