1
|
Liu M, Liu S, Lin Z, Chen X, Jiao Q, Du X, Jiang H. Targeting the Interplay Between Autophagy and the Nrf2 Pathway in Parkinson's Disease with Potential Therapeutic Implications. Biomolecules 2025; 15:149. [PMID: 39858542 PMCID: PMC11764135 DOI: 10.3390/biom15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder marked by the progressive degeneration of midbrain dopaminergic neurons and resultant locomotor dysfunction. Despite over two centuries of recognition as a chronic disease, the exact pathogenesis of PD remains elusive. The onset and progression of PD involve multiple complex pathological processes, with dysfunctional autophagy and elevated oxidative stress serving as critical contributors. Notably, emerging research has underscored the interplay between autophagy and oxidative stress in PD pathogenesis. Given the limited efficacy of therapies targeting either autophagy dysfunction or oxidative stress, it is crucial to elucidate the intricate mechanisms governing their interplay in PD to develop more effective therapeutics. This review overviews the role of autophagy and nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal transcriptional regulator orchestrating cellular defense mechanisms against oxidative stress, and the complex interplay between these processes. By elucidating the intricate interplay between these key pathological processes in PD, this review will deepen our comprehensive understanding of the multifaceted pathological processes underlying PD and may uncover potential strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Mengru Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Siqi Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Zihan Lin
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| |
Collapse
|
2
|
Nair AC, Kuriakose BB, Biju A, Surendran S, Sudheesh MS, Lakshmi PK. Pharmacological effects of herbal ingredients of Manasamitra vatakam in the treatment of Alzheimer's disease: A review. J Ayurveda Integr Med 2025; 16:101041. [PMID: 39799838 PMCID: PMC11773069 DOI: 10.1016/j.jaim.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 01/15/2025] Open
Abstract
Multi-targeted drug therapy has received substantial attention for the treatment of diseases of multi-factorial origin, including neurodegenerative and autoimmune diseases. It seems reasonable to argue that the complex pathology of neurodegenerative diseases (ND) cannot be reduced to a single target to modulate a broad range of cellular signaling, associated pathologies, and symptoms. It is this idea that has brought the attention of the scientific world towards phytochemicals and traditional drugs that are notoriously multi-targeted. A systematic study of these formulations and establishing the molecular pathways of individual molecules can lead to a standardized multi-component product that can modulate a broad range of activities on different targets of ND. This could provide an accessible and affordable solution to the significant disease burden of ND. With this idea in mind, a systematic review was carried out on an Ayurvedic product Manasamitra Vatakam (MMV), known to be a neuroprotective formulation and highly effective against Alzheimer's disease. MMV can be a source of phytomolecules for treating neurodegenerative diseases. The multifactorial nature of these diseases makes them suitable candidates for testing phytochemicals due to the inherent multitargeting capabilities of these compounds. The primary objective of this review is to provide a comprehensive understanding of the phytomolecules from MMV that are responsible for its multitargeted effect against neurodegenerative diseases. From the reported literature, it is clear that many phytoconstituents and extracts of the herbal ingredients from MMV have demonstrated their efficacy against AD models. However, the combination of these molecules in AD models has never been tested. Scientific studies should be done to explore the bioactive compounds in the formulation and the druggability of these identified compounds can be evaluated using experimental methods.
Collapse
Affiliation(s)
- Anju C Nair
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Kingdom of Saudi Arabia
| | - Aswini Biju
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Sarika Surendran
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus Kochi, Kerala, 682041, India
| | - P K Lakshmi
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India.
| |
Collapse
|
3
|
Hosseini A, Sheibani M, Valipour M. Exploring the Therapeutic Potential of BBB-Penetrating Phytochemicals With p38 MAPK Modulatory Activity in Addressing Oxidative Stress-Induced Neurodegenerative Disorders, With a Focus on Alzheimer's Disease. Phytother Res 2024; 38:5598-5625. [PMID: 39300812 DOI: 10.1002/ptr.8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/17/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Oxidative stress plays an important role in the occurrence of neurodegenerative diseases. Previous studies indicate a strong connection between oxidative stress, inappropriate activation of the p38 MAPK signaling pathway, and the pathogenesis of neurodegenerative diseases. Although antioxidant therapy is a valid strategy to alleviate these problems, the most important limitation of this approach is the ineffectiveness of drug administration due to the limited permeability of the BBB. Therefore, BBB-penetrating p38 MAPK modulators with proper antioxidant capacity could be useful in preventing/reducing the complications of neurodegenerative disorders. The current manuscript aims to review the therapeutic capabilities of some recently reviewed naturally occurring p38 MAPK inhibitors in the management of neurodegenerative problems such as Alzheimer's disease. In data collection, we tried to use more recent studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so on, but no specific time frame was considered due to the nature of the study. Our evaluations indicate that natural compounds tanshinones, protoberberines, pinocembrin, osthole, rhynchophylline, oxymatrine, schisandrin, piperine, paeonol, ferulic acid, 6-gingerol, obovatol, and trolox have significant potential for use as supplements/adjuvants in the reduction of neurodegenerative-related problems. Our findings emphasize the usefulness of BBB-penetrating phytochemicals with p38 MAPK modulatory activity as potential therapeutic options against neurodegenerative disorders. Of course, the proper use of these compounds depends on considering their toxicity/safety profile and pharmacokinetic characteristics as well as the clinical conditions of users.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chuang JMJ, Chen HL, Chang CI, Lin JS, Chang HM, Wu WJ, Lin MY, Chen WF, Lee CH. Nobiletin derivative, 5-acetoxy-6,7,8,3',4'-pentamethoxyflavone, inhibits neuroinflammation through the inhibition of TLR4/MyD88/MAPK signaling pathways and STAT3 in microglia. Immunopharmacol Immunotoxicol 2024:1-11. [PMID: 38800857 DOI: 10.1080/08923973.2024.2360050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Microglia in the central nervous system regulate neuroinflammation that leads to a wide range of neuropathological alterations. The present study investigated the anti-neuroinflammatory properties of nobiletin (Nob) derivative, 5-acetoxy-6,7,8,3',4'-pentamethoxyflavone (5-Ac-Nob), in lipopolysaccharide (LPS)-activated BV2 microglia. MATERIALS AND METHODS By using the MTT assay, Griess method, flow cytometry, and enzyme-linked immunosorbent assay (ELISA), we determined the cell viability, the levels of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory factors (interleukin 1 beta; IL-1β, interleukin 6; IL-6, tumor necrosis factor alpha; TNF-α and prostaglandin E2; PGE2) in LPS-stimulated BV2 microglia. Toll-like receptor 4 (TLR4)-mediated myeloid differentiation primary response gene 88 (MyD88)/nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) signaling pathway and signal transducer and activator of transcription 3 (STAT3) were measured by western blotting. Analysis of NO generation and mRNA of pro-inflammatory cytokines was confirmed in the zebrafish model. RESULTS 5-Ac-Nob reduced cell death, the levels of NO, ROS, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and pro-inflammatory factors in LPS-activated BV-2 microglial cells. TLR4-mediated MyD88/NF-κB and MAPK pathway (p38, ERK and JNK) after exposure to 5-Ac-Nob was also suppressed. Moreover, 5-Ac-Nob inhibited phosphorylated STAT3 proteins expression in LPS-induced BV-2 microglial cells. Furthermore, we confirmed that 5-Ac-Nob decreased LPS-induced NO generation and mRNA of pro-inflammatory cytokines in the zebrafish model. CONCLUSIONS Our findings suggest that 5-Ac-Nob represses neuroinflammatory responses by inhibiting TLR4-mediated signaling pathway and STAT3. As a result of these findings, 5-Ac-Nob has potential as an anti-inflammatory agent against microglia-mediated neuroinflammatory disorders.
Collapse
Affiliation(s)
- Jimmy Ming-Jung Chuang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hsien-Lin Chen
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Research Centre for Active Natural Products Development, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jia-Syuan Lin
- Department of Pharmacology, School of Post-Baccalaureate Medicine; Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Min Chang
- Department of Pharmacology, School of Post-Baccalaureate Medicine; Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Ju Wu
- Department of Pharmacology, School of Post-Baccalaureate Medicine; Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Hsing Lee
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Research Centre for Active Natural Products Development, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Pharmacology, School of Post-Baccalaureate Medicine; Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Zang WB, Wei HL, Zhang WW, Ma W, Li J, Yao Y. Curcumin hybrid molecules for the treatment of Alzheimer's disease: Structure and pharmacological activities. Eur J Med Chem 2024; 265:116070. [PMID: 38134747 DOI: 10.1016/j.ejmech.2023.116070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly. Contemporary treatments can only relieve symptoms but fail to delay disease progression. Curcumin is a naturally derived compound that has demonstrated significant therapeutic effects in AD treatment. Recently, molecular hybridization has been utilized to combine the pharmacophoric groups present in curcumin with those of other AD drugs, resulting in a series of novel compounds that enhance the therapeutic efficacy through multiple mechanisms. In this review, we firstly provide a concise summary of various pathogenetic hypotheses of AD and the mechanism of action of curcumin in AD, as well as the concept of molecular hybridization. Subsequently, we focus on the recent development of hybrid molecules derived from curcumin, summarizing their structures and pharmacological activities, including cholinesterase inhibitory activity, Aβ aggregation inhibitory activity, antioxidant activity, and other activities. The structure-activity relationships were further discussed.
Collapse
Affiliation(s)
- Wei-Biao Zang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Hui-Ling Wei
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei-Wei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Song J, Zhao Y, Shan X, Luo Y, Hao N, Zhao L. Active ingredients of Chinese medicine with immunomodulatory properties: NF-κB pathway and Parkinson's disease. Brain Res 2024; 1822:148603. [PMID: 37748570 DOI: 10.1016/j.brainres.2023.148603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a complex pathogenesis and no cure. Persistent neuroinflammation plays an important role in the development of PD, and activation of microglia and astrocytes within the central nervous system leads to an inflammatory response and production of pro-inflammatory factors, and activation of NF-κB is key to neuroglial activation in chronic inflammation in PD and a hallmark of the onset of neuroinflammatory disease. Therefore, inhibiting NF-κB activation to prevent further loss of dopaminergic nerves is a more effective means of treating PD. It has been found that an increasing number of active ingredients in Chinese medicines, such as flavonoids, alkaloids, saponins, terpenoids, phenols and phenylpropanoids, have anti-inflammatory properties that can regulate neuroglia cell activation and ameliorate neuroinflammation through the NF-κB pathway, and increase dopamine release or protect dopaminergic neurons for neuroprotection to improve behavioural dysfunction in PD. The active ingredients of traditional Chinese medicine are expected to be good candidates for the treatment of PD, as they provide holistic regulation through multi-targeting and multi-level effects, and are safe, inexpensive and readily available. Therefore, this paper summarises that the active ingredients of some relevant Chinese medicines ameliorate the symptoms of PD and delay the development of PD by inhibiting glial cell-mediated neuroinflammation through the NF-κB pathway, which may provide new ideas for exploring the molecular mechanism of PD pathogenesis and developing new anti-PD drugs.
Collapse
Affiliation(s)
- Jingjing Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yang Zhao
- Huiji District People's Hospital, Henan Province, Zhengzhou 450000, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yongyin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Nan Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
7
|
Miller SJ, Darji RY, Walaieh S, Lewis JA, Logan R. Senolytic and senomorphic secondary metabolites as therapeutic agents in Drosophila melanogaster models of Parkinson's disease. Front Neurol 2023; 14:1271941. [PMID: 37840914 PMCID: PMC10568035 DOI: 10.3389/fneur.2023.1271941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Drosophila melanogaster is a valuable model organism for a wide range of biological exploration. The well-known advantages of D. melanogaster include its relatively simple biology, the ease with which it is genetically modified, the relatively low financial and time costs associated with their short gestation and life cycles, and the large number of offspring they produce per generation. D. melanogaster has facilitated the discovery of many significant insights into the pathology of Parkinson's disease (PD) and has served as an excellent preclinical model of PD-related therapeutic discovery. In this review, we provide an overview of the major D. melanogaster models of PD, each of which provide unique insights into PD-relevant pathology and therapeutic targets. These models are discussed in the context of their past, current, and future potential use for studying the utility of secondary metabolites as therapeutic agents in PD. Over the last decade, senolytics have garnered an exponential interest in their ability to mitigate a broad spectrum of diseases, including PD. Therefore, an emphasis is placed on the senolytic and senomorphic properties of secondary metabolites. It is expected that D. melanogaster will continue to be critical in the effort to understand and improve treatment of PD, including their involvement in translational studies focused on secondary metabolites.
Collapse
Affiliation(s)
- Sean J. Miller
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, United States
| | - Rayyan Y. Darji
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, United States
| | - Sami Walaieh
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
| | - Jhemerial A. Lewis
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
| | - Robert Logan
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
| |
Collapse
|
8
|
Yang X, Zhang X, Shen K, Wang Z, Liu G, Huang K, He Z, Li Y, Hou Z, Lv S, Zhang C, Yang H, Liu S, Ke Y. Cuproptosis-related genes signature and validation of differential expression and the potential targeting drugs in temporal lobe epilepsy. Front Pharmacol 2023; 14:1033859. [PMID: 37435496 PMCID: PMC10330702 DOI: 10.3389/fphar.2023.1033859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction: Temporal lobe epilepsy (TLE) is the most common subtype of epilepsy in adults and is characterized by neuronal loss, gliosis, and sprouting mossy fibers in the hippocampus. But the mechanism underlying neuronal loss has not been fully elucidated. A new programmed cell death, cuproptosis, has recently been discovered; however, its role in TLE is not clear. Methods: We first investigated the copper ion concentration in the hippocampus tissue. Then, using the Sample dataset and E-MTAB-3123 dataset, we analyzed the features of 12 cuproptosis-related genes in TLEs and controls using the bioinformatics tools. Then, the expression of the key cuproptosis genes were confirmed using real-time PCR and immunohistochemical staining (IHC). Finally, the Enrichr database was used to screen the small molecules and drugs targeting key cuproptosis genes in TLE. Results: The Sample dataset displayed four differentially expressed cuproptosis-related genes (DECRGs; LIPT1, GLS, PDHA1, and CDKN2A) while the E-MTAB-3123 dataset revealed seven DECRGs (LIPT1, DLD, FDX1, GLS, PDHB, PDHA1, and DLAT). Remarkably, only LIPT1 was uniformly upregulated in both datasets. Additionally, these DECRGs are implicated in the TCA cycle and pyruvate metabolism-both crucial for cell cuproptosis-as well as various immune cell infiltrations, especially macrophages and T cells, in the TLE hippocampus. Interestingly, DECRGs were linked to most infiltrating immune cells during TLE's acute phase, but this association considerably weakened in the latent phase. In the chronic phase, DECRGs were connected with several T-cell subclasses. Moreover, LIPT1, FDX1, DLD, and PDHB were related to TLE identification. PCR and IHC further confirmed LIPT1 and FDX1's upregulation in TLE compared to controls. Finally, using the Enrichr database, we found that chlorzoxazone and piperlongumine inhibited cell cuproptosis by targeting LIPT1, FDX1, DLD, and PDHB. Conclusion: Our findings suggest that cuproptosis is directly related to TLE. The signature of cuproptosis-related genes presents new clues for exploring the roles of neuronal death in TLE. Furthermore, LIPT1 and FDX1 appear as potential targets of neuronal cuproptosis for controlling TLE's seizures and progression.
Collapse
Affiliation(s)
- Xiaolin Yang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Zhang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Kaifeng Shen
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongke Wang
- Department of Neurosurgery, Armed Police Hospital, Chongqing, China
| | - Guolong Liu
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Kaixuan Huang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zeng He
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yang Li
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhi Hou
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shengqing Lv
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chunqing Zhang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Shiyong Liu
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Yanyan Ke
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Salsinha AS, Socodato R, Rodrigues A, Vale-Silva R, Relvas JB, Pintado M, Rodríguez-Alcalá LM. Potential of omega-3 and conjugated fatty acids to control microglia inflammatory imbalance elicited by obesogenic nutrients. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159331. [PMID: 37172801 DOI: 10.1016/j.bbalip.2023.159331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
High-fat diet-induced obesity detrimentally affects brain function by inducing chronic low-grade inflammation. This neuroinflammation is, at least in part, likely to be mediated by microglia, which are the main immune cell population in the brain. Microglia express a wide range of lipid-sensitive receptors and their activity can be modulated by fatty acids that cross the blood-brain barrier. Here, by combining live cell imaging and FRET technology we assessed how different fatty acids modulate microglia activity. We demonstrate that the combined action of fructose and palmitic acid induce Ikβα degradation and nuclear translocation of the p65 subunit nuclear factor kB (NF-κB) in HCM3 human microglia. Such obesogenic nutrients also lead to reactive oxygen species production and LynSrc activation (critical regulators of microglia inflammation). Importantly, short-time exposure to omega-3 (EPA and DHA), CLA and CLNA are sufficient to abolish NF-κB pathway activation, suggesting a potential neuroprotective role. Omega-3 and CLA also show an antioxidant potential by inhibiting reactive oxygen species production, and the activation of LynSrc in microglia. Furthermore, using chemical agonists (TUG-891) and antagonists (AH7614) of GPR120/FFA4, we demonstrated that omega-3, CLA and CLNA inhibition of the NF-κB pathway is mediated by this receptor, while omega-3 and CLA antioxidant potential occurs through different signaling mechanisms.
Collapse
Affiliation(s)
- A S Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Socodato
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - A Rodrigues
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - J B Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - L M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
10
|
Hu Q, Tao R, Hu X, Wu H, Xu J. Effects of piperlonguminine on lung injury in severe acute pancreatitis <em>via</em> the TLR4/NF-κB pathway. Eur J Histochem 2023; 67. [PMID: 36951266 PMCID: PMC10080291 DOI: 10.4081/ejh.2023.3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
Acute pancreatitis is an inflammatory response in the pancreas, involving activation of pancreatic enzymes. Severe acute pancreatitis (SAP) often causes systemic complications that affect distant organs, including the lungs. The aim of this study was to explore the therapeutic potential of piperlonguminine on SAP-induced lung injury in rat models. Acute pancreatitis was induced in rats by repetitive injections with 4% sodium taurocholate. Histological examination and biochemical assays were used to assess the severity of lung injury, including tissue damage, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), reactive oxygen species (ROS), and inflammatory cytokines. We found that piperlonguminine significantly ameliorated pulmonary architectural distortion, hemorrhage, interstitial edema, and alveolar thickening in rats with SAP. In addition, NOX2, NOX4, ROS, and inflammatory cytokine levels in pulmonary tissues were notably decreased in piperlonguminine-treated rats. Piperlonguminine also attenuated the expression levels of toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB). Together, our findings demonstrate for the first time that piperlonguminine can ameliorate acute pancreatitis-induced lung injury via inhibitory modulation of inflammatory responses by suppression of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qian Hu
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Ran Tao
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Xiaoyun Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Haibo Wu
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Jianjun Xu
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| |
Collapse
|
11
|
Shi C, Huang K, Soto J, Sankaran R, Kalia V, Onwumere O, Young M, Einbond L, Redenti S. Piperlongumine inhibits proliferation and oncogenic MYCN expression in chemoresistant metastatic retinoblastoma cells directly and through extracellular vesicles. Biomed Pharmacother 2023; 161:114554. [PMID: 36940616 PMCID: PMC10157982 DOI: 10.1016/j.biopha.2023.114554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
Ocular retinoblastoma malignancies, which develop into metastatic phenotypes, result in poor prognosis and survival for infant and child patients. To improve the prognosis of metastatic retinoblastoma, it is important to identify novel compounds with less toxic side effects and higher therapeutic efficacy compared to existing chemotherapeutics. Piperlongumine (PL), a neuroprotective, plant-derived compound has been explored for its anticancer activities both in vitro and in vivo. Here, we analyze the potential efficacy of PL for metastatic retinoblastoma cell treatment. Our data reveal that PL treatment significantly inhibits cell proliferation in metastatic retinoblastoma Y79 cells compared to the commonly used retinoblastoma chemotherapeutic drugs carboplatin, etoposide, and vincristine. PL treatment also significantly increases cell death compared to treatment with other chemotherapeutic drugs. PL-induced cell-death signaling was associated with significantly higher caspase 3/7 activities and greater loss of mitochondrial membrane potential. PL was also internalized into Y79 cells with an estimated concentration of 0.310pM and expression analysis revealed reduced MYCN oncogene levels. We next examined extracellular vesicles derived from PL-treated Y79 cells. Extracellular vesicles in other cancers are pro-oncogenic, mediating systemic toxicities via the encapsulation of chemotherapeutic drugs. Within metastatic Y79 EV samples, an estimated PL concentration of 0.026pM was detected. PL treatment significantly downregulated Y79 EV cargo of the oncogene MYCN transcript. Interestingly, non-PL-treated Y79 cells incubated with EVs from PL-treated cells exhibited significantly reduced cell growth. These findings indicate that in metastatic Y79 cells, PL exhibits potent anti-proliferation effects and oncogene downregulation. Importantly, PL is also incorporated into extracellular vesicles released from treated metastatic cells with measurable anti-cancer effects on target cells at a distance from the site of primary treatment. The use of PL in the treatment of metastatic retinoblastoma may reduce primary tumor proliferation and inhibit metastatic cancer activity systemically via extracellular vesicle circulation.
Collapse
Affiliation(s)
- Cui Shi
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Kunhui Huang
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - John Soto
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | - Renuka Sankaran
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Onyekwere Onwumere
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biology Doctoral Program, The Graduate School of the City University of New York, 365 5th Avenue, New York, NY 10016, USA
| | - Michael Young
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Linda Einbond
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | - Stephen Redenti
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; Biology Doctoral Program, The Graduate School of the City University of New York, 365 5th Avenue, New York, NY 10016, USA.
| |
Collapse
|
12
|
Zhao M, Wang X, Kumar SA, Yao Y, Sun M. A Pharmacological Insight of Piperlongumine, Bioactive Validating Its Therapeutic Efficacy as a Drug to Treat Inflammatory Diseases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
13
|
Tang Y, Zhang W, Wu L, Bai B, Zheng B, Li M, Tang Y, Zhu X, Zhang Y, Wang Y, Zhang B. Piperlongumine mitigates LPS-induced inflammation and lung injury via targeting MD2/TLR4. Biochem Biophys Res Commun 2023; 642:118-127. [PMID: 36566563 DOI: 10.1016/j.bbrc.2022.11.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Acute lung injury (ALI) is a fatal acute inflammatory illness with restricted therapeutic choices clinically. Piperlongumine (PL) is recognized as an alkaloid separated from Piper longum L, which was suggested to exhibit multiple pharmacological activities (e.g., anti-inflammatory activity). However, the effects of PL on LPS-triggered ALI and its anti-inflammatory target remain unclear. This paper intended to assess the roles of PL in LPS-triggered ALI, as well as its underlying mechanism and target. METHODS In vivo, ALI was induced by intratracheal injection of LPS to evaluate protective effects of PL and assessed by the changes of histopathological. In vitro, the anti-inflammatory activity and mechanism of PL were investigated by ELISA, RT-qPCR, transcription factor enrichment analysis, Western blotting and Immunofluorescence assay. The binding affinity of PL to MD2 was analyzed using computer docking, surface plasmon resonance, ELISA and immunoprecipitation assay. RESULTS It was reported here that PL treatment alleviated LPS-induced pulmonary damage, inflammatory cells infiltration and inflammatory response in mice. In culture cells, PCR array showed that PL significantly inhibited LPS-induced inflammatory cytokines, chemokines, and type I IFNs genetic expression, along with the inhibition of TAK1 and TBK1 pathway. It is noteworthy that PL is capable of straightly binding to MD2 and inhibiting MD2/TLR4 complex formation and TLR4 dimerization. CONCLUSIONS As revealed from this study, PL directly binding to MD2 to block cytokines expression by inhibiting the activation of TAK1 and TBK1 pathway, which then exerted its pulmonary protective activity. Accordingly, PL may act as an underlying candidate for treating LPS-triggered ALI.
Collapse
Affiliation(s)
- Yelin Tang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Liqin Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bin Bai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bin Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mengying Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yue Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaona Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China
| | - Yali Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325600, China.
| |
Collapse
|
14
|
Immune System and Epidemics: The Role of African Indigenous Bioactive Substances. Nutrients 2023; 15:nu15020273. [PMID: 36678143 PMCID: PMC9864875 DOI: 10.3390/nu15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
With over 6 million coronavirus pandemic deaths, the African continent reported the lowest death rate despite having a high disease burden. The African community's resilience to the pandemic has been attributed to climate and weather conditions, herd immunity, repeated exposure to infectious organisms that help stimulate the immune system, and a disproportionately large youth population. In addition, functional foods, herbal remedies, and dietary supplements contain micronutrients and bioactive compounds that can help boost the immune system. This review identified significant traditional fermented foods and herbal remedies available within the African continent with the potential to boost the immune system in epidemics and pandemics. Methodology: Databases, such as PubMed, the Web of Science, and Scopus, were searched using relevant search terms to identify traditional African fermented foods and medicinal plants with immune-boosting or antiviral capabilities. Cereal-based fermented foods, meat-, and fish-based fermented foods, and dairy-based fermented foods containing antioxidants, immunomodulatory effects, probiotics, vitamins, and peptides were identified and discussed. In addition, nine herbal remedies and spices belonging to eight plant families have antioxidant, immunomodulatory, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, and antiviral properties. Peptides, flavonoids, alkaloids, sterols, ascorbic acid, minerals, vitamins, and saponins are some of the bioactive compounds in the remedies. Bioactive compounds in food and plants significantly support the immune system and help increase resistance against infectious diseases. The variety of food and medicinal plants found on the African continent could play an essential role in providing community resilience against infectious diseases during epidemics and pandemics. The African continent should investigate nutritional, herbal, and environmental factors that support healthy living and longevity.
Collapse
|
15
|
Kuo YY, Ho KH, Shih CM, Chen PH, Liu AJ, Chen KC. Piperlongumine-inhibited TRIM14 signaling sensitizes glioblastoma cells to temozolomide treatment. Life Sci 2022; 309:121023. [DOI: 10.1016/j.lfs.2022.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
16
|
Alghamdi SS, Suliman RS, Aljammaz NA, Kahtani KM, Aljatli DA, Albadrani GM. Natural Products as Novel Neuroprotective Agents; Computational Predictions of the Molecular Targets, ADME Properties, and Safety Profile. PLANTS (BASEL, SWITZERLAND) 2022; 11:549. [PMID: 35214883 PMCID: PMC8878483 DOI: 10.3390/plants11040549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Neurodegenerative diseases (NDs) are one of the most challenging public health issues. Despite tremendous advances in our understanding of NDs, little progress has been made in establishing effective treatments. Natural products may have enormous potential in preventing and treating NDs by targeting microglia; yet, there have been several clinical concerns about their usage, primarily due to a lack of scientific evidence for their efficacy, molecular targets, physicochemical properties, and safety. To solve this problem, the secondary bioactive metabolites derived from neuroprotective medicinal plants were identified and selected for computational predictions for anti-inflammatory activity, possible molecular targets, physicochemical properties, and safety evaluation using PASS online, Molinspiration, SwissADME, and ProTox-II, respectively. Most of the phytochemicals were active as anti-inflammatory agents as predicted using the PASS online webserver. Moreover, the molecular target predictions for some phytochemicals were similar to the reported experimental targets. Moreover, the phytochemicals that did not violate important physicochemical properties, including blood-brain barrier penetration, GI absorption, molecular weight, and lipophilicity, were selected for further safety evaluation. After screening 54 neuroprotective phytochemicals, our findings suggest that Aromatic-turmerone, Apocynin, and Matrine are the most promising compounds that could be considered when designing novel neuroprotective agents to treat neurodegenerative diseases via modulating microglial polarization.
Collapse
Affiliation(s)
- Sahar Saleh Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Rasha Saad Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Norah Abdulaziz Aljammaz
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Khawla Mohammed Kahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Dimah Abdulqader Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| |
Collapse
|
17
|
Shi J, Xia Y, Wang H, Yi Z, Zhang R, Zhang X. Piperlongumine Is an NLRP3 Inhibitor With Anti-inflammatory Activity. Front Pharmacol 2022; 12:818326. [PMID: 35095532 PMCID: PMC8790537 DOI: 10.3389/fphar.2021.818326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
Piperlongumine (PL) is an alkaloid from Piper longum L. with anti-inflammatory and antitumor properties. Numerous studies have focused on its antitumor effect. However, the underlying mechanisms of its anti-inflammation remain elusive. In this study, we have found that PL is a natural inhibitor of Nod-like receptor family pyrin domain-containing protein-3 (NLRP3) inflammasome, an intracellular multi-protein complex that orchestrates host immune responses to infections or sterile inflammations. PL blocks NLRP3 activity by disrupting the assembly of NLRP3 inflammasome including the association between NLRP3 and NEK7 and subsequent NLRP3 oligomerization. Furthermore, PL suppressed lipopolysaccharide-induced endotoxemia and MSU-induced peritonitis in vivo, which are NLRP3-dependent inflammation. Thus, our study identified PL as an inhibitor of NLRP3 inflammasome and indicated the potential application of PL in NLRP3-relevant diseases.
Collapse
Affiliation(s)
- Jie Shi
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China.,Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xia
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huihong Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhongjie Yi
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruoruo Zhang
- Institute of Transplantation Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
18
|
Curcumin-Piperlongumine Hybrids with a Multitarget Profile Elicit Neuroprotection in In Vitro Models of Oxidative Stress and Hyperphosphorylation. Antioxidants (Basel) 2021; 11:antiox11010028. [PMID: 35052532 PMCID: PMC8773050 DOI: 10.3390/antiox11010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Curcumin shows a broad spectrum of activities of relevance in the treatment of Alzheimer’s disease (AD); however, it is poorly absorbed and is also chemically and metabolically unstable, leading to a very low oral bioavailability. A small library of hybrid compounds designed as curcumin analogues and incorporating the key structural fragment of piperlongumine, a natural neuroinflammation inhibitor, were synthesized by a two-step route that combines a three-component reaction between primary amines, β-ketoesters and α-haloesters and a base-promoted acylation with cinnamoyl chlorides. These compounds were predicted to have good oral absorption and CNS permeation, had good scavenging properties in the in vitro DPPH experiment and in a cellular assay based on the oxidation of dichlorofluorescin to a fluorescent species. The compounds showed low toxicity in two cellular models, were potent inductors of the Nrf2-ARE phase II antioxidant response, inhibited PHF6 peptide aggregation, closely related to Tau protein aggregation and were active against the LPS-induced inflammatory response. They also afforded neuroprotection against an oxidative insult induced by inhibition of the mitochondrial respiratory chain with the rotenone-oligomycin A combination and against Tau hyperphosphorylation induced by the phosphatase inhibitor okadaic acid. This multitarget pharmacological profile is highly promising in the development of treatments for AD and provides a good hit structure for future optimization efforts.
Collapse
|
19
|
Dong XH, Peng C, Zhang YY, Jiang Y, Yang LJ, He JB, Tao X, Zhang C, Chen AF, Xie HH. Low-Dose Piperlongumine Rescues Impaired Function of Endothelial Progenitor Cells and Reduces Cerebral Ischemic Injury in High-Fat Diet-Fed Mice. Front Pharmacol 2021; 12:689880. [PMID: 34867315 PMCID: PMC8634707 DOI: 10.3389/fphar.2021.689880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
It is of great clinical significance to develop potential novel strategies to prevent cardio-cerebrovascular complications in patients with hyperlipidemia. Vascular Endothelial integrity and function play a key role in the prevention of cardio-cerebrovascular diseases. Endothelial progenitor cells (EPCs) can home to sites of ischemic injury and promote endothelial regeneration and neovascularization. Hypercholesterolemia impairs the function of EPC. The present study attempted to identify the effect of piperlongumine on EPCs’ angiogenic potential and cerebral ischemic injury in high-fat diet-fed (HFD-fed) mice. Here, we showed that treatment with low-does piperlongumine (0.25 mg/kg/day) for 8 weeks significantly improved EPCs function and reduced the cerebral ischemic injury (both infarct volumes and neurobehavioral outcomes) in HFD-fed mice. In addition, low-dose piperlongumine administration increased intracellular NO level and reduced intracellular O2- level in EPCs of HFD-fed mice. Moreover, incubation with piperlongumine (1.0 μM, 24 h) reduced thrombospondin-1/2 (TSP-1/2, a potent angiogenesis inhibitor) expression levels in EPCs from HFD-fed mice, increased the therapeutic effect of EPC from HFD-fed mice on cerebral ischemic injury reduction and angiogenesis promotion in HFD-fed mice, and the donor derived EPCs homed to the recipient ischemic brain. In conclusion, low-dose piperlongumine can enhance EPCs’ angiogenic potential and protect against cerebral ischemic injury in HFD-fed mice. It is implied that treatment with low-dose piperlongumine might be a potential option to prevent ischemic diseases (including stroke) in patients with hyperlipidemia, and priming with piperlongumine might be a feasible way to improve the efficacy of EPC-based therapy for ischemic diseases.
Collapse
Affiliation(s)
- Xiao-Hui Dong
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Peng
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Yi Zhang
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Jiang
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Li-Jun Yang
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Bei He
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - He-Hui Xie
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Liu Y, Guo W, Fang S, He B, Li X, Fan L. miR-1270 enhances the proliferation, migration, and invasion of osteosarcoma <em>via</em> targeting cingulin. Eur J Histochem 2021; 65. [PMID: 34873899 PMCID: PMC8678625 DOI: 10.4081/ejh.2021.3237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Osteosarcoma (OS), characterized by high morbidity and mortality, is the most common bone malignancy worldwide. MicroRNAs (miRNAs) play a crucial role in the initiation and development of OS. The purpose of this study was to investigate the roles of miR-1270 in OS. RT-qPCR and Western blot were applied to detect the mRNA and protein level, respectively. CCK-8, colony formation, and TUNEL assays were conducted to determine the cell viability, proliferation, and apoptosis of OS cells. Wound healing and transwell assay were performed to detect the migration and invasion ability of OS cells. Bioinformatics analysis and dual-luciferase reporter assay were used to predict the target genes of miR-1270. Tumor xenograft in vivo assay was carried out to determine miR-1270 effect on the tumor size, volume, and weight. In this study, miR-1270 was overexpressed in OS tissues and cells. However, miR-1270 knockdown inhibited the proliferation, migration and invasion, and promoted the OS cells’ apoptosis. Mechanistically, cingulin (CGN) was predicted and proved to be a target of miR-1270 and partially alleviated the effects of miR-1270 on the proliferation, migration and invasion ability of OS cells. Taken together, knockdown of miR-1270 may inhibit the development of OS via targeting CGN. This finding may provide a novel therapeutic strategy for OS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| | - Shuo Fang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| | - Bin He
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| | - Xiaohai Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| | - Li Fan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| |
Collapse
|
21
|
Yueniwati Y, Syaban MFR, Erwan NE, Putra GFA, Krisnayana AD. Molecular Docking Analysis of Ficus religiosa Active Compound with Anti-Inflammatory Activity by Targeting Tumour Necrosis Factor Alpha and Vascular Endothelial Growth Factor Receptor in Diabetic Wound Healing. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Diabetes mellitus contributes to the delayed healing of wounds causes disturbance of inflammatory cytokine. Tumour necrosis factor alpha (TNF-alpha) and Vascular Endothelial Growth Factor Receptor (VEGFR) both have a role in the persistent inflammation associated with diabetic wounds. Ficus religiosa has developed a reputation as a traditional wound healer among some java people in Indonesia.
AIM: Our study aims to discover the molecular interaction between the active constituents of F. religiosa with TNF-alpha and VEGFR.
MATERIALS AND METHODS: This research was conducted in computerized molecular docking using Protein database, Pymol, Discovery studio, and Pyrex software. A thorough literature search was conducted to identify the potential compound and molecular target for diabetic wounds. Analysis of its anti-inflammatory properties was also carried out using a passonline webserver. Pharmacokinetic analysis was performed using the Lipinski Rule of Five websites and the PreADMET website.
RESULTS: Each of the study’s active compounds has a good pharmacokinetic profile. The predictions of the compound’s structure indicate that it has a strong anti-inflammatory impact. Lupenyl acetate and Lanosterol bind more strongly to the TNF-alpha than the natural ligand, but Piperine binds more strongly to VEGFR.
CONCLUSIONS: Lupenyl acetate, Lanosterol, and Piperine compounds have anti-inflammatory effects through inhibition of TNF-alpha and VEGFR. In addition, this compound has potential to become a drug because it has good pharmacokinetics. Future studies are required to determine the effectiveness and toxicity of Lupenyl acetate, Lanosterol, and Piperine as potential treatment in diabetic wounds.
Collapse
|
22
|
Kunnumakkara AB, Rana V, Parama D, Banik K, Girisa S, Henamayee S, Thakur KK, Dutta U, Garodia P, Gupta SC, Aggarwal BB. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci 2021; 284:119201. [PMID: 33607159 PMCID: PMC7884924 DOI: 10.1016/j.lfs.2021.119201] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cytokine storm is the exaggerated immune response often observed in viral infections. It is also intimately linked with the progression of COVID-19 disease as well as associated complications and mortality. Therefore, targeting the cytokine storm might help in reducing COVID-19-associated health complications. The number of COVID-19 associated deaths (as of January 15, 2021; https://www.worldometers.info/coronavirus/) in the USA is high (1199/million) as compared to countries like India (110/million). Although the reason behind this is not clear, spices may have some role in explaining this difference. Spices and herbs are used in different traditional medicines, especially in countries such as India to treat various chronic diseases due to their potent antioxidant and anti-inflammatory properties. AIM To evaluate the literature available on the anti-inflammatory properties of spices which might prove beneficial in the prevention and treatment of COVID-19 associated cytokine storm. METHOD A detailed literature search has been conducted on PubMed for collecting information pertaining to the COVID-19; the history, origin, key structural features, and mechanism of infection of SARS-CoV-2; the repurposed drugs in use for the management of COVID-19, and the anti-inflammatory role of spices to combat COVID-19 associated cytokine storm. KEY FINDINGS The literature search resulted in numerous in vitro, in vivo and clinical trials that have reported the potency of spices to exert anti-inflammatory effects by regulating crucial molecular targets for inflammation. SIGNIFICANCE As spices are derived from Mother Nature and are inexpensive, they are relatively safer to consume. Therefore, their anti-inflammatory property can be exploited to combat the cytokine storm in COVID-19 patients. This review thus focuses on the current knowledge on the role of spices for the treatment of COVID-19 through suppression of inflammation-linked cytokine storm.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | | | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
23
|
Md S, Alhakamy NA, Alfaleh MA, Afzal O, Altamimi ASA, Iqubal A, Shaik RA. Mechanisms Involved in Microglial-Interceded Alzheimer's Disease and Nanocarrier-Based Treatment Approaches. J Pers Med 2021; 11:1116. [PMID: 34834468 PMCID: PMC8619529 DOI: 10.3390/jpm11111116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder accountable for dementia and cognitive dysfunction. The etiology of AD is complex and multifactorial in origin. The formation and deposition of amyloid-beta (Aβ), hyperphosphorylated tau protein, neuroinflammation, persistent oxidative stress, and alteration in signaling pathways have been extensively explored among the various etiological hallmarks. However, more recently, the immunogenic regulation of AD has been identified, and macroglial activation is considered a limiting factor in its etiological cascade. Macroglial activation causes neuroinflammation via modulation of the NLRP3/NF-kB/p38 MAPKs pathway and is also involved in tau pathology via modulation of the GSK-3β/p38 MAPK pathways. Additionally, microglial activation contributes to the discrete release of neurotransmitters and an altered neuronal synaptic plasticity. Therefore, activated microglial cells appear to be an emerging target for managing and treating AD. This review article discussed the pathology of microglial activation in AD and the role of various nanocarrier-based anti-Alzeihmenr's therapeutic approaches that can either reverse or inhibit this activation. Thus, as a targeted drug delivery system, nanocarrier approaches could emerge as a novel means to overcome existing AD therapy limitations.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Rasheed A. Shaik
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
24
|
Lagoumtzi SM, Chondrogianni N. Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic Biol Med 2021; 171:169-190. [PMID: 33989756 DOI: 10.1016/j.freeradbiomed.2021.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence is a heterogeneous process guided by genetic, epigenetic and environmental factors, characterizing many types of somatic cells. It has been suggested as an aging hallmark that is believed to contribute to aging and chronic diseases. Senescent cells (SC) exhibit a specific senescence-associated secretory phenotype (SASP), mainly characterized by the production of proinflammatory and matrix-degrading molecules. When SC accumulate, a chronic, systemic, low-grade inflammation, known as inflammaging, is induced. In turn, this chronic immune system activation results in reduced SC clearance thus establishing a vicious circle that fuels inflammaging. SC accumulation represents a causal factor for various age-related pathologies. Targeting of several aging hallmarks has been suggested as a strategy to ameliorate healthspan and possibly lifespan. Consequently, SC and SASP are viewed as potential therapeutic targets either through the selective killing of SC or the selective SASP blockage, through natural or synthetic compounds. These compounds are members of a family of agents called senotherapeutics divided into senolytics and senomorphics. Few of them are already in clinical trials, possibly representing a future treatment of age-related pathologies including diseases such as atherosclerosis, osteoarthritis, osteoporosis, cancer, diabetes, neurodegenerative diseases such as Alzheimer's disease, cardiovascular diseases, hepatic steatosis, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and age-related macular degeneration. In this review, we present the already identified senolytics and senomorphics focusing on their redox-sensitive properties. We describe the studies that revealed their effects on cellular senescence and enabled their nomination as novel anti-aging agents. We refer to the senolytics that are already in clinical trials and we present various adverse effects exhibited by senotherapeutics so far. Finally, we discuss aspects of the senotherapeutics that need improvement and we suggest the design of future senotherapeutics to target specific redox-regulated signaling pathways implicated either in the regulation of SASP or in the elimination of SC.
Collapse
Affiliation(s)
- Sofia M Lagoumtzi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece; Department of Biomedical Sciences, University of Western Attica, 28 Ag. Spyridonos Str., Egaleo, 12243, Athens, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece.
| |
Collapse
|
25
|
Catorce MN, Gevorkian G. Evaluation of Anti-inflammatory Nutraceuticals in LPS-induced Mouse Neuroinflammation Model: An Update. Curr Neuropharmacol 2021; 18:636-654. [PMID: 31934839 PMCID: PMC7457421 DOI: 10.2174/1570159x18666200114125628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 01/11/2020] [Indexed: 02/08/2023] Open
Abstract
It is known that peripheral infections, accompanied by inflammation, represent significant risk factors for the development of neurological disorders by modifying brain development or affecting normal brain aging. The acute effects of systemic inflammation on progressive and persistent brain damage and cognitive impairment are well documented. Anti-inflammatory therapies may have beneficial effects on the brain, and the protective properties of a wide range of synthetic and natural compounds have been extensively explored in recent years. In our previous review, we provided an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice. We addressed the data reproducibility in published research and summarized basic features and data on the therapeutic potential of various natural products, nutraceuticals, with known anti-inflammatory effects, for reducing neuroinflammation in this model. Here, recent data on the suitability of the LPS-induced murine neuroinflammation model for preclinical assessment of a large number of nutraceuticals belonging to different groups of natural products such as flavonoids, terpenes, non-flavonoid polyphenols, glycosides, heterocyclic compounds, organic acids, organosulfur compounds and xanthophylls, are summarized. Also, the proposed mechanisms of action of these molecules are discussed.
Collapse
Affiliation(s)
- Miryam Nava Catorce
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| |
Collapse
|
26
|
Qiao O, Ji H, Zhang Y, Zhang X, Zhang X, Liu N, Huang L, Liu C, Gao W. New insights in drug development for Alzheimer's disease based on microglia function. Biomed Pharmacother 2021; 140:111703. [PMID: 34083109 DOI: 10.1016/j.biopha.2021.111703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
One of the biggest challenges in drug development for Alzheimer's disease (AD) is how to effectively remove deposits of amyloid-beta (Aβ). Recently, the relationship between microglia and Aβ has become a research hotspot. Emerging evidence suggests that Aβ-induced microglia-mediated neuroinflammation further aggravates the decline of cognitive function, while microglia are also involved in the process of Aβ clearance. Hence, microglia have become a potential therapeutic target for the treatment or prevention of AD. An in-depth understanding of the role played by microglia in the development of AD will help us to broaden therapeutic strategies for AD. In this review, we provide an overview of the dual roles of microglia in AD progression: the positive effect of phagocytosis of Aβ and its negative effect on neuroinflammation after over-activation. With the advantages of novel structure, high efficiency, and low toxicity, small-molecule compounds as modulators of microglial function have attracted considerable attention in the therapeutic areas of AD. In this review, we also summarize the therapeutic potential of small molecule compounds (SMCs) and their structure-activity relationship for AD treatment through modulating microglial phagocytosis and inhibiting neuroinflammation. For example, the position and number of phenolic hydroxyl groups on the B ring are the key to the activity of flavonoids, and the substitution of hydroxyl groups on the benzene ring enhances the anti-inflammatory activity of phenolic acids. This review is expected to be useful for developing effective modulators of microglial function from SMCs for the amelioration and treatment of AD.
Collapse
Affiliation(s)
- Ou Qiao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Haixia Ji
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Yi Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Xinyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Xueqian Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Na Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Luqi Huang
- Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin 300193, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China.
| |
Collapse
|
27
|
Kim YJ, Park SY, Koh YJ, Lee JH. Anti-Neuroinflammatory Effects and Mechanism of Action of Fructus ligustri lucidi Extract in BV2 Microglia. PLANTS 2021; 10:plants10040688. [PMID: 33918375 PMCID: PMC8066913 DOI: 10.3390/plants10040688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
For centuries, Fructus ligustri lucidi (FLL; the fruit of Ligustrum lucidum Aiton or Ligustrum japonicum Thunb.) has been commonly used in traditional Chinese medicine for treating hepatitis and aging-related symptoms and in traditional Korean medicine to detoxify kidneys and the liver. Pharmacological research has shown FLL has antioxidant, anti-inflammatory, anticancer, anti-osteoporosis, and hepatoprotective activities. This study was undertaken to investigate the effects of FLL extract (FLLE) on neuroinflammation. After setting a non-toxic concentration using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] assay data, we investigated the effects of FLLE using Western blotting, cell migration, enzyme-linked immunosorbent assay, a nitric oxide (NO) assay, and immunofluorescence staining in lipopolysaccharide (LPS)-stimulated murine BV2 microglial cells. FLLE was non-toxic to BV2 cells up to a concentration of 500 μg/mL and concentration-dependently inhibited the production of NO and prostaglandin E2 and the protein levels of inducible nitric oxide synthase and cyclooxygenase-2 under LPS-induced inflammatory conditions. It also inhibited the secretion of the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Furthermore, FLLE pretreatment attenuated LPS-induced increases of CD68 (a marker of microglia activation) and suppressed the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways in LPS-stimulated BV2 cells, and significantly increased heme oxygenase (HO)-1 levels. FLLE also reduced the LPS-induced increase in the migratory ability of BV2 cells and the phosphorylation of vascular endothelial growth factor receptor 1. Collectively, FLLE effectively inhibited inflammatory response by suppressing the MAPK and NF-κB signaling pathways and inducing HO-1 in LPS-stimulated BV2 microglial cells. Our findings provide a scientific basis for further study of FLL as a candidate for preventing or alleviating neuroinflammation.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Medical Biotechnology, Dongguk University, Seoul 04620, Korea;
| | - Sung Yun Park
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea;
| | - Young Jun Koh
- GI Innovation, Inc., Seoul 05855, Korea
- Correspondence: (Y.J.K.); (J.-H.L.); Tel.: +82-31-961-5839 (J.-H.L.)
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea;
- Correspondence: (Y.J.K.); (J.-H.L.); Tel.: +82-31-961-5839 (J.-H.L.)
| |
Collapse
|
28
|
Lei LY, Wang RC, Pan YL, Yue ZG, Zhou R, Xie P, Tang ZS. Mangiferin inhibited neuroinflammation through regulating microglial polarization and suppressing NF-κB, NLRP3 pathway. Chin J Nat Med 2021; 19:112-119. [PMID: 33641782 DOI: 10.1016/s1875-5364(21)60012-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 01/01/2023]
Abstract
Inflammation plays important roles in the progress of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Microglia is responsible for the homeostasis of the central nervous system (CNS), and involved in the neuroinflammation. Therefore, it could be potential in treatment of neurodegenerative diseases to suppress the microglia-mediated neuroinflammation. Mangiferin, a major glucoside of xanthone in Anemarrhena Rhizome, has anti-inflammatory, anti-diabetes, and anti-oxidative properties. However, the effect of mangiferin on the inflammatary responses of microglia cells are still poorly understand. In this study, we investigated the mechanism by which mangiferin inhibited inflammation in LPS-induced BV2 microglia cells. BV2 cells were pretreatment with mangiferin followed by LPS stimulation. In vitro assays, NO and cytokines production were quantified. Western blot and immunocytochemistry were used to examine the effect of mangiferin on the polarization of BV2 cells and signaling pathway. The results showed that mangiferin treatment significantly reduced NO, IL-1β, IL-6 and TNF-α production, also reduced the mRNA and protein of iNOS and COX-2, promoted the polarization of inflammatory toward anti-inflammatory, and inhibited activation of NF-κB and NLRP3 inflammasome. These data suggest that mangiferin has an anti-neuroinflammatory property via regulating microglia macrophage polarization and suppressing NF-κB and NLRP3 signaling pathway, and may act as a potential natural therapeutic candidate for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Li-Yan Lei
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Rui-Cheng Wang
- The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Ya-Lei Pan
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zheng-Gang Yue
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Rui Zhou
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Pei Xie
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zhi-Shu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| |
Collapse
|
29
|
Chen T, Zhu G, Meng X, Zhang X. Recent developments of small molecules with anti-inflammatory activities for the treatment of acute lung injury. Eur J Med Chem 2020; 207:112660. [DOI: 10.1016/j.ejmech.2020.112660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
|
30
|
Zhu P, Qian J, Xu Z, Meng C, Liu J, Shan W, Zhu W, Wang Y, Yang Y, Zhang W, Zhang Y, Ling Y. Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling. JOURNAL OF NATURAL PRODUCTS 2020; 83:3041-3049. [PMID: 33026807 DOI: 10.1021/acs.jnatprod.0c00599] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The natural products piperlongumine and piperine have been shown to inhibit cancer cell proliferation through elevation of reactive oxidative species (ROS) and eventually cell death, but only have modest cytotoxic potencies. A series of 14 novel phenylallylidenecyclohexenone analogues based on piperlongumine and piperine therefore were designed and synthesized, and their pharmacological properties were evaluated. Most of the compounds produced antiproliferative activities against five human cancer cells with IC50 values lower than those of piperlongumine and piperine. Among these, compound 9m exerted the most potent antiproliferative activity against drug-resistant Bel-7402/5-FU human liver cancer 5-FU resistant cells (IC50 = 0.8 μM), which was approximately 10-fold lower than piperlongumine (IC50 = 8.4 μM). Further, 9m showed considerably lower cytotoxicity against LO2 human normal liver epithelial cells compared to Bel-7402/5-FU. Mechanistically, compound 9m inhibited thioredoxin reductase (TrxR) activity, increased ROS levels, reduced mitochondrial transmembrane potential (MTP), and induced autophagy in Bel-7402/5-FU cells via regulation of autophagy-related proteins LC3, p62, and beclin-1. Finally, 9m activated significantly the p38 signaling pathways and suppressed the Akt/mTOR signaling pathways. In conclusion, 9m could be a promising candidate for the treatment of drug-resistant cancer cells and, as such, warrants further investigation.
Collapse
Affiliation(s)
- Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Weizhong Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong 226001, People's Republic of China
| | - Yumin Yang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong 226001, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| |
Collapse
|
31
|
Ju YJ, Kim N, Gee MS, Jeon SH, Lee D, Do J, Ryu JS, Lee JK. Glibenclamide modulates microglial function and attenuates Aβ deposition in 5XFAD mice. Eur J Pharmacol 2020; 884:173416. [PMID: 32721448 DOI: 10.1016/j.ejphar.2020.173416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
Severe neuroinflammation is known as a main pathology of neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In these diseases, excessive microglial activation is one of the main causes of inflammation in the central nervous system. Therefore, inhibition of activated microglia may be suggested as a treatment for neuroinflammatory diseases. Glibenclamide, known as a therapeutics for type 2 diabetes in clinical trials has been shown to be effective in the inhibiting inflammatory conditions of various diseases. However, studies on the effects of glibenclamide for improving AD pathologies are little known. In this study, we tested glibenclamide on microglial cell line BV2 and 5XFAD mice. We found that glibenclamide significantly inhibited nitric oxide (NO) at 10 μM and 40 μM in BV2 cells induced by lipopolysaccharide (LPS) stimulation. In addition, we confirmed that 40 μM of glibenclamide reduced pro-inflammatory cytokines and proteins in the LPS-stimulated microglial cells. The anti-inflammatory effect of glibenclamide was further tested in APP/PS1 transgenic mouse. Although further analysis would be needed to confirm whether glibenclamide affects behavioral performance, our data suggests that glibenclamide may be a therapeutic option for AD treatment.
Collapse
Affiliation(s)
- Yeon-Joo Ju
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seung Ho Jeon
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Danbi Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jimin Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jong-Sik Ryu
- Exercise Metabolism Laboratory, Department of Physical Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
32
|
Trans-Cinnamaldehyde Alleviates Amyloid-Beta Pathogenesis via the SIRT1-PGC1α-PPARγ Pathway in 5XFAD Transgenic Mice. Int J Mol Sci 2020; 21:ijms21124492. [PMID: 32599846 PMCID: PMC7352815 DOI: 10.3390/ijms21124492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Abnormal amyloid-β (Aβ) accumulation is the most significant feature of Alzheimer’s disease (AD). Among the several secretases involved in the generation of Aβ, β-secretase (BACE1) is the first rate-limiting enzyme in Aβ production that can be utilized to prevent the development of Aβ-related pathologies. Cinnamon extract, used in traditional medicine, was shown to inhibit the aggregation of tau protein and Aβ aggregation. However, the effect of trans-cinnamaldehyde (TCA), the main component of cinnamon, on Aβ deposition is unknown. Five-month-old 5XFAD mice were treated with TCA for eight weeks. Seven-month-old 5XFAD mice were evaluated for cognitive and spatial memory function. Brain samples collected at the conclusion of the treatment were assessed by immunofluorescence and biochemical analyses. Additional in vivo experiments were conducted to elucidate the mechanisms underlying the effect of TCA in the role of Aβ deposition. TCA treatment led to improvements in cognitive impairment and reduced Aβ deposition in the brains of 5XFAD mice. Interestingly, the levels of BACE1 were decreased, whereas the mRNA and protein levels of three well-known regulators of BACE1, silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC1α), and PPARγ, were increased in TCA-treated 5XFAD mice. TCA led to an improvement in AD pathology by reducing BACE1 levels through the activation of the SIRT1-PGC1α-PPARγ pathway, suggesting that TCA might be a useful therapeutic approach in AD.
Collapse
|
33
|
Wang M, Suo L, Yang S, Zhang W. CircRNA 001372 Reduces Inflammation in Propofol-Induced Neuroinflammation and Neural Apoptosis through PIK3CA/Akt/NF-κB by miRNA-148b-3p. J INVEST SURG 2020; 34:1167-1177. [PMID: 32506974 DOI: 10.1080/08941939.2020.1771639] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objectives: To investigate effects of circular RNA (circRNA) 001372 and its antagonist miRNAs-148b-3p on propofol-induced neurotoxicity and neuroinflammation in rat brain and pheochromocytoma cells.Methods: Sprague Dawley rats in propofol model group (n = 6) were intraperitoneal injected with propofol (50 mg/kg) and in sham control group (n = 6) without any treatment. Twenty-four h later, brain tissues were acquired during pentobarbital anesthesia. PC-12 cells were transfected with or without circRNA001372 mimics, circRNA001372 inhibitor, negative mimics or miRNA-148b-3p for 48 h and then treated with propofol (100 μM) for 48 h. Quantitative reverse transcription PCR and gene chips were used for detecting levels of circRNA001372, Haemotoxylin and Eosin staining for cell morphology, MTT for cell viability, flow cytometry for apoptosis, enzyme-linked immunosorbent assay for lactate dehydrogenase (LDH), interleukin-1β (IL-1β), IL-6, IL17 and IL-18, and Western blots for phosphoinositide 3-kinase (PI3K), Akt, phosphorylated Akt, and nuclear factor (NF) κB, dual-light luminescent reporter gene assay for luciferase reporter.Results: The propofol anesthesia in rats decreases levels of circRNA001372 and increases levels of cytokines including IL-1β, IL-6, IL17 and IL-18, resulting in the neurocyte damage in brain. In propofol-treated PC-12 cells, the inhibition of circRNA001372 increases apoptosis and cell damage makers, including LDH, IL-1β, IL-6, IL17, IL-18, resulting in the reduction of cell viability, which have been revised after over-expression of circRNA001372. MiRNA-148b-3p reduces circRNA001372-incresed PI3K and pAKt levels but enhances the circRNA001372-decreased NFκB level.Conclusions: CircRNA001372 suppresses propofol-induced neurotoxicity and neuroinflammation through PI3K/Akt/NF-κB signaling pathway in rat brain and neurocytes. MiRNA-148b-3p antagonizes the effects of circRNA001372.
Collapse
Affiliation(s)
- Mingyu Wang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Liangyuan Suo
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Shun Yang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Weiqing Zhang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|
34
|
Yang C, Shi Z, You L, Du Y, Ni J, Yan D. Neuroprotective Effect of Catalpol via Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Mechanisms. Front Pharmacol 2020; 11:690. [PMID: 32477145 PMCID: PMC7240050 DOI: 10.3389/fphar.2020.00690] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation and neuro-oxidative damage are now considered to be key factors in the neurological diseases. Therefore, it is important to study anti-inflammatory and neuroprotective agents. The present study investigated the anti-inflammatory and neuroprotective effects of catalpol (CAT), and the potential molecular mechanisms involved. The findings revealed that CAT markedly downregulated pro-inflammatory mediator nitric oxide (NO) and cytokines, including interleukin (IL)-6 and tumor necrosis factor (TNF)-a in lipopolysaccharide (LPS)-treated BV2 microglial cells. Moreover, CAT significantly decreased the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) activity and glutathione (GSH) level, reversed apoptosis, and restored mitochondrial membrane potential (MMP) in primary cortical neurons stimulated with hydrogen peroxide (H2O2). Furthermore, mechanistic studies showed that CAT inhibited nuclear factor-κB (NF-κB) pathway and p53-mediated Bcl-2/Bax/casaspe-3 apoptotic pathway. Moreover, it targeted the Kelch-like ECH-associated protein 1(Keap1)/Nuclear factor E2-related factor 2 (Nrf2) pathway. In summary, CAT may exert neuroprotective potential by attenuating microglial-mediated neuroinflammatory response through inhibition of the NF-κB signaling pathway. It blocked cortical neuronal oxidative damage by inhibiting p53-mediated Bcl-2/Bax/casaspe-3 apoptosis pathway and regulating Keap1/Nrf2 pathway. These results collectively indicate the potential of CAT as a highly effective therapeutic agent for neuroinflammatory and neuro-oxidative disorders.
Collapse
Affiliation(s)
- Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Zhengyuan Shi
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Yan
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| |
Collapse
|
35
|
Yu CI, Cheng CI, Kang YF, Chang PC, Lin IP, Kuo YH, Jhou AJ, Lin MY, Chen CY, Lee CH. Hispidulin Inhibits Neuroinflammation in Lipopolysaccharide-Activated BV2 Microglia and Attenuates the Activation of Akt, NF-κB, and STAT3 Pathway. Neurotox Res 2020; 38:163-174. [PMID: 32222934 DOI: 10.1007/s12640-020-00197-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Microglia, resident innate immune cells in central nervous system, regulates neuroinflammation and is associated with a variety of neuropathologies. The present study investigated the antineuroinflammatory effects of hispidulin (HPD), a naturally flavone compound, in lipopolysaccharide- (LPS-) stimulated BV2 microglia cells. The expression levels of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory factors were determined by the Griess method, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). Western blotting was used to measure various transcription factors such as Akt, nuclear factor-kappa B (NF-κB), and signal transducer and activator of transcription 3 (STAT3) activities. Our experimental results demonstrated that HPD increased cell viability and reduced apoptosis in LPS-treated BV2 microglia cells. Moreover, HPD significantly reduced the levels of NO, ROS, inducible nitric oxide synthase (iNOS), cyclooxygenase- (COX-) 2, tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and prostaglandin E2 (PGE2) in a dose-dependent manner. Phosphorylation of NF-κB/IκB, Akt, and STAT3 proteins expression by HPD was suppressed in LPS-induced BV2 microglial cells. We concluded that HPD may inhibit neuroinflammatory responses by inhibiting NF-κB pathway activation and ROS formation. These results propose that HPD has potential as anti-inflammatory agents against microglia-mediated neuroinflammatory disorders.
Collapse
Affiliation(s)
- Chung-I Yu
- Department of Orthopedics, Chi Mei Medical Center, Liouying, Tainan, 73659, Taiwan
| | - Cheng-I Cheng
- Department of Medical Imaging, Sin-Lau Medical Foundation the Presbyterian Church, Tainan, 70142, Taiwan
| | - Ya-Fei Kang
- School of Nursing, Fooyin University, 151 Jinxue Road, Daliao District, Kaohsiung, 83102, Taiwan
| | - Po-Chih Chang
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.,Weight Management Center, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - In-Pin Lin
- Department of Pharmacology, Graduate Institute of Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-His Kuo
- Department of Pharmacology, Graduate Institute of Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - An-Jie Jhou
- Department of Pharmacology, Graduate Institute of Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung, 80708, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Science, School of Medical and Health Sciences, Fooyin University, Kaohsiung, 83102, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, Graduate Institute of Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
36
|
Sousa NA, Oliveira GAL, de Oliveira AP, Lopes ALF, Iles B, Nogueira KM, Araújo TSL, Souza LKM, Araújo AR, Ramos-Jesus J, Plácido A, Amaral C, Campelo YDM, Barbosa EA, Portugal CC, Socodato R, Lobo A, Relvas J, Bemquerer M, Eaton P, Leite JRSA, Medeiros JVR. Novel Ocellatin Peptides Mitigate LPS-induced ROS Formation and NF-kB Activation in Microglia and Hippocampal Neurons. Sci Rep 2020; 10:2696. [PMID: 32060388 PMCID: PMC7021831 DOI: 10.1038/s41598-020-59665-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Cutaneous secretions of amphibians have bioactive compounds, such as peptides, with potential for biotechnological applications. Therefore, this study aimed to determine the primary structure and investigate peptides obtained from the cutaneous secretions of the amphibian, Leptodactylus vastus, as a source of bioactive molecules. The peptides obtained possessed the amino acid sequences, GVVDILKGAAKDLAGH and GVVDILKGAAKDLAGHLASKV, with monoisotopic masses of [M + H]± = 1563.8 Da and [M + H]± = 2062.4 Da, respectively. The molecules were characterized as peptides of the class of ocellatins and were named as Ocellatin-K1(1-16) and Ocellatin-K1(1-21). Functional analysis revealed that Ocellatin-K1(1-16) and Ocellatin-K1(1-21) showed weak antibacterial activity. However, treatment of mice with these ocellatins reduced the nitrite and malondialdehyde content. Moreover, superoxide dismutase enzymatic activity and glutathione concentration were increased in the hippocampus of mice. In addition, Ocellatin-K1(1-16) and Ocellatin-K1(1-21) were effective in impairing lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) formation and NF-kB activation in living microglia. We incubated hippocampal neurons with microglial conditioned media treated with LPS and LPS in the presence of Ocellatin-K1(1-16) and Ocellatin-K1(1-21) and observed that both peptides reduced the oxidative stress in hippocampal neurons. Furthermore, these ocellatins demonstrated low cytotoxicity towards erythrocytes. These functional properties suggest possible to neuromodulatory therapeutic applications.
Collapse
Affiliation(s)
- Nayara A Sousa
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Guilherme A L Oliveira
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Ana Patrícia de Oliveira
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - André Luís F Lopes
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Bruno Iles
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Kerolayne M Nogueira
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Thiago S L Araújo
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil.,Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Luan K M Souza
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil.,Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Alyne R Araújo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, UFPI, Piauí, Brazil
| | - Joilson Ramos-Jesus
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, UFPI, Piauí, Brazil.,Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Alexandra Plácido
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Constança Amaral
- Instituto de Medicina Molecular, IMM, Universidade de Lisboa, Lisboa, Portugal
| | - Yuri D M Campelo
- Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Eder Alves Barbosa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, UnB, Brasília, Brazil
| | - Camila C Portugal
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Andrea Lobo
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Joao Relvas
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | | | - Peter Eaton
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal.,Instituto de Medicina Molecular, IMM, Universidade de Lisboa, Lisboa, Portugal
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunonologia Aplicada, NuPMIA, Área Morfologia, Faculdade de Medicina, UnB, Brasília, Brazil
| | - Jand Venes R Medeiros
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil. .,Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, UFPI, Piauí, Brazil.
| |
Collapse
|
37
|
Li L, Huang Q, Duan X, Han L, Peng D. Protective effect of Clinopodium chinense (Benth.) O. Kuntze against abnormal uterine bleeding in female rats. J Pharmacol Sci 2020; 143:1-8. [PMID: 32094083 DOI: 10.1016/j.jphs.2020.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To investigated the metrorrhagia volume-reduction activity, anti-inflammatory activity and repair-promoting activity of Clinopodium chinense (Benth.) O. Kuntze. METHODS An abnormal uterine bleeding (AUB) model was induced via oral administration of mifepristone and misoprostol to pregnant rats, which were treated with the total extract of C. chinense (TEC). After 7 days, the metrorrhagia volume was measured, the levels of TXB2, 6-keto-PGF1α, IL-6 and TNF-α were measured by ELISA, the pathological changes and micro vessel density (MVD) of the endometrium were evaluated using HE and immunofluorescence staining, and the expression of VEGF, MMP-2/9 and TGF-β were assessed by Western blotting. Preliminary phytochemicals were screened and identified by UPLC-Q-TOF-MS. RESULTS Eleven compounds in C. chinense were identified via comparison to standard substances. The results of animal experiment showed TEC could reduce metrorrhagia volume, alleviate pathological injury and increase MVD to promote recovery of the endometrium; TEC could also increase the levels of TXB2 and the expression of VEGF, TGF-β, decrease the levels of IL-6, TNF-α and the expression of MMP-2/9. CONCLUSIONS TEC showed beneficial effects on treating AUB by reducing metrorrhagia volume, inhibiting the inflammatory response and promoting the repair of the endometrium. Additionally, TEC also showed great haemostatic potential in AUB.
Collapse
Affiliation(s)
- Lili Li
- School of Pharmacy, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Qi Huang
- School of Pharmacy, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Xianchun Duan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lan Han
- School of Pharmacy, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
38
|
NF-κB-Mediated Neuroinflammation in Parkinson's Disease and Potential Therapeutic Effect of Polyphenols. Neurotox Res 2019; 37:491-507. [PMID: 31823227 DOI: 10.1007/s12640-019-00147-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Different animal and human studies from last two decades in the case of Parkinson's disease (PD) have concentrated on oxidative stress due to increased inflammation and cytokine-dependent neurotoxicity leading to induction of dopaminergic (DA) degeneration pathway in the nigrostriatal region. Chronic inflammation, the principle hallmark of PD, forms the basis of neurodegeneration. Aging in association with activation of glia due to neuronal injury, perhaps because of immune alterations and genetic predispositions, leads to deregulation of inflammatory pathways premising the onset of PD. A family of inducible transcription factors, nuclear factor-κB (NF-κB), is found to show expression in various cells and tissues, such as microglia, neurons, and astrocytes which play an important role in activation and regulation of inflammatory intermediates during inflammation. Both canonical and non-canonical NF-κB pathways are involved in the regulation of the stimulated cells. During the prodromal/asymptomatic stage of age-associated neurodegenerative diseases (i.e., PD and AD), chronic neuroinflammation may act silently as the driver of neuronal dysfunction. Though research has provided an insight over age-related neurodegeneration in PD, elaborative role of NF-κB in neuroinflammation is yet to be completely understood and thus requires more investigation. Polyphenols, a group of naturally occurring compound in medicinal plants, have gained attention because of their anti-oxidative and anti-neuroinflammatory properties in neurodegenerative diseases. In this aspect, this review highlights the role of NF-κB and the possible therapeutic roles of polyphenols in NF-κB-mediated neuroinflammation in PD.
Collapse
|
39
|
Zhang L, Liu C, Yuan M, Huang C, Chen L, Su T, Liao Z, Gan L. Piperlongumine produces antidepressant-like effects in rats exposed to chronic unpredictable stress. Behav Pharmacol 2019; 30:722-729. [PMID: 31503069 DOI: 10.1097/fbp.0000000000000498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Piperlongumine, an alkaloid compound extracted from Peper longum L, has been reported to produce neuroprotective effects in the brain and exert various pharmacological activities such as antitumor, antiangiogenic, anti-inflammatory and analgesic properties. The aim of this study was to investigate the antidepressant-like effects and the possible mechanism of action of piperlongumine in a chronic unpredictable stress (CUS) model. We found that, with venlafaxine as a positive control, orally administered piperlongumine (12.5 and 25 mg/kg) for 7 days, not a single dose, significantly reduced immobility time in the forced swimming test, but did not alter locomotor activity in the open field test, indicating that piperlongumine has antidepressant-like effects without nonspecific motor changes. Then, using the CUS model of depression, piperlongumine was administrated orally for 4 weeks, followed by sucrose preference and forced swimming tests to evaluate the depressive-like behaviors. We found that piperlongumine reversed both the decreased sucrose preference and increased immobility time in rats exposed to CUS. In addition, piperlongumine also reversed the increase in proinflammatory cytokine levels in the hippocampus of rats in the CUS model. Altogether, the present study demonstrated that piperlongumine exhibits the antidepressant-like effects in rats, which may be mediated by the inhibition of the neuronal inflammation in the hippocampus.
Collapse
Affiliation(s)
| | - Chen Liu
- Ultrasound, Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Lee CH. Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers (Basel) 2019; 11:E1841. [PMID: 31766574 PMCID: PMC6966475 DOI: 10.3390/cancers11121841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a key process in the progression of malignant cancer. Therefore, blocking the EMT can be a critical fast track for the development of anticancer drugs. In this paper, we update recent research output of EMT and we explore suppression of EMT by natural anti-inflammatory compounds and pro-resolving lipids.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Korea
| |
Collapse
|
41
|
Lu C, Zhang B, Xu T, Zhang W, Bai B, Xiao Z, Wu L, Liang G, Zhang Y, Dai Y. Piperlongumine reduces ovalbumin‑induced asthma and airway inflammation by regulating nuclear factor‑κB activation. Int J Mol Med 2019; 44:1855-1865. [PMID: 31485644 PMCID: PMC6777695 DOI: 10.3892/ijmm.2019.4322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/24/2019] [Indexed: 01/22/2023] Open
Abstract
Asthma is a common chronic airway inflammatory disease, characterized by airway inflammation and remodeling. Piperlongumine (PL) has a number of physiological and pharmacological properties. However, the anti‑asthmatic effect of PL has not been reported to date. In the present study, ovalbumin (OVA) was used to sensitize and challenge mice to induce asthma. The results revealed that PL pretreatment reduced OVA‑induced airway inflammatory cell infiltration, reduced Th2 cytokine expression, both in the bronchoalveolar lavage fluid and in lung tissues, reduced the serum IgE level, pro‑inflammatory cytokine [tumor necrosis factor (TNF)‑α and interleukin (IL)‑6] and intercellular adhesion molecule expression, as well as nuclear factor (NF)‑κB activation. In addition, PL also mitigated OVA‑induced goblet cell metaplasia, inhibited mucus protein secretion, mitigated airway fibrosis and downregulated fibrosis marker expression. It was also demonstrated that PL inhibited TNF‑α induced inflammatory cytokine expression and NF‑κB activation in vitro. Taken together, the findings of the present study indicated that PL can reduce OVA‑induced airway inflammation and remodeling in asthmatic mice, and that these effects may be mediated by inhibiting NF‑κB signaling.
Collapse
Affiliation(s)
- Chun Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600
| | - Tingting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000
| | - Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Bin Bai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600
| | - Liqin Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yali Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuanrong Dai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000
| |
Collapse
|
42
|
Oh YC, Jeong YH, Li W, Go Y. Angelicae Gigantis Radix Regulates LPS-Induced Neuroinflammation in BV2 Microglia by Inhibiting NF-κB and MAPK Activity and Inducing Nrf-2 Activity. Molecules 2019; 24:molecules24203755. [PMID: 31635294 PMCID: PMC6832664 DOI: 10.3390/molecules24203755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Angelicae Gigantis Radix (AGR) has been widely used as a traditional medicine in East Asia. The effects of AGR on neuroinflammation have not previously been studied in detail. In the study presented here, we investigated the antineuroinflammatory properties of this herb and its mechanism of operation. The effects of AGR on neuroinflammation were studied by measuring the production of inflammatory factors and related enzymes, and analyzing the expression levels of proteins and genes involved its activity, in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that AGR pretreatment strongly inhibits the production of nitric oxide (NO), cytokines, and the enzymes inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2, and effectively induces the activation of heme oxygenase (HO)-1 and its regulator, nuclear factor erythroid 2-related factor 2 (Nrf-2). We also found that AGR effectively regulates the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK). We confirmed the antineuroinflammatory effects of the main constituents of the plant as identified by high-performance liquid chromatography (HPLC). Our results indicate that the neuroinflammation inhibitory activity of AGR occurs through inhibition of NF-κB and MAPK and activation of Nrf-2.
Collapse
Affiliation(s)
- You-Chang Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| | - Yun Hee Jeong
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| | - Wei Li
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| | - Younghoon Go
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| |
Collapse
|
43
|
Hou S, Wang L, Zhang G. Mitofusin-2 regulates inflammation-mediated mouse neuroblastoma N2a cells dysfunction and endoplasmic reticulum stress via the Yap-Hippo pathway. J Physiol Sci 2019; 69:697-709. [PMID: 31134519 PMCID: PMC10717024 DOI: 10.1007/s12576-019-00685-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) stress is involved in inflammation-induced neurotoxicity. Mitofusin 2 (Mfn2), a member of the GTPase family of proteins, resides in the ER membrane and is known to regulate ER stress. However, the potential role and underlying mechanism of Mfn2 in inflammation-induced neuronal dysfunction is unknown. In our study, we explored the potential of Mfn2 to attenuate inflammation-mediated neuronal dysfunction by inhibiting ER stress. Our data show that Mfn2 overexpression significantly ameliorated tumor necrosis factor alpha (TNFα)-induced ER stress, as indicated by the downregulation of the ER stress proteins PERK, GRP78 and CHOP. Mfn2 overexpression also prevented the TNFα-mediated activation of caspase-3, caspase-12 and cleaved poly (ADP-ribose) polymerase (PARP). Cellular antioxidant dysfunction and reactive oxygen species overproduction were also improved by Mfn2 in the setting of TNFα in mouse neuroblastoma N2a cells in vitro. Similarly, disordered calcium homeostasis, indicated by disturbed levels of calcium-related proteins and calcium overloading, was corrected by Mfn2, as evidenced by the increased expression of store-operated calcium entry (SERCA), decreased levels of inositol trisphosphate receptor (IP3R), and normalized calcium content in TNFα-treated N2a cells. Mfn2 overexpression was found to elevate Yes-associated protein (Yap) expression; knockdown of Yap abolished the regulatory effects of Mfn2 on ER stress, oxidative stress, calcium balance, neural death and inflammatory injury. These results lead us to conclude that re-activation of the Mfn2-Yap signaling pathway alleviates TNFα-induced ER stress and dysfunction of mouse neuroblastoma N2a cells. Our findings provide a better understanding of the regulatory role of Mfn2-Yap-ER stress in neuroinflammation and indicate that the Mfn2-Yap axis may be a focus of research in terms of having therapeutic value for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shu Hou
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No 10 Tieyi Road, Haidian District, Beijing, China
| | - Lili Wang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No 10 Tieyi Road, Haidian District, Beijing, China
| | - Guoping Zhang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No 10 Tieyi Road, Haidian District, Beijing, China.
| |
Collapse
|
44
|
Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T, Sharifi-Rad J, Ozleyen A, Turkdonmez E, Valussi M, Tumer TB, Monzote Fidalgo L, Martorell M, Setzer WN. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019; 24:E1364. [PMID: 30959974 PMCID: PMC6479398 DOI: 10.3390/molecules24071364] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/23/2022] Open
Abstract
Piper species are aromatic plants used as spices in the kitchen, but their secondary metabolites have also shown biological effects on human health. These plants are rich in essential oils, which can be found in their fruits, seeds, leaves, branches, roots and stems. Some Piper species have simple chemical profiles, while others, such as Piper nigrum, Piper betle, and Piper auritum, contain very diverse suites of secondary metabolites. In traditional medicine, Piper species have been used worldwide to treat several diseases such as urological problems, skin, liver and stomach ailments, for wound healing, and as antipyretic and anti-inflammatory agents. In addition, Piper species could be used as natural antioxidants and antimicrobial agents in food preservation. The phytochemicals and essential oils of Piper species have shown strong antioxidant activity, in comparison with synthetic antioxidants, and demonstrated antibacterial and antifungal activities against human pathogens. Moreover, Piper species possess therapeutic and preventive potential against several chronic disorders. Among the functional properties of Piper plants/extracts/active components the antiproliferative, anti-inflammatory, and neuropharmacological activities of the extracts and extract-derived bioactive constituents are thought to be key effects for the protection against chronic conditions, based on preclinical in vitro and in vivo studies, besides clinical studies. Habitats and cultivation of Piper species are also covered in this review. In this current work, available literature of chemical constituents of the essential oils Piper plants, their use in traditional medicine, their applications as a food preservative, their antiparasitic activities and other important biological activities are reviewed.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Rabin Gyawali
- Department of Food and Nutritional Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Salam A Ibrahim
- Department of Food and Nutritional Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Jovana Rajkovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, 11129 Belgrade, Serbia.
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Tariq Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Javad Sharifi-Rad
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan 35198-99951, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Elif Turkdonmez
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association (EHTPA), 25 Lincoln Close, GL20 5TY Tewkesbury, UK.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Lianet Monzote Fidalgo
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", 10400 Havana, Cuba.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386 Concepcion, VIII-Bio Bio Region, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
| |
Collapse
|
45
|
Design and synthesis novel di-carbonyl analogs of curcumin (DACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI). Eur J Med Chem 2019; 167:414-425. [DOI: 10.1016/j.ejmech.2019.02.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 01/30/2023]
|
46
|
Zhou L, Li M, Yu X, Gao F, Li W. Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells. Int J Biol Sci 2019; 15:826-837. [PMID: 30906213 PMCID: PMC6429016 DOI: 10.7150/ijbs.31749] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Deregulation of glycolysis is a common phenomenon in human non-small cell lung cancer (NSCLC). In the present study, we reported the natural compound, piperlongumine, has a profound anti-tumor effect on NSCLC via regulation of glycolysis. Piperlongumine suppressed the proliferation, colony formation and HK2-mediated glycolysis in NSCLC cells. We demonstrated that exposure to piperlongumine disrupted the interaction between HK2 and VDAC1, induced the activation of the intrinsic apoptosis signaling pathway. Moreover, our results revealed that piperlongumine down-regulated the Akt signaling, exogenous overexpression of constitutively activated Akt1 in HCC827 and H1975 cells significantly rescued piperlongumine-induced glycolysis suppression and apoptosis. The xenograft mouse model data demonstrated the pivotal role of suppression of Akt activation and HK2-mediated glycolysis in mediating the in vivo antitumor effects of piperlongumine. The expression of HK2 was higher in malignant NSCLC tissues than that of the paired adjacent tissues, and was positively correlated with poor survival time. Our results suggest that HK2 could be used as a potential predictor of survival and targeting HK2 appears to be a new approach for clinical NSCLC prevention or treatment.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Ming Li
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Changsha Stomatological Hospital, Changsha, Hunan 410004, P.R. China
| | - Xinyou Yu
- Shandong Lvdu Bio-Industry Co., Ltd., Binzhou, Shandong 256600, P.R. China
| | - Feng Gao
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
47
|
Zeng Z, Zhang Y, Liang X, Wang F, Zhao J, Xu Z, Liu X, Liu X. Qingnao dripping pills mediate immune-inflammatory response and MAPK signaling pathway after acute ischemic stroke in rats. J Pharmacol Sci 2019; 139:143-150. [DOI: 10.1016/j.jphs.2018.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/06/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
|