1
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
2
|
Li N, Duan YH, Chen L, Zhang K. Iron metabolism: An emerging therapeutic target underlying the anti-Alzheimer's disease effect of ginseng. J Trace Elem Med Biol 2023; 79:127252. [PMID: 37418790 DOI: 10.1016/j.jtemb.2023.127252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
Finding neuroprotective drugs with fewer side effects and more efficacy has become a major problem as the global prevalence of Alzheimer's disease (AD) rises. Natural drugs have risen to prominence as potential medication candidates. Ginseng has a long history of use in China, and it has a wide range of pharmacological actions that can help with neurological issues. Iron loaded in the brain has been linked to AD pathogenesis. We reviewed the regulation of iron metabolism and its studies in AD and explored how ginseng might regulate iron metabolism and prevent or treat AD. Researchers utilized network pharmacology analysis to identify key factive components of ginseng that protect against AD by regulating ferroptosis. Ginseng and its active ingredients may benefit AD by regulating iron metabolism and targeting ferroptosis genes to inhibit the ferroptosis process. The results present new ideas for ginseng pharmacological studies and initiatives for further research into AD-related drugs. To provide comprehensive information on the neuroprotective use of ginseng to modulate iron metabolism, reveal its potential to treat AD, and provide insights for future research opportunities.
Collapse
Affiliation(s)
- Nan Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yu-Han Duan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lei Chen
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Department of Medical Research Center, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Guan S, Sun L, Wang X, Huang X, Luo T. Isoschaftoside Inhibits Lipopolysaccharide-Induced Inflammation in Microglia through Regulation of HIF-1 α-Mediated Metabolic Reprogramming. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5227335. [PMID: 36467557 PMCID: PMC9711954 DOI: 10.1155/2022/5227335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/15/2022] [Accepted: 10/19/2022] [Indexed: 08/30/2023]
Abstract
Isoschaftoside is a C-glycosyl flavonoid extracted from the root exudates of Desmodium uncinatum and Abrus cantoniensis. Previous studies suggested that C-glycosyl flavonoid has neuroprotective effects with the property of reducing oxidative stress and inflammatory markers. Microglia are key cellular mediators of neuroinflammation in the central nervous system. The aim of this study was to investigate the effect of isoschaftoside on lipopolysaccharide-induced activation of BV-2 microglial cells. The BV-2 cells were exposed to 10 ng/ml lipopolysaccharide and isoschaftoside (0-1000 μM). Isoschaftoside effectively inhibited lipopolysaccharide-induced nitric oxide production and proinflammatory cytokines including iNOS, TNF-α, IL-1β, and COX2 expression. Isoschaftoside also significantly reduced lipopolysaccharide-induced HIF-1α, HK2, and PFKFB3 protein expression. Induction of HIF-1α accumulation by CoCl2 was inhibited by isoschaftoside, while the HIF-1α specific inhibitor Kc7f2 mitigated the metabolic reprogramming and anti-inflammatory effect of isoschaftoside. Furthermore, isoschaftoside attenuated lipopolysaccharide-induced phosphorylation of ERK1/2 and mTOR. These results suggest that isoschaftoside can suppress inflammatory responses in lipopolysaccharide-activated microglia, and the mechanism was partly due to inhibition of the HIF-1α-mediated metabolic reprogramming pathway.
Collapse
Affiliation(s)
- Shuyuan Guan
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lingbin Sun
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xihua Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xirui Huang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
4
|
Maki T, Sawahata M, Akutsu I, Amaike S, Hiramatsu G, Uta D, Izuo N, Shimizu T, Irie K, Kume T. APP Knock-In Mice Produce E22P-Aβ Exhibiting an Alzheimer's Disease-like Phenotype with Dysregulation of Hypoxia-Inducible Factor Expression. Int J Mol Sci 2022; 23:13259. [PMID: 36362046 PMCID: PMC9654501 DOI: 10.3390/ijms232113259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 10/13/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that requires further pathological elucidation to establish effective treatment strategies. We previously showed that amyloid β (Aβ) toxic conformer with a turn at positions 22-23 is essential for forming highly toxic oligomers. In the present study, we evaluated phenotypic changes with aging in AD model AppNL-P-F/NL-P-F (NL-P-F) mice with Swedish mutation (NL), Iberian mutation (F), and mutation (P) overproducing E22P-Aβ, a mimic of toxic conformer utilizing the knock-in technique. Furthermore, the role of the toxic conformer in AD pathology was investigated. NL-P-F mice produced soluble toxic conformers from an early age. They showed impaired synaptic plasticity, glial cell activation, and cognitive decline, followed by the accumulation of Aβ plaques and tau hyperphosphorylation. In addition, the protein expression of hypoxia-inducible factor (HIF)-1α was increased, and gene expression of HIF-3α was decreased in NL-P-F mice. HIF dysregulation due to the production of soluble toxic conformers may be involved in AD pathology in NL-P-F mice. This study could reveal the role of a highly toxic Aβ on AD pathogenesis, thereby contributing to the development of a novel therapeutic strategy targeting the toxic conformer.
Collapse
Affiliation(s)
- Takahito Maki
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Masahito Sawahata
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Ichiro Akutsu
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Shohei Amaike
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Genki Hiramatsu
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Kitashirakawa-Oiwake-Cho, Kyoto 606-8502, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
5
|
Xie Q, Wang C. Polyacetylenes in herbal medicine: A comprehensive review of its occurrence, pharmacology, toxicology, and pharmacokinetics (2014-2021). PHYTOCHEMISTRY 2022; 201:113288. [PMID: 35718132 DOI: 10.1016/j.phytochem.2022.113288] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Polyacetylenes are a kind of small active compounds with carbon-carbon triple bond with vast occurrence in plants. Polyacetylenes have attracted considerable attention owing to their diverse biofunctions like tumor suppression, immunity regulation, depression resistance and neural protection. The present review intends to reconstruct data concerning the occurrence, pharmacology, toxicology and pharmacokinetics of polyacetylenes from herbal medicine in a systematic and integrated way, with a view to backing up their curative potential and healthcare properties (2014-2021). The natural polyacetylene-related data were all acquired from the scientific search engines and databases that are globally recognized, such as PubMed, Web of Science, Elsevier, Google Scholar, ResearchGate, SciFindern and CNKI. A total of 183 polyacetylenes were summarized in this paper. Modern pharmacological studies indicated that polyacetylenes possess multiple biological activities including antitumor, immunomodulatory, neuroprotective, anti-depression, anti-obesity, hypoglycemic, antiviral, antibacterial, antifungal, hepatoprotective and renoprotective activities. As important bioactive components of herbal medicine, the pharmacological curative potential of polyacetylenes has been described against carcinomas, inflammatory responses, central nervous system, endocrine disorders and microbial infection in this review. While, further in-depth studies on the aspects of polyacetylenes for toxicity, pharmacokinetics, and molecular mechanisms are still limited, thereby intensive research and assessments should be performed.
Collapse
Affiliation(s)
- Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
6
|
Systematic characterization of the components and molecular mechanisms of Jinshui Huanxian granules using UPLC-Orbitrap Fusion MS integrated with network pharmacology. Sci Rep 2022; 12:12476. [PMID: 35864295 PMCID: PMC9304367 DOI: 10.1038/s41598-022-16711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Jinshui Huanxian granules (JSHX) is a clinical Chinese medicine formula used for treating pulmonary fibrosis (PF). However, the effective components and molecular mechanisms of JSHX are still unclear. In this study, a combination approach using ultra-high performance liquid chromatography-Orbitrap Fusion mass spectrometry (UPLC-Orbitrap Fusion MS) integrated with network pharmacology was followed to identify the components of JSHX and the underlying molecular mechanisms against PF. UPLC-Orbitrap Fusion MS was used to identify the components present in JSHX. On the basis of the identified components, we performed target prediction using the SwissTargetPrediction database, protein–protein interaction (PPI) analysis using STRING database, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis using Metascape and constructed a component-target-pathway network using Cytoscape 3.7.2. Molecular docking technology was used to verify the affinity between the core components and targets. Finally, the pharmacological activities of three potentially bioactive components were validated in transforming growth factor β1 (TGF-β1)-induced A549 cell fibrosis model. As a result, we identified 266 components, including 56 flavonoids, 52 saponins, 31 alkaloids, 10 coumarins, 12 terpenoids and 105 other components. Of these, 90 validated components were predicted to act on 172 PF-related targets and they exhibited therapeutic effects against PF via regulation of cell migration, regulation of the mitogen-activated protein kinase (MAPK) cascade, reduction of oxidative stress, and anti-inflammatory activity. Molecular docking showed that the core components could spontaneously bind to receptor proteins with a strong binding force. In vitro, compared to model group, hesperetin, ruscogenin and liquiritin significantly inhibited the increase of α-smooth muscle actin (α-SMA) and fibronectin (FN) and the decrease of e-cadherin (E-cad) in TGF-β1-induced A549 cells. This study is the first to show, using UPLC-Orbitrap Fusion MS combined with network pharmacology and experimental validation, that JSHX might exert therapeutic actions against PF by suppressing the expression of key factors in PF. The findings provide a deeper understanding of the chemical profiling and pharmacological activities of JSHX and a reference for further scientific research and clinical use of JSHX in PF treatment.
Collapse
|
7
|
TPNA10168, an Nrf-2 activator, attenuates inflammatory responses independently of Nrf2 in microglial BV-2 cells: Involvement of the extracellular-signal-regulated kinase pathway. J Pharmacol Sci 2022; 149:1-10. [DOI: 10.1016/j.jphs.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
|
8
|
Hiramatsu G, Matsuda K, Uta D, Mihara K, Kume T. Panaxytriol Inhibits Lipopolysaccharide-Induced Microglia Activation in Brain Inflammation in Vivo. Biol Pharm Bull 2021; 44:1024-1028. [PMID: 34193685 DOI: 10.1248/bpb.b21-00288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain inflammation is a pathological characteristic of neurodegenerative diseases. In this condition, excessively activated microglia elevate proinflammatory mediator levels. We previously reported that panaxytriol inhibited lipopolysaccharide (LPS)-induced microglia activation in vitro. However, the effects of panaxytriol on microglia activation in vivo require confirmation. In the present study, we found that panaxytriol suppressed both microglia and astrocyte activation by injected LPS intracerebrally to mice with LPS-induced brain inflammation. Panaxytriol was more effective on microglia than astrocytes. Moreover, panaxytriol tended to reduce LPS-induced spontaneous motor activity dysfunction. These results suggested that panaxytriol could improve brain health by suppressing microglia activation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Genki Hiramatsu
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Kosuke Matsuda
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | - Toshiaki Kume
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|