1
|
Huang B, Wang P, Jin L, Yv X, Wen M, Wu S, Liu F, Xu J. Methylome and transcriptome analysis of flowering branches building of Citrus plants induced by drought stress. Gene 2023:147595. [PMID: 37385391 DOI: 10.1016/j.gene.2023.147595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Citrus plants exhibit positive floral response under water stress conditions, however, the mechanistic understanding of floral induction remains largely unexplored in water deficit. In this study, DNA methylomic and transcriptomic analyses were integrated to explore the flowering bud formation as well as branches building after light drought stress. While comparing with the conventional watering group (CK), the light drought group treated with five months (LD) showed a significant increase in the flowering branches, whereas an apparent decrease in vegetative branches. Global DNA methylation analysis showed that the LD Group acquired DNA methylation in more than 70090 genomic regions and lost DNA methylation in about 18421 genomic regions compared with normal watering group, this indicates that water deficiency leads to a global increase in the expression of DNA methylation in citrus. In the same time, we verified that the increase of DNA methylation level in LD group was correlated with the decrease of DNA demethylase related gene expression. Interestingly, in transcription analysis, it was found that the promoting flower genes of the LD group did not increase but decreased similarly with repressing genes, which is contrary to the intended result. Thus, we thought the lower expression of suppressors FLC and BFT were the key influencing factor to stimulate the flowering branches formation after LD treatment. Moreover, there was a strong negative correlation between the genes expression level and methylation level of the flowering induction/flower development genes. In general, we thought high global DNA methylation level induced by water deficit regulate the flowering branches building by reducing FLC and BFT genes expression.
Collapse
Affiliation(s)
- Bei Huang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Peng Wang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Longfei Jin
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Xiaofeng Yv
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Mingxia Wen
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Shaohui Wu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Feng Liu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Jianguo Xu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China; National Center for Citrus Variety Improvement, Zhejiang Branches, Taizhou 318026, China
| |
Collapse
|
2
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
3
|
Sun L, Nie T, Chen Y, Yin Z. From Floral Induction to Blooming: The Molecular Mysteries of Flowering in Woody Plants. Int J Mol Sci 2022; 23:ijms231810959. [PMID: 36142871 PMCID: PMC9500781 DOI: 10.3390/ijms231810959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Flowering is a pivotal developmental process in response to the environment and determines the start of a new life cycle in plants. Woody plants usually possess a long juvenile nonflowering phase followed by an adult phase with repeated flowering cycles. The molecular mechanism underlying flowering regulation in woody plants is believed to be much more complex than that in annual herbs. In this review, we briefly describe the successive but distinct flowering processes in perennial trees, namely the vegetative phase change, the floral transition, floral organogenesis, and final blooming, and summarize in detail the most recent advances in understanding how woody plants regulate flowering through dynamic gene expression. Notably, the florigen gene FLOWERING LOCUS T(FT) and its antagonistic gene TERMINAL FLOWER 1 (TFL1) seem to play a central role in various flowering transition events. Flower development in different taxa requires interactions between floral homeotic genes together with AGL6 conferring floral organ identity. Finally, we illustrate the issues and corresponding measures of flowering regulation investigation. It is of great benefit to the future study of flowering in perennial trees.
Collapse
Affiliation(s)
- Liyong Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Department of Biology, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Tangjie Nie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zengfang Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-025-85427316
| |
Collapse
|
4
|
Sikdar A, Sharma U, Barua R, Igamberdiev AU, Debnath SC. Epigenomic insight of lingonberry and health-promoting traits during micropropagation. Sci Rep 2022; 12:12487. [PMID: 35864145 PMCID: PMC9304418 DOI: 10.1038/s41598-022-16530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Epigenetic variation plays a role in developmental gene regulation and responses to the environment. An efficient interaction of zeatin-induced cytosine methylation and secondary compounds has been displayed for the first time in tissue-culture shoots/plants of lingonberry (Vaccinium vitis-idaea L.) cultivar Erntedank in vitro (NC1, in a liquid medium; NC2, on a semi-solid medium), ex vitro (NC3, node culture-derived plants; LC1, leaf culture-derived plants) and its cutting-propagated (ED) plants. Through methylation-sensitive amplification polymorphism (MSAP) assay, we observed highest methylated sites in leaf regenerants (LC1) from all primer combinations (108 bands), along with the highest secondary metabolites. The four types of tissue culture-derived shoots/plants (NC1, NC2, NC3, LC1) showed higher methylation bands than cutting propagated donor plants (ED) that exhibited 79 bands of methylation, which is comparatively low. Our study showed more methylation in micropropagated shoots/plants than those derived from ED plants. On the contrary, we observed higher secondary metabolites in ED plants but comparatively less in micropropagated shoots (NC1, NC2) and plants (NC3, LC1).
Collapse
Affiliation(s)
- Arindam Sikdar
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, St. John's, Newfoundland and Labrador, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Umanath Sharma
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, St. John's, Newfoundland and Labrador, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Rajesh Barua
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, St. John's, Newfoundland and Labrador, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Samir C Debnath
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
5
|
Zhang L, Song J, Peng L, Xie W, Li S, Wang J. Comprehensive Biochemical, Physiological, and Transcriptomic Analyses Provide Insights Into Floral Bud Dormancy in Rhododendron delavayi Franch. Front Genet 2022; 13:856922. [PMID: 35656313 PMCID: PMC9152171 DOI: 10.3389/fgene.2022.856922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/19/2022] [Indexed: 01/17/2023] Open
Abstract
Due to a scarcity of relevant data, the ornamental woody flower Rhododendron delavayi Franch. is examined in the current study for its low temperature-induced floral bud dormancy (late October-end December) aspect. This study used transcriptome data profiling and co-expression network analyses to identify the interplay between endogenous hormones and bud dormancy phases such as pre-dormancy, para-dormancy, endo-dormancy, eco-dormancy, and dormancy release. The biochemical and physiological assays revealed the significance of the abundance of phytohormones (abscisic acid, auxin, zeatin, and gibberellins), carbohydrate metabolism, oxidative species, and proteins (soluble proteins, proline, and malondialdehyde) in the regulatory mechanism of floral bud dormancy. The transcriptome sequencing generated 65,531 transcripts, out of which 504, 514, 307, and 240 expressed transcripts were mapped uniquely to pre-, para-, endo-, and eco-phases of dormancy, showing their roles in the stimulation of dormancy. The transcripts related to LEA29, PGM, SAUR family, RPL9e, ATRX, FLOWERING LOCUS T, SERK1, ABFs, ASR2, and GID1 were identified as potential structural genes involved in floral bud dormancy. The transcription factors, including Zinc fingers, CAD, MADS-box family, MYB, and MYC2, revealed their potential regulatory roles concerning floral bud dormancy. The gene co-expression analysis highlighted essential hub genes involved in cold stress adaptations encoding proteins, viz, SERPIN, HMA, PMEI, LEA_2, TRX, PSBT, and AMAT. We exposed the connection among low temperature-induced dormancy in floral buds, differentially expressed genes, and hub genes via strict screening steps to escalate the confidence in selected genes as being truly putative in the pathways regulating bud dormancy mechanism. The identified candidate genes may prove worthy of further in-depth studies on molecular mechanisms involved in floral bud dormancy of Rhododendron species.
Collapse
Affiliation(s)
- Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Jie Song
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Lvchun Peng
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Weijia Xie
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Shifeng Li
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| |
Collapse
|
6
|
Gomez-Cabellos S, Toorop PE, Cañal MJ, Iannetta PPM, Fernández-Pascual E, Pritchard HW, Visscher AM. Global DNA methylation and cellular 5-methylcytosine and H4 acetylated patterns in primary and secondary dormant seeds of Capsella bursa-pastoris (L.) Medik. (shepherd's purse). PROTOPLASMA 2022; 259:595-614. [PMID: 34212249 PMCID: PMC9010400 DOI: 10.1007/s00709-021-01678-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/01/2021] [Indexed: 05/06/2023]
Abstract
Despite the importance of dormancy and dormancy cycling for plants' fitness and life cycle phenology, a comprehensive characterization of the global and cellular epigenetic patterns across space and time in different seed dormancy states is lacking. Using Capsella bursa-pastoris (L.) Medik. (shepherd's purse) seeds with primary and secondary dormancy, we investigated the dynamics of global genomic DNA methylation and explored the spatio-temporal distribution of 5-methylcytosine (5-mC) and histone H4 acetylated (H4Ac) epigenetic marks. Seeds were imbibed at 30 °C in a light regime to maintain primary dormancy, or in darkness to induce secondary dormancy. An ELISA-based method was used to quantify DNA methylation, in relation to total genomic cytosines. Immunolocalization of 5-mC and H4Ac within whole seeds (i.e., including testa) was assessed with reference to embryo anatomy. Global DNA methylation levels were highest in prolonged (14 days) imbibed primary dormant seeds, with more 5-mC marked nuclei present only in specific parts of the seed (e.g., SAM and cotyledons). In secondary dormant seeds, global methylation levels and 5-mC signal where higher at 3 and 7 days than 1 or 14 days. With respect to acetylation, seeds had fewer H4Ac marked nuclei (e.g., SAM) in deeper dormant states, for both types of dormancy. However, the RAM still showed signal after 14 days of imbibition under dormancy-inducing conditions, suggesting a central role for the radicle/RAM in the response to perceived ambient changes and the adjustment of the seed dormancy state. Thus, we show that seed dormancy involves extensive cellular remodeling of DNA methylation and H4 acetylation.
Collapse
Affiliation(s)
- Sara Gomez-Cabellos
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, RH17 6TN West Sussex UK
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, C/Catedrático Rodrigo Uría, 33006 Oviedo, Spain
| | - Peter E. Toorop
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, RH17 6TN West Sussex UK
| | - María Jesús Cañal
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, C/Catedrático Rodrigo Uría, 33006 Oviedo, Spain
| | | | - Eduardo Fernández-Pascual
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, C/Catedrático Rodrigo Uría, 33006 Oviedo, Spain
| | - Hugh W. Pritchard
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, RH17 6TN West Sussex UK
| | - Anne M. Visscher
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, RH17 6TN West Sussex UK
| |
Collapse
|
7
|
Azizi P, Hanafi MM, Sahebi M, Harikrishna JA, Taheri S, Yassoralipour A, Nasehi A. Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:508-523. [PMID: 32349860 DOI: 10.1071/fp19077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
Chromatin modulation plays important roles in gene expression regulation and genome activities. In plants, epigenetic changes, including variations in histone modification and DNA methylation, are linked to alterations in gene expression. Despite the significance and potential of in vitro cell and tissue culture systems in fundamental research and marketable applications, these systems threaten the genetic and epigenetic networks of intact plant organs and tissues. Cell and tissue culture applications can lead to DNA variations, methylation alterations, transposon activation, and finally, somaclonal variations. In this review, we discuss the status of the current understanding of epigenomic changes that occur under in vitro conditions in plantation crops, including coconut, oil palm, rubber, cotton, coffee and tea. It is hoped that comprehensive knowledge of the molecular basis of these epigenomic variations will help researchers develop strategies to enhance the totipotent and embryogenic capabilities of tissue culture systems for plantation crops.
Collapse
Affiliation(s)
- Parisa Azizi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamed M Hanafi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Corresponding author.
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Jennifer A Harikrishna
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sima Taheri
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ali Yassoralipour
- Department of Agricultural and Food Science, Faculty of Science (Kampar Campus), Universiti Tunku Abdul Rahman (UTAR), Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Abbas Nasehi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Wang S, Li Z, Jin W, Fang Y, Yang Q, Xiang J. Transcriptome analysis and identification of genes associated with flower development in Rhododendron pulchrum Sweet (Ericaceae). Gene 2018; 679:108-118. [PMID: 30176315 DOI: 10.1016/j.gene.2018.08.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/17/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Flowering process is essential for plant development. However, the molecular mechanisms driving flower development of ornamental woody Rhododendron pulchrum Sweet are difficult to elucidate due to the lack of genomic data. In this research, high-throughput sequencing and comparative transcriptome analyses of R. pulchrum flowers collected at three key stages were performed: floral bud stage, early flowering stage, and full-flowering stage. Furthermore, expression of genes involved in flower development was also validated with quantitative real-time PCR (qRT-PCR). RNA-seq yielded 96,350,697 bp of clean reads, which were assembled into 98,610 unigenes with an average length of 717 bp. 58,279 (59.10%) unigenes could be annotated, including 324 major unigenes associated with floral development. In addition, ten modules (20,443 mRNAs) were dissected in the co-expression network. Especially, Flowering Locus (FLC) and Flowering Locus T (FT) were co-expressed. 9493 differentially expressed genes (DEGs) were scanned among three stages, and most DEGs existed between flower bud stage and early flowering stage. In particular, 79 DGEs associated with flowering process were enriched in 28 GO terms. Moreover, the expression levels of MYC2, EIN3, and ARR-B were all lowest at early flowering stage, while transcripts of MYC2, TIR1, CYCD3, COL-1, and EIN3 were all peaked at flower bud stage. Transcriptome profile presented here will benefit deep insights into molecular mechanism underlying R. pulchrum flowering process.
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; College of Life Science, Huanggang Normal University, Huanggang 438000, Hubei Province, PR China.
| | - Zhiliang Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; College of Life Science, Huanggang Normal University, Huanggang 438000, Hubei Province, PR China
| | - Weibin Jin
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; College of Life Science, Huanggang Normal University, Huanggang 438000, Hubei Province, PR China
| | - Yuanping Fang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; College of Life Science, Huanggang Normal University, Huanggang 438000, Hubei Province, PR China
| | - Qiaofeng Yang
- College of food and Bioengineering, Henan University of Animal Husbandry and Ecomomy, Zhengzhou 450000, Henan Province, PR China.
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; College of Life Science, Huanggang Normal University, Huanggang 438000, Hubei Province, PR China.
| |
Collapse
|
9
|
Xiagedeer B, Wu S, Liu Y, Hao W. Chlormequat chloride retards rat embryo growth in vitro. Toxicol In Vitro 2016; 34:274-282. [DOI: 10.1016/j.tiv.2016.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/30/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
|
10
|
Hébrard C, Peterson DG, Willems G, Delaunay A, Jesson B, Lefèbvre M, Barnes S, Maury S. Epigenomics and bolting tolerance in sugar beet genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:207-25. [PMID: 26463996 PMCID: PMC4682430 DOI: 10.1093/jxb/erv449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In sugar beet (Beta vulgaris altissima), bolting tolerance is an essential agronomic trait reflecting the bolting response of genotypes after vernalization. Genes involved in induction of sugar beet bolting have now been identified, and evidence suggests that epigenetic factors are involved in their control. Indeed, the time course and amplitude of DNA methylation variations in the shoot apical meristem have been shown to be critical in inducing sugar beet bolting, and a few functional targets of DNA methylation during vernalization have been identified. However, molecular mechanisms controlling bolting tolerance levels among genotypes are still poorly understood. Here, gene expression and DNA methylation profiles were compared in shoot apical meristems of three bolting-resistant and three bolting-sensitive genotypes after vernalization. Using Cot fractionation followed by 454 sequencing of the isolated low-copy DNA, 6231 contigs were obtained that were used along with public sugar beet DNA sequences to design custom Agilent microarrays for expression (56k) and methylation (244k) analyses. A total of 169 differentially expressed genes and 111 differentially methylated regions were identified between resistant and sensitive vernalized genotypes. Fourteen sequences were both differentially expressed and differentially methylated, with a negative correlation between their methylation and expression levels. Genes involved in cold perception, phytohormone signalling, and flowering induction were over-represented and collectively represent an integrative gene network from environmental perception to bolting induction. Altogether, the data suggest that the genotype-dependent control of DNA methylation and expression of an integrative gene network participate in bolting tolerance in sugar beet, opening up perspectives for crop improvement.
Collapse
Affiliation(s)
- Claire Hébrard
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, 45067 Orléans, France INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans, France SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, 2 Research Blvd., Box 9627, Mississippi State, MS 39762, USA
| | - Glenda Willems
- SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Alain Delaunay
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, 45067 Orléans, France INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans, France
| | - Béline Jesson
- IMAXIO/HELIXIO, Biopôle Clermont-Limagne, Saint-Beauzire, F-63360, France
| | - Marc Lefèbvre
- SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Steve Barnes
- SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Stéphane Maury
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, 45067 Orléans, France INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans, France
| |
Collapse
|
11
|
De-la-Peña C, Nic-Can GI, Galaz-Ávalos RM, Avilez-Montalvo R, Loyola-Vargas VM. The role of chromatin modifications in somatic embryogenesis in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:635. [PMID: 26347757 PMCID: PMC4539545 DOI: 10.3389/fpls.2015.00635] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/31/2015] [Indexed: 05/20/2023]
Abstract
Somatic embryogenesis (SE) is a powerful tool for plant genetic improvement when used in combination with traditional agricultural techniques, and it is also an important technique to understand the different processes that occur during the development of plant embryogenesis. SE onset depends on a complex network of interactions among plant growth regulators, mainly auxins and cytokinins, during the proembryogenic early stages, and ethylene and gibberellic and abscisic acids later in the development of the somatic embryos. These growth regulators control spatial and temporal regulation of multiple genes in order to initiate change in the genetic program of somatic cells, as well as moderating the transition between embryo developmental stages. In recent years, epigenetic mechanisms have emerged as critical factors during SE. Some early reports indicate that auxins and in vitro conditions modify the levels of DNA methylation in embryogenic cells. The changes in DNA methylation patterns are associated with the regulation of several genes involved in SE, such as WUS, BBM1, LEC, and several others. In this review, we highlight the more recent discoveries in the understanding of the role of epigenetic regulation of SE. In addition, we include a survey of different approaches to the study of SE, and new opportunities to focus SE studies.
Collapse
Affiliation(s)
- Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, MéridaMexico
| | - Geovanny I. Nic-Can
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, MéridaMexico
| | - Rosa M. Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, MéridaMexico
| | - Randy Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, MéridaMexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, MéridaMexico
| |
Collapse
|
12
|
Pérez M, Viejo M, LaCuesta M, Toorop P, Cañal MJ. Epigenetic and hormonal profile during maturation of Quercus Suber L. somatic embryos. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:51-61. [PMID: 25462078 DOI: 10.1016/j.jplph.2014.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 05/28/2023]
Abstract
Somatic embryogenesis is a powerful alternative to conventional mass propagation of Quercus suber L. However, poor quality and incomplete maturation of somatic embryos restrict any application. Given that epigenetic and hormonal control govern many developmental stages, including maturation of zygotic embryos, global DNA methylation and abscisic acid (ABA) were analyzed during development and maturation of cork oak somatic embryos. Our results indicated that development of somatic embryos concurred with a decrease in 5-mdC. In contrast, endogenous ABA content showed a transient increase with a peak in immature E2 embryos denoting the onset of the maturation phase. A cold stratification phase was necessary for embryos to acquire germination ability, which coincided with a significant decrease in 5-mdC and ABA content. Immunohistochemical analyses showed that there was a specific spatial-temporal regulation during embryogenesis, particularly after the cold treatment. The acquisition of germination capacity concurred with a general low 5-mdC signal in the root meristem, while retention of the 5-mdC signal was mainly located in the shoot meristem and provascular tissues. Conversely, ABA immunolocalization was mainly located in the root and shoot apical meristems. Furthermore, a strong decrease in the ABA signal was observed in the root cap after the stratification treatment suggesting a role for the root cap during development of somatic embryos. These results suggest that, in addition to ABA, epigenetic control appears to play an important role for the correct maturation and subsequent germination of cork oak somatic embryos.
Collapse
Affiliation(s)
- Marta Pérez
- Lab. Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Oviedo University, C/Catedrático Rodrigo Uría, s/n, 33071 Oviedo, Asturias, Spain; Intituto Universitario de Biotecnología de Asturias (IUBA asociado con CSIC), Spain.
| | - Marcos Viejo
- Lab. Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Oviedo University, C/Catedrático Rodrigo Uría, s/n, 33071 Oviedo, Asturias, Spain; Intituto Universitario de Biotecnología de Asturias (IUBA asociado con CSIC), Spain.
| | - Maite LaCuesta
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, UPV/EHU, Vitoria-Gasteiz E-01006, Spain.
| | - Peter Toorop
- Royal Botanic Gardens, Kew, Seed Conservation Department, Wakehurst Place, Ardingly, West Sussex RH176TN, UK.
| | - María Jesús Cañal
- Lab. Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Oviedo University, C/Catedrático Rodrigo Uría, s/n, 33071 Oviedo, Asturias, Spain; Intituto Universitario de Biotecnología de Asturias (IUBA asociado con CSIC), Spain.
| |
Collapse
|
13
|
Rodríguez-Sanz H, Manzanera JA, Solís MT, Gómez-Garay A, Pintos B, Risueño MC, Testillano PS. Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L. BMC PLANT BIOLOGY 2014; 14:224. [PMID: 25162300 PMCID: PMC4147960 DOI: 10.1186/s12870-014-0224-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/11/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND In Quercus suber, cork oak, a Mediterranean forest tree of economic and social interest, rapid production of isogenic lines and clonal propagation of elite genotypes have been achieved by developing in vitro embryogenesis from microspores and zygotic embryos respectively. Despite its high potential in tree breeding strategies, due to their recalcitrancy, the efficiency of embryogenesis in vitro systems in many woody species is still very low since factors responsible for embryogenesis initiation and embryo development are still largely unknown. The search for molecular and cellular markers during early stages of in vitro embryogenesis constitutes an important goal to distinguish, after induction, responsive from non-responsive cells, and to elucidate the mechanisms involved in embryogenesis initiation for their efficient manipulation. In this work, we have performed a comparative analysis of two embryogenesis pathways derived from microspores and immature zygotic embryos in cork oak in order to characterize early markers of reprogrammed cells in both pathways. Rearrangements of the cell structural organization, changes in epigenetic marks, cell wall polymers modifications and endogenous auxin changes were analyzed at early embryogenesis stages of the two in vitro systems by a multidisciplinary approach. RESULTS Results showed that early embryo cells exhibited defined changes of cell components which were similar in both embryogenesis in vitro systems, cellular features that were not found in non-embryogenic cells. DNA methylation level and nuclear pattern, proportion of esterified pectins in cell walls, and endogenous auxin levels were different in embryo cells in comparison with microspores and immature zygotic embryo cells from which embryos originated, constituting early embryogenesis markers. CONCLUSIONS These findings suggest that DNA hypomethylation, cell wall remodeling by pectin esterification and auxin increase are involved in early in vitro embryogenesis in woody species, providing new evidences of the developmental pattern similarity between both embryogenesis pathways, from microspores and immature zygotic embryos, in woody species.
Collapse
Affiliation(s)
- Héctor Rodríguez-Sanz
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José-Antonio Manzanera
- />ETSI Montes, Technical University of Madrid, UPM, Ciudad Universitaria, 28040 Madrid, Spain
| | - María-Teresa Solís
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Aránzazu Gómez-Garay
- />Department of Plant Physiology, Faculty of Biology, Complutense University of Madrid, UCM, Ciudad Universitaria, 28040 Madrid, Spain
| | - Beatriz Pintos
- />Department of Plant Physiology, Faculty of Biology, Complutense University of Madrid, UCM, Ciudad Universitaria, 28040 Madrid, Spain
| | - María C Risueño
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pilar S Testillano
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
14
|
Rodríguez-Sanz H, Moreno-Romero J, Solís MT, Köhler C, Risueño MC, Testillano PS. Changes in histone methylation and acetylation during microspore reprogramming to embryogenesis occur concomitantly with Bn HKMT and Bn HAT expression and are associated with cell totipotency, proliferation, and differentiation in Brassica napus. Cytogenet Genome Res 2014; 143:209-18. [PMID: 25060767 DOI: 10.1159/000365261] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In response to stress treatments, microspores can be reprogrammed to become totipotent cells that follow an embryogenic pathway producing haploid and double-haploid embryos which are important biotechnological tools in plant breeding. Recent studies have revealed the involvement of DNA methylation in regulating this process, but no information is available on the role of histone modifications in microspore embryogenesis. Histone modifications are major epigenetic marks controlling gene expression during plant development and in response to environmental changes. Lysine methylation of histones, accomplished by histone lysine methyltransferases (HKMTs), can occur on different lysine residues, with histone H3K9 methylation being mainly associated with transcriptionally silenced regions. In contrast, histone H3 and H4 acetylation is carried out by histone acetyltransferases (HATs) and is associated with actively transcribed genes. In this work, we analyzed 3 different histone epigenetic marks: dimethylation of H3K9 (H3K9me2) and acetylation of H3 and H4 (H3Ac and H4Ac) during microspore embryogenesis in Brassica napus by Western blot and immunofluorescence assays. The expression patterns of histone methyltransferase BnHKMT and histone acetyltransferase BnHAT genes have also been analyzed by qPCR. Our results revealed different spatial and temporal distribution patterns for methylated and acetylated histone variants during microspore embryogenesis and their similarity with the expression profiles of BnHKMT and BnHAT, respectively. The data presented suggest the participation of H3K9me2 and HKMT in embryo cell differentiation and heterochromatinization events, whereas H3Ac, H4Ac, and HAT would be involved in transcriptional activation, totipotency, and proliferation events during cell reprogramming and embryo development.
Collapse
Affiliation(s)
- Héctor Rodríguez-Sanz
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas (CIB) CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Solís MT, Chakrabarti N, Corredor E, Cortés-Eslava J, Rodríguez-Serrano M, Biggiogera M, Risueño MC, Testillano PS. Epigenetic changes accompany developmental programmed cell death in tapetum cells. PLANT & CELL PHYSIOLOGY 2014; 55:16-29. [PMID: 24151205 DOI: 10.1093/pcp/pct152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The tapetum, the nursing tissue inside anthers, undergoes cellular degradation by programmed cell death (PCD) during late stages of microspore-early pollen development. Despite the key function of tapetum, little is known about the molecular mechanisms regulating this cell death process in which profound nuclear and chromatin changes occur. Epigenetic features (DNA methylation and histone modifications) have been revealed as hallmarks that establish the functional status of chromatin domains, but no evidence on the epigenetic regulation of PCD has been reported. DNA methylation is accomplished by DNA methyltransferases, among which DNA methyl transferase 1 (MET1) constitutes one of the CG maintenance methyltransferase in plants, also showing de novo methyltransferase activity. In this work, the changes in epigenetic marks during the PCD of tapetal cells have been investigated by a multidisciplinary approach to reveal the dynamics of DNA methylation and the pattern of expression of MET1 in relation to the main cellular changes of this PCD process which have also been characterized in two species, Brassica napus and Nicotiana tabacum. The results showed that tapetum PCD progresses with the increase in global DNA methylation and MET1 expression, epigenetic changes that accompanied the reorganization of the nuclear architecture and a high chromatin condensation, activity of caspase 3-like proteases and Cyt c release. The reported data indicate a relationship between the PCD process and the DNA methylation dynamics and MET1 expression in tapetal cells, suggesting a possible new role for the epigenetic marks in the nuclear events occurring during this cell death process and providing new insights into the epigenetic control of plant PCD.
Collapse
Affiliation(s)
- María-Teresa Solís
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Testillano PS, Solís MT, Risueño MC. The 5-methyl-deoxy-cytidine (5mdC) localization to reveal in situ the dynamics of DNA methylation chromatin pattern in a variety of plant organ and tissue cells during development. PHYSIOLOGIA PLANTARUM 2013; 149:104-13. [PMID: 23193951 DOI: 10.1111/ppl.12015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/07/2012] [Accepted: 11/18/2012] [Indexed: 12/16/2023]
Abstract
DNA methylation of cytosine residues constitutes a prominent epigenetic modification of the chromatin fiber which is locked in a transcriptionally inactive conformation leading to gene silencing. Plant developmental processes, as differentiation and proliferation, are accompanied by chromatin remodeling and epigenetic reprogramming. Despite the increasing knowledge gained on the epigenetic mechanisms controlling plant developmental processes, the knowledge of the DNA methylation regulation during relevant developmental programs in flowering plants, such as gametogenesis or embryogenesis, is very limited. The analysis of global DNA methylation levels has been frequently conducted by high performance capillary electrophoresis, and more recently also by ELISA-based assays, which provided quantitative data of whole organs and tissues. Nevertheless, to investigate the DNA methylation dynamics during plant development in different cell types of the same organ, the analysis of spatial and temporal pattern of nuclear distribution of 5-methyl-deoxy-cytidine (5mdC) constitutes a potent approach. In this work, immunolocalization of 5mdC on sections and subsequent confocal laser microscopy analysis have been applied for in situ cellular analysis of a variety of plant cells, tissues and organs with different characteristics, e.g. hardness, heterogeneity, cell accessibility, tissue compactness, etc.; the results demonstrated the versatility and feasibility of the approach for different plant samples, and revealed defined DNA methylation nuclear patterns associated with differentiation and proliferation events of various plant cell types and developmental programs. Quantification of 5mdC immunofluorescence intensity by image analysis software also permitted to estimate differences in global DNA methylation levels among different cells types of the same organ during development.
Collapse
Affiliation(s)
- Pilar S Testillano
- Plant Development and Nuclear Architecture, Biological Research Centre, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | | | | |
Collapse
|
17
|
Correia B, Valledor L, Meijón M, Rodriguez JL, Dias MC, Santos C, Cañal MJ, Rodriguez R, Pinto G. Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? PLoS One 2013; 8:e53543. [PMID: 23326451 PMCID: PMC3543447 DOI: 10.1371/journal.pone.0053543] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/29/2012] [Indexed: 11/27/2022] Open
Abstract
Trees necessarily experience changes in temperature, requiring efficient short-term strategies that become crucial in environmental change adaptability. DNA methylation and histone posttranslational modifications have been shown to play a key role in both epigenetic control and plant functional status under stress by controlling the functional state of chromatin and gene expression. Cork oak (Quercus suber L.) is a key stone of the Mediterranean region, growing at temperatures of 45°C. This species was subjected to a cumulative temperature increase from 25°C to 55°C under laboratory conditions in order to test the hypothesis that epigenetic code is related to heat stress tolerance. Electrolyte leakage increased after 35°C, but all plants survived to 55°C. DNA methylation and acetylated histone H3 (AcH3) levels were monitored by HPCE (high performance capillary electrophoresis), MS-RAPD (methylation-sensitive random-amplified polymorphic DNA) and Protein Gel Blot analysis and the spatial distribution of the modifications was assessed using a confocal microscope. DNA methylation analysed by HPCE revealed an increase at 55°C, while MS-RAPD results pointed to dynamic methylation-demethylation patterns over stress. Protein Gel Blot showed the abundance index of AcH3 decreasing from 25°C to 45°C. The immunohistochemical detection of 5-mC (5-methyl-2′-deoxycytidine) and AcH3 came upon the previous results. These results indicate that epigenetic mechanisms such as DNA methylation and histone H3 acetylation have opposite and particular dynamics that can be crucial for the stepwise establishment of this species into such high stress (55°C), allowing its acclimation and survival. This is the first report that assesses epigenetic regulation in order to investigate heat tolerance in forest trees.
Collapse
Affiliation(s)
- Barbara Correia
- Department of Biology & Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Luis Valledor
- Epiphysage Research Group, Biology of Organisms and Systems Department, University Institute of Biotechnology & University of Oviedo, Oviedo, Spain
- Molecular Systems Biology Department, University of Vienna, Vienna, Austria
| | - Mónica Meijón
- Epiphysage Research Group, Biology of Organisms and Systems Department, University Institute of Biotechnology & University of Oviedo, Oviedo, Spain
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Vienna, Austria
| | - José Luis Rodriguez
- Epiphysage Research Group, Biology of Organisms and Systems Department, University Institute of Biotechnology & University of Oviedo, Oviedo, Spain
| | - Maria Celeste Dias
- Department of Biology & Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Conceição Santos
- Department of Biology & Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Maria Jesus Cañal
- Epiphysage Research Group, Biology of Organisms and Systems Department, University Institute of Biotechnology & University of Oviedo, Oviedo, Spain
| | - Roberto Rodriguez
- Epiphysage Research Group, Biology of Organisms and Systems Department, University Institute of Biotechnology & University of Oviedo, Oviedo, Spain
| | - Glória Pinto
- Department of Biology & Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- * E-mail:
| |
Collapse
|
18
|
Solís MT, Rodríguez-Serrano M, Meijón M, Cañal MJ, Cifuentes A, Risueño MC, Testillano PS. DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6431-44. [PMID: 23175669 PMCID: PMC3504494 DOI: 10.1093/jxb/ers298] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Stress-induced plant cell reprogramming involves changes in global genome organization, being the epigenetic modifications key factors in the regulation of genome flexibility. DNA methylation, accomplished by DNA methyltransferases, constitutes a prominent epigenetic modification of the chromatin fibre which is locked in a transcriptionally inactive conformation. Changes in DNA methylation accompany the reorganization of the nuclear architecture during plant cell differentiation and proliferation. After a stress treatment, in vitro-cultured microspores are reprogrammed and change their gametophytic developmental pathway towards embryogenesis, the process constituting a useful system of reprogramming in isolated cells for applied and basic research. Gene expression driven by developmental and stress cues often depends on DNA methylation; however, global DNA methylation and genome-wide expression patterns relationship is still poorly understood. In this work, the dynamics of DNA methylation patterns in relation to nuclear architecture and the expression of BnMET1a-like DNA methyltransferase genes have been analysed during pollen development and pollen reprogramming to embryogenesis in Brassica napus L. by a multidisciplinary approach. Results showed an epigenetic reprogramming after microspore embryogenesis induction which involved a decrease of global DNA methylation and its nuclear redistribution with the change of developmental programme and the activation of cell proliferation, while DNA methylation increases with pollen and embryo differentiation in a cell-type-specific manner. Changes in the presence, abundance, and distribution of BnMET1a-like transcripts highly correlated with variations in DNA methylation. Mature zygotic and pollen embryos presented analogous patterns of DNA methylation and MET1a-like expression, providing new evidence of the similarities between both developmental embryogenic programmes.
Collapse
Affiliation(s)
- María-Teresa Solís
- Plant Development and Nuclear Architecture lab. Biological Research Center, CIB-CSIC, Madrid, Spain
| | - María Rodríguez-Serrano
- Plant Development and Nuclear Architecture lab. Biological Research Center, CIB-CSIC, Madrid, Spain
| | | | | | | | - María C. Risueño
- Plant Development and Nuclear Architecture lab. Biological Research Center, CIB-CSIC, Madrid, Spain
| | - Pilar S. Testillano
- Plant Development and Nuclear Architecture lab. Biological Research Center, CIB-CSIC, Madrid, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Viejo M, Santamaría ME, Rodríguez JL, Valledor L, Meijón M, Pérez M, Pascual J, Hasbún R, Fernández Fraga M, Berdasco M, Toorop PE, Cañal MJ, Rodríguez Fernández R. Epigenetics, the role of DNA methylation in tree development. Methods Mol Biol 2012; 877:277-301. [PMID: 22610636 DOI: 10.1007/978-1-61779-818-4_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During development of multicellular organisms, cells become differentiated by modulating different programs of gene expression. Cells have their own epigenetic signature which reflects genotype, developmental history, and environmental influences, and it is ultimately reflected in the phenotype of the cells and the organism. However, in normal development or disease situations, such as adaptation to climate change or during in vitro culture, some cells undergo major epigenetic reprogramming involving the removal of epigenetic marks in the nuclei followed by the establishment of a different new set of marks. Compared with animal cells, biotech-mediated achievements are reduced in plants despite the presence of cell polypotency. In forestry, any sustainable developments using biotech tools remain restricted to the lab, without progressing to the field for application. Such barriers in the translation between development and implementation need to be addressed by organizations that have the power to integrate these two fields. However, a lack of understanding of gene regulation is also to blame for this barrier. In recent years, great progress has been made in unraveling the control of gene expression. These advances are discussed in this chapter, including the possibility of applying this knowledge in forestry practice.
Collapse
Affiliation(s)
- Marcos Viejo
- Área de Fisiología Vegetal, Departamento BOS, Facultad de Biología, Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Meijón M, Feito I, Valledor L, Rodríguez R, Cañal MJ. Promotion of flowering in azaleas by manipulating photoperiod and temperature induces epigenetic alterations during floral transition. PHYSIOLOGIA PLANTARUM 2011; 143:82-92. [PMID: 21569038 DOI: 10.1111/j.1399-3054.2011.01485.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as the azalea; however, this requires a thorough understanding of floral induction pathways. DNA methylation is one of the main mechanisms involved in controlling the functional state of chromatin and gene expression in response to environmental and developmental signals. This work investigated the promotion of flowering in azaleas by the manipulation of environmental factors, using DNA methylation levels as a marker of floral bud development. The results showed that the change of long-day (LD) to short-day (SD) photoperiod is the primary factor responsible for floral induction in azaleas, whereas the existence of the previous cold period as well as the physiological memory are factors which improve floral production. Furthermore, for blooming to take place, 1300 units of growing degree days under an LD were necessary. The promotion of flowering in azaleas by alterations of photoperiod and temperature induced DNA methylation changes. The demethylation observed after the change from LD to SD is linked to a change in cell fate which is necessary for floral transition to take place and seems to be associated with the floral signal.
Collapse
Affiliation(s)
- Mónica Meijón
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/Cat. Rodrigo Uria s/n, E-33071 Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
21
|
Meijón M, Cañal MJ, Valledor L, Rodríguez R, Feito I. Epigenetic and physiological effects of gibberellin inhibitors and chemical pruners on the floral transition of azalea. PHYSIOLOGIA PLANTARUM 2011; 141:276-288. [PMID: 21077902 DOI: 10.1111/j.1399-3054.2010.01430.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ability to control the timing of flowering is a key strategy in planning the production of ornamental species such as azaleas; however, it requires a thorough understanding of floral transition. DNA methylation is involved in controlling the functional state of chromatin and gene expression during floral induction pathways in response to environmental and developmental signals. Plant hormone signalling is also known to regulate suites of morphogenic processes in plants and its role in flowering-time control is starting to emerge as a key controlling step. This work investigates if the gibberellin (GA) inhibitors and chemical pinching applied in improvement of azalea flowering alter the dynamics of DNA methylation or the levels of polyamines (PAs), GAs and cytokinins (CKs) during floral transition, and whether these changes could be related to the effects observed on flowering ability. DNA methylation during floral transition and endogenous content of PAs, GAs and CKs were analysed after the application of GA synthesis inhibitors (daminozide, paclobutrazol and chlormequat chloride) and a chemical pruner (fatty acids). The application of GA biosynthesis inhibitors caused alterations in levels of PAs, GAs and CKs and in global DNA methylation levels during floral transition; also, these changes in plant growth regulators and DNA methylation were correlated with flower development. DNA methylation, PA, GA and CK levels can be used as predictive markers of plant floral capacity in azalea.
Collapse
Affiliation(s)
- Mónica Meijón
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/ Cat. Rodrigo Uría s/n, E-33071, Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
22
|
Valledor L, Meijón M, Hasbún R, Jesús Cañal M, Rodríguez R. Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:351-7. [PMID: 19931210 DOI: 10.1016/j.jplph.2009.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 09/20/2009] [Accepted: 09/20/2009] [Indexed: 05/13/2023]
Abstract
Needle differentiation is a very complex process associated with the formation of a mature photosynthetic organ. From meristem differentiation to leaf maturation, gene control must play an important role switching required genes on and off to define tissue functions, with the epigenetic code being one of the main regulation mechanisms. In this work, we examined the connections between the variation in the levels of some epigenetic players (DNA methylation, acetylated histone H4 and histone H3 methylation at Lys 4 and Lys 9) at work during needle maturation. Our results indicate that needle maturation, which is associated with a decrease in organogenic capability, is related to an increase in heterochromatin-related epigenetic markers (high DNA methylation and low acetylated histone H4 levels, and the presence of histone H3 methylated at lys 9). Immunohistochemical analyses also showed that the DNA methylation of palisade parenchyma cell layers during the transition from immature to mature scions is associated with the loss of the capacity to induce adventitious organs.
Collapse
Affiliation(s)
- Luis Valledor
- EPIPHYSAGE Research Group, Area de Fisiología Vegetal, Departamento B.O.S., Instituto Universitario de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
23
|
Meijón M, Feito I, Valledor L, Rodríguez R, Cañal MJ. Dynamics of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea. BMC PLANT BIOLOGY 2010; 10:10. [PMID: 20067625 PMCID: PMC2923518 DOI: 10.1186/1471-2229-10-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 01/12/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as azalea, however it requires a thorough understanding of floral transition. Floral transition is achieved through a complex genetic network and regulated by multiple environmental and endogenous cues. Dynamic changes between chromatin states facilitating or inhibiting DNA transcription regulate the expression of floral induction pathways in response to environmental and developmental signals. DNA methylation and histone modifications are involved in controlling the functional state of chromatin and gene expression. RESULTS The results of this work indicate that epigenetic mechanisms such as DNA methylation and histone H4 acetylation have opposite and particular dynamics during the transition from vegetative to reproductive development in the apical shoots of azalea. Global levels of DNA methylation and histone H4 acetylation as well as immunodetection of 5-mdC and acetylated H4, in addition to a morphological study have permitted the delimitation of four basic phases in the development of the azalea bud and allowed the identification of a stage of epigenetic reprogramming which showed a sharp decrease of whole DNA methylation similar to that is defined in other developmental processes in plants and in mammals. CONCLUSION The epigenetic control and reorganization of chromatin seem to be decisive for coordinating floral development in azalea. DNA methylation and H4 deacetylation act simultaneously and co-ordinately, restructuring the chromatin and regulating the gene expression during soot apical meristem development and floral differentiation.
Collapse
Affiliation(s)
- Mónica Meijón
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/Cat. Rodrigo Uria s/n, E-33071, Oviedo, Asturias, Spain
- Instituto de Biotecnología de Asturias, (Associated to CSIC) Edificio Santiago Gascón, C/Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - Isabel Feito
- SERIDA, Servicio Regional de Investigación Desarrollo Agroalimentario, Finca "La Mata", Apdo 13, E-33820 Grado, Asturias, Spain
| | - Luis Valledor
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/Cat. Rodrigo Uria s/n, E-33071, Oviedo, Asturias, Spain
- Instituto de Biotecnología de Asturias, (Associated to CSIC) Edificio Santiago Gascón, C/Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - Roberto Rodríguez
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/Cat. Rodrigo Uria s/n, E-33071, Oviedo, Asturias, Spain
- Instituto de Biotecnología de Asturias, (Associated to CSIC) Edificio Santiago Gascón, C/Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/Cat. Rodrigo Uria s/n, E-33071, Oviedo, Asturias, Spain
- Instituto de Biotecnología de Asturias, (Associated to CSIC) Edificio Santiago Gascón, C/Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| |
Collapse
|