1
|
Thorough Characterization of ETHQB3.5, a QTL Involved in Melon Fruit Climacteric Behavior and Aroma Volatile Composition. Foods 2023; 12:foods12020376. [PMID: 36673468 PMCID: PMC9858179 DOI: 10.3390/foods12020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The effect of the QTL involved in climacteric ripening ETHQB3.5 on the fruit VOC composition was studied using a set of Near-Isogenic Lines (NILs) containing overlapping introgressions from the Korean accession PI 16375 on the chromosome 3 in the climacteric 'Piel de Sapo' (PS) genetic background. ETHQB3.5 was mapped in an interval of 1.24 Mb that contained a NAC transcription factor. NIL fruits also showed differences in VOC composition belonging to acetate esters, non-acetate esters, and sulfur-derived families. Cosegregation of VOC composition (23 out of 48 total QTLs were mapped) and climacteric ripening was observed, suggesting a pleiotropic effect of ETHQB3.5. On the other hand, other VOCs (mainly alkanes, aldehydes, and ketones) showed a pattern of variation independent of ETHQB3.5 effects, indicating the presence of other genes controlling non-climacteric ripening VOCs. Network correlation analysis and hierarchical clustering found groups of highly correlated compounds and confirmed the involvement of the climacteric differences in compound classes and VOC differences. The modification of melon VOCs may be achieved with or without interfering with its physiological behavior, but it is likely that high relative concentrations of some type of ethylene-dependent esters could be achieved in climacteric cultivars.
Collapse
|
2
|
Zhou H, Zhu W, Wang X, Bian Y, Jiang Y, Li J, Wang L, Yin P, Deng XW, Xu D. A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis. THE NEW PHYTOLOGIST 2022; 233:373-389. [PMID: 34935148 DOI: 10.1111/nph.17618] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) mediates various cellular and physiological processes in plants by targeting a large number of substrates for ubiquitination and degradation. In this study, we reveal that a substitution of Pro for Leu at amino acid position 409 in WRKY32 largely suppresses the short hypocotyls and expanded cotyledon phenotypes of cop1-6. WRKY32P409L promotes hypocotyl growth and inhibits the opening of cotyledons in Arabidopsis. Loss of WRKY32 function mutant seedlings display elongated hypocotyls, whereas overexpression of WRKY32 leads to shortened hypocotyls. WRKY32 directly associates with the promoter regions of HY5 to activate its transcription. COP1 interacts with and targets WRKY32 for ubiquitination and degradation in darkness. WRKY32P409L exhibits enhanced DNA binding ability and affects the expression of more genes compared with WRKY32 in Arabidopsis. Our results not only reveal the basic role for WRKY32 in promoting photomorphogenesis, but also provide insights into manipulating plant growth by engineering key components of light signaling.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Zhang A, Zhang Q, Li J, Gong H, Fan X, Yang Y, Liu X, Yin X. Transcriptome co-expression network analysis identifies key genes and regulators of ripening kiwifruit ester biosynthesis. BMC PLANT BIOLOGY 2020; 20:103. [PMID: 32138665 PMCID: PMC7059668 DOI: 10.1186/s12870-020-2314-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/27/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Aroma is an important organoleptic quality for fruit and has a large influence on consumer preference. Kiwifruit esters undergo rapid and substantial changes contributing to the flavor during fruit ripening. Part of enzymes and their coding genes have been indicated potential candidates for flavor-related esters synthesis. However, there still exist obvious gaps in the biosynthetic pathways of esters and the mechanisms regulating ester biosynthesis in kiwifruit remain unknown. RESULTS Using gas chromatography-mass spectrometry (GC-MS), volatile compounds of kiwifruit were quantified in response to ethylene (ETH, 100 μl/l, 24 h, 20 °C) and 1-methylcyclopropene (1-MCP, 1 μl/l, 24 h, 20 °C). The results indicated that esters showed the most substantial changes enhanced by ethylene and were inhibited by 1-MCP. Correlations between RNA-seq results and concentrations of esters, constructed using Weighted Gene Co-Expression Network Analysis (WGCNA) indicated that three structural genes (fatty acid desaturase, AdFAD1; aldehyde dehydrogenase, AdALDH2; alcohol acyltransferase, AdAT17) had similar expression patterns that paralled the changes in total ester content, and AdFAD1 transcripts exhibited the highest correlation. In order to search for potential regulators for ester biosynthesis, 14 previously reported ethylene-responsive transcription factors (TFs) were included in the correlation analysis with esters and their biosynthetic genes. Using dual-luciferase assay, the in vivo regulatory activities of TFs on ester biosynthetic gene promoters were investigated and the results indicated that AdNAC5 and AdDof4 (DNA binding with one finger) trans-activated and trans-suppressed the AdFAD1 promoter. CONCLUSIONS The present study advanced the molecular basis of ripening-related ester biosynthesis in kiwifruit by identifying three biosynthetic related genes AdFAD1, AdALDH2 and AdAT17 by transcriptome analysis, and highlighted the function of two TFs by transactivation studies.
Collapse
Affiliation(s)
- Aidi Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong 264025 People’s Republic of China
- BioNanotechnology Institute, Ludong University, Yantai, Shandong 264025 People’s Republic of China
| | - Qiuyun Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 People’s Republic of China
| | - Jianzhao Li
- School of Agriculture, Ludong University, Yantai, Shandong 264025 People’s Republic of China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai, Shandong 264025 People’s Republic of China
- BioNanotechnology Institute, Ludong University, Yantai, Shandong 264025 People’s Republic of China
| | - Xinguang Fan
- School of Food Engineering, Ludong University, Yantai, Shandong 264025 People’s Republic of China
| | - Yanqing Yang
- School of Food Engineering, Ludong University, Yantai, Shandong 264025 People’s Republic of China
| | - Xiaofen Liu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 People’s Republic of China
| | - Xueren Yin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|
7
|
Günther CS, Matich AJ, Marsh KB, Nicolau L. Development of a quantitative method for headspace analysis of methylsulfanyl-volatiles from kiwifruit tissue. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Günther CS, Chervin C, Marsh KB, Newcomb RD, Souleyre EJF. Characterisation of two alcohol acyltransferases from kiwifruit (Actinidia spp.) reveals distinct substrate preferences. PHYTOCHEMISTRY 2011; 72:700-10. [PMID: 21450321 DOI: 10.1016/j.phytochem.2011.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/02/2011] [Accepted: 02/24/2011] [Indexed: 05/06/2023]
Abstract
Volatile esters are key compounds of kiwifruit flavour and are formed by alcohol acyltransferases that belong to the BAHD acyltransferase superfamily. Quantitative RT-PCR was used to screen kiwifruit-derived expressed sequence tags with proposed acyltransferase function in order to select ripening-specific sequences and test their involvement in alcohol acylation. The screening criterion was for at least 10-fold increased transcript accumulation in ripe compared with unripe kiwifruit and in response to ethylene. Recombinant expression in yeast revealed alcohol acyltransferase activity for Actinidia-derived AT1, AT16 and the phylogenetically distinct AT9, using various alcohol and acyl-CoA substrates. Functional characterisation of AT16 and AT9 demonstrated striking differences in their substrate preferences and apparent catalytic efficiencies (V'(max)K(m)(-1)). Thus revealing benzoyl-CoA:alcohol O-acyltransferase activity for AT16 and acetyl-CoA:alcohol O-acyltransferase activity for AT9. Both kiwifruit-derived enzymes displayed higher reaction rates with butanol compared with ethanol, even though ethanol is the main alcohol in ripe fruit. Since ethyl acetate and ethyl benzoate are major esters in ripe kiwifruit, we suggest that fruit characteristic volatile profiles result from a combination of substrate availability and specificity of individual alcohol acyltransferases.
Collapse
Affiliation(s)
- Catrin S Günther
- The New Zealand Institute for Plant & Food Research Ltd., Auckland, New Zealand
| | | | | | | | | |
Collapse
|