1
|
Albaladejo-Marico L, Carvajal M, Yepes-Molina L. Involvement of glucosinolates and phenolics in the promotion of broccoli seedling growth through the modulation of primary and secondary metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112205. [PMID: 39069007 DOI: 10.1016/j.plantsci.2024.112205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Secondary metabolites play an essential role in plant defense. However, the role of glucosinolates and phenols in brassica crop yield in the context of environmentally friendly agricultural practices has not been established. Our study investigated the effects of a Brassica extract, rich in these metabolites, on the physiology and metabolism of broccoli (Brassica oleracea L. var. italica) seedlings and the subsequent development of the plants in adult stages. The results showed an increase in growth in the extract-treated seedlings, which was associated with an alteration of primary and secondary metabolism. In particular, there was an increase in the levels of amino acids, phenolic compounds and hormones, while the levels of glucosinolates decreased. Lipid peroxidation diminished in treated plants, indicating improved membrane integrity. Treated plants subsequently grown in hydroponically showed increased water use efficiency, transpiration, and internal carbon, which contributed to the improved growth of these plants. Overall, our findings underscore the potential of the glucosinolates and phenols ratio as essential to improve crop growth and stress tolerance, as well as revealed the interest of studying the mechanisms involved in the possible uptake and integration of GSLs by broccoli seedlings after external application.
Collapse
Affiliation(s)
- Lorena Albaladejo-Marico
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. CEBAS-CSIC. Campus Universitario de Espinardo - 25, Murcia E-30100, Spain
| | - Micaela Carvajal
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. CEBAS-CSIC. Campus Universitario de Espinardo - 25, Murcia E-30100, Spain
| | - Lucia Yepes-Molina
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. CEBAS-CSIC. Campus Universitario de Espinardo - 25, Murcia E-30100, Spain.
| |
Collapse
|
2
|
Zhang Y, Sun X, Aphalo PJ, Zhang Y, Cheng R, Li T. Ultraviolet-A1 radiation induced a more favorable light-intercepting leaf-area display than blue light and promoted plant growth. PLANT, CELL & ENVIRONMENT 2024; 47:197-212. [PMID: 37743709 DOI: 10.1111/pce.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
Plants adjust their morphology in response to light environment by sensing an array of light cues. Though the wavelengths of ultraviolet-A1 radiation (UV-A1, 350-400 nm) are close to blue light (B, 400-500 nm) and share same flavoprotein photoreceptors, it remains poorly understood how plant responses to UV-A1 radiation could differ from those to B. We initially grown tomato plants under monochromatic red light (R, 660 nm) as control, subsequently transferred them to four dichromatic light treatments containing ~20 µmol m-2 s-1 of UV-A1 radiation, peaking at 370 nm (UV-A370 ) or 400 nm (V400 ), or B (450 nm, at ~20 or 1.5 µmol m-2 s-1 ), with same total photon irradiance (~200 μmol m-2 s-1 ). We show that UV-A370 radiation was the most effective in inducing light-intercepting leaf-area display formation, resulting in larger leaf area and more shoot biomass, while it triggered weaker and later transcriptome-wide responses than B. Mechanistically, UV-A370 -promoted leaf-area display response was apparent in less than 12 h and appeared as very weakly related to transcriptome level regulation, which likely depended on the auxin transportation and cell wall acidification. This study revealed wavelength-specific responses within UV-A/blue region challenging usual assumptions that the role of UV-A1 radiation function similarly as blue light in mediating plant processes.
Collapse
Affiliation(s)
- Yating Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xuguang Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruifeng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Sanchez-Campos Y, Cárcamo-Fincheira P, González-Villagra J, Jorquera-Fontena E, Acevedo P, Soto-Cerda B, Nunes-Nesi A, Inostroza-Blancheteau C, Tighe-Neira R. Physiological and molecular effects of TiO 2 nanoparticle application on UV-A radiation stress responses in Solanum lycopersicum L. PROTOPLASMA 2023; 260:1527-1537. [PMID: 37269354 DOI: 10.1007/s00709-023-01868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Nanoparticles (NPs) of titanium dioxide (TiO2) alter photosynthetic and biochemical parameters in Solanum lycopersicum L., possibly due to their photocatalytic properties given by energy absorption in the UV-A range; however, the joint effects TiO2 NPs and UV-A radiation are not well understood. This work evaluates the combined responses of TiO2 NPs and UV-A radiation at the physiological and molecular levels in S. lycopersicum. In a split growth chamber, the presence (UV-A +) and absence (UV-A -) of UV-A were combined with 0 (water as a control), and 1000 and 2000 mg L-1 of TiO2 NPs applied at sowing. At the end of exposure (day 30 after sowing), the photosynthetic performance was determined, and biochemical and molecular parameters were evaluated in leaf tissues. Better photochemical performance in UV-A + than UV-A - in control plants was observed, but these effects decreased in 1000 and 2000 mg TiO2 L-1, similar to net CO2 assimilation. A clear increase in photosynthetic pigment levels was recorded under UV-A + compared to UV-A - that was positively correlated with photosynthetic parameters. A concomitant increase in total phenols was observed on adding TiO2 in UV-A - conditions, while a decreasing trend in lipid peroxidation was observed for the same treatments. There was an increase in psbB gene expression under TiO2/UV-A + treatments, and a reduced expression of rbcS and rbcL under UV-A - . These results suggest that the reduction in photosynthetic performance on applying high doses of TiO2 NPs is probably due to biochemical limitation, while UV-A achieves the same result via the photochemical component.
Collapse
Affiliation(s)
- Yissel Sanchez-Campos
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Paz Cárcamo-Fincheira
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Jorge González-Villagra
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Emilio Jorquera-Fontena
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Patricio Acevedo
- Departamento de Ciencias Físicas, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Braulio Soto-Cerda
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Claudio Inostroza-Blancheteau
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Ricardo Tighe-Neira
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile.
| |
Collapse
|
4
|
Rai K, Yadav K, Das M, Chaudhary S, Naik K, Singh P, Dubey AK, Yadav SK, Agrawal SB, Parmar AS. Effect of carbon quantum dots derived from extracts of UV-B-exposed Eclipta alba on alcohol-induced liver cirrhosis in Golden Hamster. Photochem Photobiol Sci 2023:10.1007/s43630-023-00396-3. [PMID: 36826694 DOI: 10.1007/s43630-023-00396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
The Eclipta alba plant is considered hepatoprotective, owing to its phytoconstituents wedelolactone. In the current study, effect of elevated ultraviolet-B (eUV-B) radiation was investigated on biochemical, phytochemical, and antioxidative enzymatic activities of E. alba (Bhringraj) plant. The UV-B exposure resulted in an increase in oxidative stress, which has caused an imbalance in phytochemical, biochemical constituents, and induced antioxidative enzymatic activities. It was observed that the UV-B exposure promoted wedelolactone yield by 23.64%. Further, the leaf extract of UV-B-exposed plants was used for the synthesis of carbon quantum dots (CQDs) using low cost, one-step hydrothermal technique and its biocompatibility was studied using in vitro MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay on HepG2 liver cell line. It revealed no toxicity in any treatment groups in comparison to the control. Both CQDs and leaf extract were orally administered to the golden hamster suffering from alcohol-induced liver cirrhosis. In the morphometric study, it was clearly observed that a combination of UV-B-exposed leaf extract and synthesized CQDs delivered the best result with maximum recovery of liver tissues. The present study reveals the positive impact of UV-B exposure on the medicinally important plant, increased yield of wedelolactone, and its enhanced hepatoprotective efficacy for the treatment of damaged liver tissues.
Collapse
Affiliation(s)
- Kshama Rai
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Kanchan Yadav
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Megha Das
- Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to Be University), Chandigarh, 160012, India
| | - Kaustubh Naik
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Priya Singh
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Sanjeev Kumar Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
5
|
Ghitti E, Rolli E, Crotti E, Borin S. Flavonoids Are Intra- and Inter-Kingdom Modulator Signals. Microorganisms 2022; 10:microorganisms10122479. [PMID: 36557733 PMCID: PMC9781135 DOI: 10.3390/microorganisms10122479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.
Collapse
|
6
|
Effects of elevated ultraviolet-B on the floral and leaf characteristics of a medicinal plant Wedelia chinensis (Osbeck) Merr. along with essential oil contents. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Chu R, Zhang QH, Wei YZ. Effect of enhanced UV-B radiation on growth and photosynthetic physiology of Iris tectorum maxim. PHOTOSYNTHESIS RESEARCH 2022; 153:177-189. [PMID: 35834037 DOI: 10.1007/s11120-022-00933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Iris tectorum Maxim. is an important plant that plays a very crucial role in the ecological welfare of wetlands. In this study, the effects of different intensities of UV-B radiation on the growth, photosynthetic pigment content, chlorophyll fluorescence characteristics, chloroplast ultrastructure, and gas exchange parameters of Iris tectorum Maxim. were studied. The results showed that enhanced UV-B radiation had a significant influence on the above-mentioned parameters of iris. Compared with the control, enhanced UV-B radiation caused certain damage to the leaf appearance. With the increasing intensity of radiation, the apparent damage degree became more serious. Enhanced UV-B radiation significantly decreased leaf chlorophyll contents, and the effect accumulated with the exposure time. Enhanced UV-B radiation increased Fo, significantly increased the non-photochemical quenching coefficient NPQ, reduced PSII and Qp, and significantly decreased the Fm, Fv/Fm, and Fv/Fo in leaves. The effect of UV-B radiation on PSII destruction of Iris tectorum Maxim. increased as the radiation intensity increased and the exposure time prolonged. The chloroplast structure was damaged under the enhanced UV-B radiation. More specifically, thylakoid lamellae were distorted, swelling and even blurred, and a large number of starch granules appeared. The effect of the high intensity of radiation on chloroplast ultrastructure was greater than that of lower intensity. Enhanced UV-B radiation reduced significantly the net photosynthetic rate, stomatal conductance, and transpiration rate, and the degree of degradation increased with the increasing irradiation intensity. However, the intercellular CO2 content increased, which suggests that the main reason for the decrease of photosynthetic rate was the non-stomatal factors.
Collapse
Affiliation(s)
- Run Chu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Qin-Hu Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yu-Zhen Wei
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
8
|
Lucas JA, García-Villaraco A, Ramos-Solano B, Akdi K, Gutierrez-Mañero FJ. Lipo-Chitooligosaccharides (LCOs) as Elicitors of the Enzymatic Activities Related to ROS Scavenging to Alleviate Oxidative Stress Generated in Tomato Plants under Stress by UV-B Radiation. PLANTS 2022; 11:plants11091246. [PMID: 35567247 PMCID: PMC9101198 DOI: 10.3390/plants11091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022]
Abstract
Exposure to ultraviolet-B (UV-B) radiation can lead to oxidative damage in plants, increasing reactive oxygen species (ROS) production. To overcome ROS burst, plants have antioxidant mechanisms related to ROS scavenging which can be improved by elicitation with biological agents or derived molecules (elicitors), as they can trigger a physiological alert state called “priming”. This work describes the effects of lipo-chitooligosaccharides (LCOs) treatment applied to tomato plants under UV-B stress. The LCOs used in the study are produced by three species of the genus Ensifer (formerly Sinorhizobium) (SinCEU-1, SinCEU-2, and SinCEU-3) were assayed on tomato plants under UV-B stress. LCOs were able to significantly increase most of the enzymatic activities related to ROS scavenging while non-enzymatic antioxidants were not modified. This response was associated with a lower oxidative stress, according to malondialdehyde (MDA) levels and the higher antioxidant capacity of the plants. Furthermore, the photosynthetic efficiency of LCOs-treated plants indicated a better physiological state than the control plants. Therefore, although more studies and deepening of certain aspects are necessary, LCOs have shown great potential to protect plants from high UV-B radiation conditions.
Collapse
Affiliation(s)
- José A. Lucas
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
- Correspondence:
| | - Ana García-Villaraco
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| | - Beatriz Ramos-Solano
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| | - Khalid Akdi
- Trichodex S.A., Polígono Industrial La Isla, Rio Viejo 57-59, 41703 Sevilla, Spain;
| | - Francisco Javier Gutierrez-Mañero
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| |
Collapse
|
9
|
Kang S, Kim JE, Zhen S, Kim J. Mild-Intensity UV-A Radiation Applied Over a Long Duration Can Improve the Growth and Phenolic Contents of Sweet Basil. FRONTIERS IN PLANT SCIENCE 2022; 13:858433. [PMID: 35519818 PMCID: PMC9062229 DOI: 10.3389/fpls.2022.858433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
UV-A radiation (320-400 nm) is an abiotic stressor that may be used to enhance the production of beneficial secondary metabolites in crops such as leafy vegetables. However, tradeoffs between enhanced phytochemical contents and overall growth/yield reductions have been reported. The responses varied depending on the UV-A intensity, spectral peak, exposure time, species, and varieties. We quantified the changes in growth, morphology, photosynthesis, and phenolic contents of sweet basil grown under a base red/blue/green LED light with four supplemental UV-A intensity treatments (0, 10, 20, and 30 W·m-2) in an indoor environment over 14 days. The objective was to determine whether UV-A radiation could be utilized to improve both yield and quality of high-value sweet basil in a controlled production environment. Biomass harvested at 14 days after treatment (DAT) was highest under mild-intensity UV-A treatment of 10 W·m-2 and lowest under high-intensity UV-A treatment of 30 W·m-2. The total leaf area and the number of leaves were significantly lower under the 30 W·m-2 treatment than under the 10 and 20 W·m-2 treatments at 14 DAT. The maximum quantum efficiency of photosystem II (PSII) for photochemistry (Fv/Fm ) showed a gradual decrease under the 20 and 30 W·m-2 treatments from 3 to 14 DAT, whereas Fv/Fm remained relatively constant under the 0 and 10 W·m-2 treatments over the entire 14 days. The leaf net photosynthesis rate showed a significant decrease of 17.4% in the 30 W·m-2 treatment compared to that in the 10 W·m-2 treatment at 14 DAT. Phenolic contents (PAL enzyme activity, total phenolic concentration, and antioxidant capacity) were the highest under the 20 W·m-2 treatment, followed by the 10, 30, and 0 W·m-2 treatments. Overall, our results indicate that the biomass production and accumulation of beneficial phenolic compounds in sweet basil varied depending on the intensity and duration of UV-A application. Mild UV-A radiation (10-20 W·m-2) can be a beneficial stressor to improve sweet basil yield and quality over relatively long-term cultivation.
Collapse
Affiliation(s)
- Seonghwan Kang
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Jo Eun Kim
- Department of Horticultural Biotechnology, Korea University, Seoul, South Korea
| | - Shuyang Zhen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Jongyun Kim
- Department of Plant Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
10
|
Satureja montana Essential Oil, Zein Nanoparticles and Their Combination as a Biocontrol Strategy to Reduce Bacterial Spot Disease on Tomato Plants. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tomato bacterial spot (Bs), caused by Xanthomonas spp., including X. euvesicatoria (Xeu) remains a major threat for tomato production. The emergence of copper resistance strains of Xeu calls urgently for eco-friendly phytosanitary treatments as sustainable green alternatives for disease control. Satureja spp. essential oil (EO) has antimicrobial activity against xanthomonads and combined with zein nanoparticles (ZNPs), might offer a viable option for field applications. This study aims to evaluate the effects of S. montana EO, of ZNPs, and their combination in a nanoformulation, on Xeu quantity, and how these compounds modulate molecular and physiological changes in the pathosystem. Uninfected and infected tomato plants (var. Oxheart) were treated with EO; ZNPs and nanoformulation (EO + ZNPs). Treatments reduced Xeu amount by a minimum of 1.6-fold (EO) and a maximum of 202-fold (ZNPs) and improved plants’ health. Nanoformulation and ZNPs increased plants’ phenolic content. ZNPs significantly increased GPX activity and reduced CAT activity. Overall treatments upregulated transcripts of the phenylpropanoid pathway in infected plants, while ZNPs and nanoformulation upregulated those transcripts in uninfected plants. Both sod and aao transcripts were downregulated by treatments in infected plants. These findings demonstrate that S. montana EO, ZNPs and their nanoformulation are suitable to integrate tomato bacterial spot management strategies, mainly due to their antimicrobial activity on Xeu, however further field studies clarifying the long-term action of these products are required. These results also support the prophylactic potential of ZNPs on tomato bacterial spot.
Collapse
|
11
|
Piccini C, Cai G, Dias MC, Araújo M, Parri S, Romi M, Faleri C, Cantini C. Olive Varieties under UV-B Stress Show Distinct Responses in Terms of Antioxidant Machinery and Isoform/Activity of RubisCO. Int J Mol Sci 2021; 22:ijms222011214. [PMID: 34681874 PMCID: PMC8538740 DOI: 10.3390/ijms222011214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 01/27/2023] Open
Abstract
In recent decades, atmospheric pollution led to a progressive reduction of the ozone layer with a consequent increase in UV-B radiation. Despite the high adaptation of olive trees to the Mediterranean environment, the progressive increase of UV-B radiation is a risk factor for olive tree cultivation. It is therefore necessary to understand how high levels of UV-B radiation affect olive plants and to identify olive varieties which are better adapted. In this study we analyzed two Italian olive varieties subjected to chronic UV-B stress. We focused on the effects of UV-B radiation on RubisCO, in terms of quantity, enzymatic activity and isoform composition. In addition, we also analyzed changes in the activity of antioxidant enzymes (SOD, CAT, GPox) to get a comprehensive picture of the antioxidant system. We also evaluated the effects of UV-B on the enzyme sucrose synthase. The overall damage at biochemical level was also assessed by analyzing changes in Hsp70, a protein triggered under stress conditions. The results of this work indicate that the varieties (Giarraffa and Olivastra Seggianese) differ significantly in the use of specific antioxidant defense systems, as well as in the activity and isoform composition of RubisCO. Combined with a different use of sucrose synthase, the overall picture shows that Giarraffa optimized the use of GPox and opted for a targeted choice of RubisCO isoforms, in addition to managing the content of sucrose synthase, thereby saving energy during critical stress points.
Collapse
Affiliation(s)
- Chiara Piccini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (C.P.); (S.P.); (M.R.); (C.F.)
- Institute for BioEconomy, National Research Council of Italy, 58022 Follonica, Italy;
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (C.P.); (S.P.); (M.R.); (C.F.)
- Correspondence: ; Tel.: +39-057-723-2392; Fax: +39-057-723-2861
| | - Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (M.C.D.); (M.A.)
| | - Márcia Araújo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (M.C.D.); (M.A.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
- CITAB, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Sara Parri
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (C.P.); (S.P.); (M.R.); (C.F.)
| | - Marco Romi
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (C.P.); (S.P.); (M.R.); (C.F.)
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (C.P.); (S.P.); (M.R.); (C.F.)
| | - Claudio Cantini
- Institute for BioEconomy, National Research Council of Italy, 58022 Follonica, Italy;
| |
Collapse
|
12
|
Yu B, Pan Y, Liu Y, Chen Q, Guo X, Tang Z. A comprehensive analysis of transcriptome and phenolic compound profiles suggests the role of flavonoids in cotyledon greening in Catharanthus roseus seedling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:185-197. [PMID: 34365289 DOI: 10.1016/j.plaphy.2021.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/03/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
During seedling photo-morphogenesis, cotyledon greening is a vital developmental process and a moment of responding to light stress. An increasing number of reports suggest the function of natural antioxidant protection of phenolic compounds in plant growth and development processes. Due to the antioxidant functions, flavonoids allow plants to respond to abiotic or biotic stresses. As one of the plants rich in secondary metabolites, Catharanthus roseus has drawn great academic interest due to its richness of diverse secondary metabolites with medicinal values. To assess the distribution and function of phenolic compounds during cotyledon greening, combined phenolic profiling and transcriptome were applied in C. roseus seedling through ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometer (UPLC-Q-TOF/MS) and high throughput RNA sequencing, respectively. Results herein showed that light-exposed greening cotyledon accumulated large amounts of C6C3C6-type flavonoids, suggesting the function in repressing reactive oxygen species (ROS) generation to improve light adaptation and seedling survival. Moreover, synergistic up-regulation of relevant genes involved in flavonoids pathway, including PAL, C4H, CHS, FLS, and F3'H, was monitored in response to light. Several crucial candidate transcription factors including bHLH, MYB, and B-box families were likely to function, and thereinto, CrHY5 (CRO_T122304) and CRO_T137938 revealed a prompt response to light, supposing to induce flavonoids accumulation by targeting CHS and FLS. Therefore, this study provided new insight into the potential regulation and underlying roles of flavonoids to improve light acclimation during cotyledon greening.
Collapse
Affiliation(s)
- Bofan Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yajie Pan
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
13
|
Tripathi D, Meena RP, Pandey-Rai S. Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1823-1835. [PMID: 34393390 PMCID: PMC8354842 DOI: 10.1007/s12298-021-01046-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 06/01/2023]
Abstract
UNLABELLED Accumulation of secondary metabolites is a key process in the growth and development of plants under different biotic/abiotic constraints. Many studies highlighted the regulatory potential of UV-B treatment towards the secondary metabolism of plants. In the present study, we examined the impact of UV-B on the physiology and secondary metabolism of Withania coagulans, which is an important ayurvedic plant with high anti-diabetic potential. Results showed that in-vitro UV-B exposure negatively influenced chlorophyll content and photosynthetic machinery. However, Fv/Fm ratio was found non-significantly altered up to 3 h UV-B exposure. The maximum lipid peroxidation level was recorded with 46.8% higher malondialdehyde content in the plants supplemented with 5 h UV-B radiation, that was indicated the oxidative stress in W. coagulans. Conversely, UV-B treatment significantly increased the plant's stress protective compounds like carotenoids, anthocyanin, phenol and proline, in W. coagulans. Free radical scavenging activity was also significantly increased ~ 18% than the control with 3 h UV-B treatment. The maximum antioxidative enzymes activities were observed with the short-term (up to 3 h) UV-B treatment. Specifically, UV-B radiation exposure significantly increased the content of withaferin A and withanolide A in W. coagulans with maximum 1.38 and 3.42-folds, respectively. Additionally, withanolides biosynthesis related genes transcript levels were found over-expressed under the response of UV-B elicitation. The acquired results suggested that short-term UV-B supplementation triggers secondary metabolism along with combating oxidative stress via improving the antioxidative defense system in W. coagulans. Also, UV-B can be used as an efficient abiotic elicitor to increase pharmaceutical compounds (withanolides) production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01046-7.
Collapse
Affiliation(s)
- Deepika Tripathi
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh India
| | - Ram Prasad Meena
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh India
| | - Shashi Pandey-Rai
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh India
| |
Collapse
|
14
|
Mariz-Ponte N, Mendes RJ, Sario S, Correia CV, Correia CM, Moutinho-Pereira J, Melo P, Dias MC, Santos C. Physiological, Biochemical and Molecular Assessment of UV-A and UV-B Supplementation in Solanum lycopersicum. PLANTS 2021; 10:plants10050918. [PMID: 34063679 PMCID: PMC8147646 DOI: 10.3390/plants10050918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Daily UV-supplementation during the plant fruiting stage of tomato (Solanum lycopersicum L.) growing indoors may produce fruits with higher nutraceutical value and better acceptance by consumers. However, it is important to ensure that the plant's performance during this stage is not compromised by the UV supplement. We studied the impact of UV-A (1 and 4 h) and UV-B (2 and 5 min) on the photosynthesis of greenhouse-grown tomato plants during the fruiting/ripening stage. After 30 d of daily irradiation, UV-B and UV-A differently interfered with the photosynthesis. UV-B induced few leaf-necrotic spots, and effects are more evidenced in the stimulation of photosynthetic/protective pigments, meaning a structural effect at the Light-Harvesting Complex. UV-A stimulated flowering/fruiting, paralleled with no visible leaf damages, and the impact on photosynthesis was mostly related to functional changes, in a dose-dependent manner. Both UV-A doses decreased the maximum quantum efficiency of photosystem II (Fv/Fm), the effective efficiency of photosystem II (ΦPSII), and gas exchange processes, including net carbon assimilation (PN). Transcripts related to Photosystem II (PSII) and RuBisCO were highly stimulated by UV supplementation (mostly UV-A), but the maintenance of the RuBisCO protein levels indicates that some protein is also degraded. Our data suggest that plants supplemented with UV-A activate adaptative mechanisms (including increased transcription of PSII peptides and RuBisCO), and any negative impacts on photosynthesis do not compromise the final carbohydrate balances and plant yield, thus becoming a profitable tool to improve precision agriculture.
Collapse
Affiliation(s)
- Nuno Mariz-Ponte
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
- LAQV-REQUIMTE, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence:
| | - Rafael J. Mendes
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
- LAQV-REQUIMTE, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Sara Sario
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
- LAQV-REQUIMTE, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Cristiana V. Correia
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
- LAQV-REQUIMTE, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Carlos M. Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal; (C.M.C.); (J.M.-P.)
| | - José Moutinho-Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal; (C.M.C.); (J.M.-P.)
| | - Paula Melo
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
| | - Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
- LAQV-REQUIMTE, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
15
|
BTH Treatment Delays the Senescence of Postharvest Pitaya Fruit in Relation to Enhancing Antioxidant System and Phenylpropanoid Pathway. Foods 2021; 10:foods10040846. [PMID: 33924541 PMCID: PMC8069018 DOI: 10.3390/foods10040846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/03/2023] Open
Abstract
The plant resistance elicitor Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) can enhance disease resistance of harvested fruit. Nonetheless, it is still unknown whether BTH plays a role in regulating fruit senescence. In this study, exogenous BTH treatment efficiently delayed the senescence of postharvest pitaya fruit with lower lipid peroxidation level. Furthermore, BTH-treated fruit exhibited lower hydrogen peroxide (H2O2) content, higher contents of reduced ascorbic acid (AsA) and reduced glutathione (GSH) levels and higher ratios of reduced to oxidized glutathione (GSH/GSSG) and ascorbic acid (AsA/DHA), as well as higher activities of ROS scavenging enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and glutathione reductase (GR) in comparison with control fruit. Moreover, BTH treatment enhanced the activities of phenylpropanoid pathway-related enzymes, including cinnamate-4-hydroxylase (C4H), phenylalanine ammonia-lyase (PAL) and 4-coumarate/coenzyme A ligase (4CL) and the levels of phenolics, flavonoids and lignin. In addition, BTH treatment upregulated the expression of HuSOD1/3/4, HuCAT2, HuAPX1/2 and HuPOD1/2/4 genes. These results suggested that application of BTH delayed the senescence of harvested pitaya fruit in relation to enhanced antioxidant system and phenylpropanoid pathway.
Collapse
|
16
|
Khanum Z, Tiznado-Hernández ME, Ali A, Musharraf SG, Shakeel M, Khan IA. Adaptation mechanism of mango fruit ( Mangifera indica L. cv. Chaunsa White) to heat suggest modulation in several metabolic pathways. RSC Adv 2020; 10:35531-35544. [PMID: 35515688 PMCID: PMC9056917 DOI: 10.1039/d0ra01223h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Climate change is becoming a global problem because of its harmful effects on crop productivity. In this regard, it is crucial to carry out studies to determine crops' response to heatwave stress. Response molecular mechanisms during the development and ripening of mango fruit (Mangifera indica L. cv. Chaunsa White) under extreme heatwaves were studied. Mango flowers were tagged and fruits 18, 34, 62, 79, 92 days after flowering (DAF) as well as fruits on 10 and 15 days of postharvest shelf life were studied through RNA-Seq and metabolome of the fruit mesocarp. The environmental temperature was recorded during the experiment. Roughly, 2 000 000 clean reads were generated and assembled into 12 876 redundant transcripts and 2674 non-redundant transcripts. The expression of genes playing a role in oxidative stress, circadian rhythm, senescence, glycolysis, secondary metabolite biosynthesis, flavonoid biosynthesis and monoterpenoid biosynthesis was quantified as well as reactive oxygen species. Higher expressions of six abiotic stress genes and a senescent associated gene was found at 79 DAF (recorded temperature 44 °C). Higher expressions of nucleoredoxin and glutathione S-transferase 1 family protein were also recorded. Activation of the GABA-shunt pathway was detected by the glutamate decarboxylase transcript expression at 79 DAF. Larger energy demands at the beginning of fruit ripening were indicated by an increase in fructose-bisphosphate aldolase gene expression. Finally, the radical-scavenging effect of mango fruit inflorescence and fruit pulp extracts showed decline upon heatwave exposure. We recorded a broad genetic response of mango fruit suggesting the activation of several metabolic pathways which indicated the occurrence of genetic and metabolic crosstalks in response to intense heatwaves. Collectively, this study presents experimental evidence to help in the elucidation of the molecular mechanism of crops response to heat stress which in turn will help in the designing of protocols to increase crop productivity in the face of climate change.
Collapse
Affiliation(s)
- Zainab Khanum
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Martín E Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C. Hermosillo Sonora Mexico
| | - Arslan Ali
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Syed Ghulam Musharraf
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
17
|
Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081209] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current world of climate change, global warming and a constantly changing environment have made life very stressful for living entities, which has driven the evolution of biochemical processes to cope with stressed environmental and ecological conditions. As climate change conditions continue to develop, we anticipate more frequent occurrences of abiotic stresses such as drought, high temperature and salinity. Living plants, which are sessile beings, are more exposed to environmental extremes. However, plants are equipped with biosynthetic machinery operating to supply thousands of bio-compounds required for maintaining internal homeostasis. In addition to chemical coordination within a plant, these compounds have the potential to assist plants in tolerating, resisting and escaping biotic and abiotic stresses generated by the external environment. Among certain biosynthates, flavonoids are an important example of these stress mitigators. Flavonoids are secondary metabolites and biostimulants; they play a key role in plant growth by inducing resistance against certain biotic and abiotic stresses. In addition, the function of flavonoids as signal compounds to communicate with rhizosphere microbes is indispensable. In this review, the significance of flavonoids as biostimulants, stress mitigators, mediators of allelopathy and signaling compounds is discussed. The chemical nature and biosynthetic pathway of flavonoid production are also highlighted.
Collapse
|
18
|
Mannucci A, Mariotti L, Castagna A, Santin M, Trivellini A, Reyes TH, Mensuali-Sodi A, Ranieri A, Quartacci MF. Hormone profile changes occur in roots and leaves of Micro-Tom tomato plants when exposing the aerial part to low doses of UV-B radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:291-301. [PMID: 32000106 DOI: 10.1016/j.plaphy.2020.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 05/20/2023]
Abstract
During the last decades, many studies investigated the effects of UV-B on the above-ground organs of plants, directly reached by the radiation but, to the best of our knowledges, the influence of mild UV-B doses on root hormones was not explored. Consequently, this research aimed at understanding whether low, not-stressful doses of UV-B radiation applied above-ground influenced the hormone concentrations in leaves and roots of Micro-Tom tomato (Solanum lycopersicum L.) plants during 11 days of treatment and after 3 days of recovery. In particular, ethylene, abscisic acid, jasmonic acid, salicylic acid and indoleacetic acid were investigated. The unchanged levels of chlorophyll a and b, lutein, total xanthophylls and carotenoids, as well as the similar H2O2 concentration between control and treated groups suggest that the UV-B dose applied was well tolerated by the plants. Leaf ethylene emission decreased after 8 and 11 days of irradiation, while no effect was found in roots. Conversely, indoleacetic acid underwent a significant reduction in both organs, though in the roots the decrease occurred only at the end of the recovery period. Salicylic acid increased transiently in both leaves and roots on day 8. Changes in leaf and root hormone levels induced by UV-B radiation were not accompanied by marked alterations of plant architecture. The results show that irradiation of above-ground organs with low UV-B doses can affect the hormone concentrations also in roots, with likely implications in stress and acclimation responses mediated by these signal molecules.
Collapse
Affiliation(s)
- Alessia Mannucci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| | - Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Pisa, PI, Italy
| | - Thais Huarancca Reyes
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| | - Anna Mensuali-Sodi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Pisa, PI, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy.
| | - Mike Frank Quartacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| |
Collapse
|
19
|
Dias MC, Pinto DCGA, Freitas H, Santos C, Silva AMS. The antioxidant system in Olea europaea to enhanced UV-B radiation also depends on flavonoids and secoiridoids. PHYTOCHEMISTRY 2020; 170:112199. [PMID: 31759269 DOI: 10.1016/j.phytochem.2019.112199] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 05/08/2023]
Abstract
The Mediterranean crop Olea europaea is often exposed to high UV-B irradiation conditions. To understand how this species modulates its enzymatic and non-enzymatic antioxidant system under high UV-B radiation, young O. europaea plants (cultivar "Galega Vulgar") were exposed, for five days, to UV-B radiation (6.5 kJ m-2 d-1 and 12.4 kJ m-2 d-1). Our data indicate that UV-doses slightly differ in the modulation of the antioxidant protective mechanisms. Particularly, superoxide dismutase (SOD), guaiacol peroxidase (GPox) and catalase (CAT) activities increased contributing to H2O2 homeostasis, being more solicited by higher UV-B doses. Also, glutathione reductase (Gr) activity, ascorbate (AsA) and reduced glutathione (GSH) pools increased particularly under the highest dose, suggesting a higher mobilization of the antioxidant system in this dose. The leaf metabolites' profile of this cultivar was analysed by UHPLC-MS. Interestingly, high levels of verbascoside were found, followed by oleuropein and luteolin-7-O-glucoside. Both UV-B treatments affected mostly less abundant flavonoids (decreasing 4'-methoxy luteolin and 4' or 3'-methoxy luteolin glucoside) and hydroxycinnamic acid derivatives (HCAds, increasing β-hydroxyverbascoside). These changes show not only different mobilization with the UV-intensity, but also reinforce for the first time the protective roles of these minor compounds against UV-B, as reactive oxygen species (ROS) scavengers and UV-B shields, in complement with other antioxidant systems (e.g. AsA/GSH cycle), particularly for high UV-B doses. Secoiridoids also standout in the response to both UV-B doses, with decreases of oleuropein and increases 2''-methoxyoleuropein. Being oleuropein an abundant compound, data suggest that secoiridoids play a more important role than flavonoids and HCAds, in O. europaea protection against UV-B, possibly by acting as signalling molecules and ROS scavengers. This is the first report on the influence of UV-B radiation on the secoiridoid oleuropein, and provides a novel insight to the role of this compound in the O. europaea antioxidant defence mechanisms.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Department of Life Sciences & CFE, Faculty of Sciences and Technologies, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Diana C G A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Helena Freitas
- Department of Life Sciences & CFE, Faculty of Sciences and Technologies, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Conceição Santos
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
20
|
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019; 24:E2452. [PMID: 31277395 PMCID: PMC6651195 DOI: 10.3390/molecules24132452] [Citation(s) in RCA: 703] [Impact Index Per Article: 140.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023] Open
Abstract
Phenolic compounds are an important class of plant secondary metabolites which play crucial physiological roles throughout the plant life cycle. Phenolics are produced under optimal and suboptimal conditions in plants and play key roles in developmental processes like cell division, hormonal regulation, photosynthetic activity, nutrient mineralization, and reproduction. Plants exhibit increased synthesis of polyphenols such as phenolic acids and flavonoids under abiotic stress conditions, which help the plant to cope with environmental constraints. Phenylpropanoid biosynthetic pathway is activated under abiotic stress conditions (drought, heavy metal, salinity, high/low temperature, and ultraviolet radiations) resulting in accumulation of various phenolic compounds which, among other roles, have the potential to scavenge harmful reactive oxygen species. Deepening the research focuses on the phenolic responses to abiotic stress is of great interest for the scientific community. In the present article, we discuss the biochemical and molecular mechanisms related to the activation of phenylpropanoid metabolism and we describe phenolic-mediated stress tolerance in plants. An attempt has been made to provide updated and brand-new information about the response of phenolics under a challenging environment.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia
| | - Abdul Rehman
- Department of Crop Science and Biotechnology, Dankook University, Chungnam 31116, Korea
| | - Renu Bhardwaj
- Plant Stress Physiology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
21
|
Tossi VE, Regalado JJ, Iannicelli J, Laino LE, Burrieza HP, Escandón AS, Pitta-Álvarez SI. Beyond Arabidopsis: Differential UV-B Response Mediated by UVR8 in Diverse Species. FRONTIERS IN PLANT SCIENCE 2019; 10:780. [PMID: 31275337 PMCID: PMC6591365 DOI: 10.3389/fpls.2019.00780] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/28/2019] [Indexed: 05/04/2023]
Abstract
Ultraviolet-B radiation (UV-B, 280-315 nm) is an important environmental signal that regulates growth and development in plants. Two dose-dependent UV-B response pathways were described in plants: a specific one, mediated by UVR8 (the specific UV-B receptor) and an unspecific one, activated by the oxidative damage produced by radiation. The constitutively expressed receptor appears inactive as a dimer, with the two monomers dissociating upon UV-B irradiation. The monomer then interacts with COP1, an ubiquitin ligase, hindering its ability to poly-ubiquitinate transcriptional factor HY5, thus averting its degradation and activating the photomorphogenic response. HY5 induces the synthesis of proteins RUP1 and RUP2, which interact with UVR8, releasing COP1, and inducing the re-dimerization of UVR8. This mechanism has been thoroughly characterized in Arabidopsis, where studies have demonstrated that the UVR8 receptor is key in UV-B response. Although Arabidopsis importance as a model plant many mechanisms described in this specie differ in other plants. In this paper, we review the latest information regarding UV-B response mediated by UVR8 in different species, focusing on the differences reported compared to Arabidopsis. For instance, UVR8 is not only induced by UV-B but also by other agents that are expressed differentially in diverse tissues. Also, in some of the species analyzed, proteins with low homology to RUP1 and RUP2 were detected. We also discuss how UVR8 is involved in other developmental and stress processes unrelated to UV-B. We conclude that the receptor is highly versatile, showing differences among species.
Collapse
Affiliation(s)
- Vanesa Eleonora Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Micología y Botánica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Micología y Botánica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto de Genética “Ewald A. Favret,” Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- CONICET-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Leandro Ezequiel Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hernan Pablo Burrieza
- Laboratorio de biología del desarrollo de las plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto de Genética “Ewald A. Favret,” Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Micología y Botánica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez ;
| |
Collapse
|
22
|
Escobar-Bravo R, Chen G, Kim HK, Grosser K, van Dam NM, Leiss KA, Klinkhamer PGL. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:315-327. [PMID: 30304528 PMCID: PMC6305188 DOI: 10.1093/jxb/ery347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Ultraviolet (UV) radiation can modulate plant defenses against herbivorous arthropods. We investigated how different UV exposure times and irradiance intensities affected tomato (Solanum lycopersicum) resistance to thrips (Frankliniella occidentalis) by assessing UV effects on thrips-associated damage and host-selection, selected metabolite and phytohormone contents, expression of defense-related genes, and trichome density and chemistry, the latter having dual roles in defense and UV protection. Short UV daily exposure times increased thrips resistance in the cultivar 'Moneymaker' but this could not be explained by changes in the contents of selected leaf polyphenols or terpenes, nor by trichome-associated defenses. UV irradiance intensity also affected resistance to thrips. Further analyses using the tomato mutants def-1, impaired in jasmonic acid (JA) biosynthesis, od-2, defective in the production of functional type-VI trichomes, and their wild-type, 'Castlemart', showed that UV enhanced thrips resistance in Moneymaker and od-2, but not in def-1 and Castlemart. UV increased salicylic acid (SA) and JA-isoleucine concentrations, and increased expression of SA- and JA-associated genes in Moneymaker, while inducing expression of JA-defensive genes in od-2. Our results demonstrate that UV-mediated enhancement of tomato resistance to thrips is probably associated with the activation of JA-associated signaling, but not with plant secondary metabolism or trichome-related traits.
Collapse
Affiliation(s)
- Rocío Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Gang Chen
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Katharina Grosser
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Kirsten A Leiss
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| |
Collapse
|
23
|
Bornman JF, Barnes PW, Robson TM, Robinson SA, Jansen MAK, Ballaré CL, Flint SD. Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem Photobiol Sci 2019; 18:681-716. [DOI: 10.1039/c8pp90061b] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linkages between stratospheric ozone, UV radiation and climate change: terrestrial ecosystems.
Collapse
Affiliation(s)
- Janet F. Bornman
- College of Science
- Health
- Engineering and Education
- Murdoch University
- Perth
| | - Paul W. Barnes
- Department of Biological Sciences and Environment Program
- Loyola University
- USA
| | - T. Matthew Robson
- Research Programme in Organismal and Evolutionary Biology
- Viikki Plant Science Centre
- University of Helsinki
- Finland
| | - Sharon A. Robinson
- Centre for Sustainable Ecosystem Solutions
- School of Earth
- Atmosphere and Life Sciences and Global Challenges Program
- University of Wollongong
- Wollongong
| | - Marcel A. K. Jansen
- Plant Ecophysiology Group
- School of Biological
- Earth and Environmental Sciences
- UCC
- Cork
| | - Carlos L. Ballaré
- University of Buenos Aires
- Faculty of Agronomy and IFEVA-CONICET, and IIB
- National University of San Martin
- Buenos Aires
- Argentina
| | - Stephan D. Flint
- Department of Forest
- Rangeland and Fire Sciences
- University of Idaho
- Moscow
- USA
| |
Collapse
|