1
|
Kmieć K, Kot I, Rubinowska K, Górska-Drabik E, Golan K, Sytykiewicz H. The Variation of Selected Physiological Parameters in Elm Leaves (Ulmus glabra Huds.) Infested by Gall Inducing Aphids. PLANTS 2022; 11:plants11030244. [PMID: 35161224 PMCID: PMC8839363 DOI: 10.3390/plants11030244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/25/2022]
Abstract
Three aphid species, Eriosoma ulmi (L.), Colopha compressa (Koch) and Tetraneura ulmi (L.) induce distinct gall morphotypes on Ulmus glabra Huds.; opened and closed galls. Because the trophic relationship of aphids and their galls shows that throughout the gall formation aphids can elicit multiple physiological regulations, we evaluated the changes of hydrogen peroxide content (H2O2), cytoplasmic membrane condition, expressed as electrolyte leakage (EL) and concentration of thiobarbituric acid reactive substances (TBARS), as well as, the activity of catalase (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) in gall tissues, as well as, in damaged and undamaged parts of galled leaves. All aphid species increased EL from gall tissues and significantly upregulated APX activity in galls and galled leaves. Alterations in H2O2 and TBARS concentrations, as well as GPX and CAT activities, were aphid- and tissue-dependent. The development of pseudo- and closed galls on elm leaves did not have a clear effect on the direction and intensity of the host plant’s physiological response. The different modes of changes in H2O2, TBARS, CAT and GPX were found in true galls of C. compressa and T. ulmi. Generally, physiological alterations in new plant tissues were quite different compared to other tissues and could be considered beneficial to galling aphids.
Collapse
Affiliation(s)
- Katarzyna Kmieć
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland; (K.K.); (E.G.-D.); (K.G.)
| | - Izabela Kot
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland; (K.K.); (E.G.-D.); (K.G.)
- Correspondence:
| | - Katarzyna Rubinowska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Edyta Górska-Drabik
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland; (K.K.); (E.G.-D.); (K.G.)
| | - Katarzyna Golan
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland; (K.K.); (E.G.-D.); (K.G.)
| | - Hubert Sytykiewicz
- Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland;
| |
Collapse
|
2
|
Dampc J, Mołoń M, Durak T, Durak R. Changes in Aphid-Plant Interactions under Increased Temperature. BIOLOGY 2021; 10:480. [PMID: 34071458 PMCID: PMC8227038 DOI: 10.3390/biology10060480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023]
Abstract
Thermal stress in living organisms causes an imbalance between the processes of creating and neutralizing reactive oxygen species (ROS). The work aims to explain changes in the aphid-host plant interaction due to an increase in temperature. Tests were carried out at three constant temperatures (20, 25, or 28 °C). Firstly, changes in development of Macrosiphum rosae were determined. Secondly, the activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO), and peroxidase (POD)) in aphid M. rosae tissues and host plant were analyzed at all temperatures. An increase in temperature to 28 °C had a negative effect on the biology of M. rosae by shortening the period of reproduction and longevity, thus reducing the demographic parameters and fecundity. Two stages of the aphid's defensive response to short-term (24-96 h) and long-term (2 weeks) thermal stress were observed. Aphid defense responses varied considerably with temperature and were highest at 28 °C. In turn, for the plants, which were exposed to both abiotic stress caused by elevated temperature and biotic stress caused by aphid feeding, their enzymatic defense was more effective at 20 °C, when enzyme activities at their highest were observed.
Collapse
Affiliation(s)
- Jan Dampc
- Department of Experimental Biology and Chemistry, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland
| | - Mateusz Mołoń
- Department of Biochemistry and Cell Biology, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Tomasz Durak
- Department of Plant Physiology and Ecology, University of Rzeszów, Rejtana 16c, 35-959 Rzeszów, Poland;
| | - Roma Durak
- Department of Experimental Biology and Chemistry, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland
| |
Collapse
|
3
|
Goggin FL, Fischer HD. Reactive Oxygen Species in Plant Interactions With Aphids. FRONTIERS IN PLANT SCIENCE 2021; 12:811105. [PMID: 35251065 PMCID: PMC8888880 DOI: 10.3389/fpls.2021.811105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide are produced in plants in response to many biotic and abiotic stressors, and they can enhance stress adaptation in certain circumstances or mediate symptom development in others. The roles of ROS in plant-pathogen interactions have been extensively studied, but far less is known about their involvement in plant-insect interactions. A growing body of evidence, however, indicates that ROS accumulate in response to aphids, an economically damaging group of phloem-feeding insects. This review will cover the current state of knowledge about when, where, and how ROS accumulate in response to aphids, which salivary effectors modify ROS levels in plants, and how microbial associates influence ROS induction by aphids. We will also explore the potential adaptive significance of intra- and extracellular oxidative responses to aphid infestation in compatible and incompatible interactions and highlight knowledge gaps that deserve further exploration.
Collapse
|
4
|
Labudda M, Tokarz K, Tokarz B, Muszyńska E, Gietler M, Górecka M, Różańska E, Rybarczyk-Płońska A, Fidler J, Prabucka B, Dababat AA, Lewandowski M. Reactive oxygen species metabolism and photosynthetic performance in leaves of Hordeum vulgare plants co-infested with Heterodera filipjevi and Aceria tosichella. PLANT CELL REPORTS 2020; 39:1719-1741. [PMID: 32955612 PMCID: PMC7502656 DOI: 10.1007/s00299-020-02600-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Defence responses of cyst nematode and/or wheat curl mite infested barley engage the altered reactive oxygen species production, antioxidant machinery, carbon dioxide assimilation and photosynthesis efficiency. The primary aim of this study was to determine how barley responds to two pests infesting separately or at once; thus barley was inoculated with Heterodera filipjevi (Madzhidov) Stelter (cereal cyst nematode; CCN) and Aceria tosichella Keifer (wheat curl mite; WCM). To verify hypothesis about the involvement of redox metabolism and photosynthesis in barley defence responses, biochemical, photosynthesis efficiency and chlorophyll a fluorescence measurements as well as transmission electron microscopy were implemented. Inoculation with WCM (apart from or with CCN) brought about a significant suppression in the efficiency of electron transport outside photosystem II reaction centres. This limitation was an effect of diminished pool of rapidly reducing plastoquinone and decreased total electron carriers. Infestation with WCM (apart from or with CCN) also significantly restricted the electron transport on the photosystem I acceptor side, therefore produced reactive oxygen species oxidized lipids in cells of WCM and double infested plants and proteins in cells of WCM-infested plants. The level of hydrogen peroxide was significantly decreased in double infested plants because of glutathione-ascorbate cycle involvement. The inhibition of nitrosoglutathione reductase promoted the accumulation of S-nitrosoglutathione increasing antioxidant capacity in cells of double infested plants. Moreover, enhanced arginase activity in WCM-infested plants could stimulate synthesis of polyamines participating in plant antioxidant response. Infestation with WCM (apart from or with CCN) significantly reduced the efficiency of carbon dioxide assimilation by barley leaves, whereas infection only with CCN expanded photosynthesis efficiency. These were accompanied with the ultrastructural changes in chloroplasts during CCN and WCM infestation.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Krzysztof Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mirosława Górecka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Abdelfattah A Dababat
- International Maize and Wheat Improvement Center (CIMMYT), Soil Borne Pathogens Program, Ankara, Turkey
| | - Mariusz Lewandowski
- Department of Plant Protection, Section of Applied Entomology, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
5
|
Dampc J, Kula-Maximenko M, Molon M, Durak R. Enzymatic Defense Response of Apple Aphid Aphis pomi to Increased Temperature. INSECTS 2020; 11:E436. [PMID: 32664609 PMCID: PMC7411948 DOI: 10.3390/insects11070436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 01/24/2023]
Abstract
Climate change, and in particular the increase in temperature we are currently observing, can affect herbivorous insects. Aphids, as poikilothermic organisms, are directly exposed to temperature increases that influence their metabolism. Heat stress causes disturbances between the generations and the neutralization of reactive oxygen species (ROS). The aim of this work is focused on explaining how the aphid, using the example of Aphis pomi, responds to abiotic stress caused by temperature increase. The experiment was carried out under controlled conditions at three temperatures: 20, 25, and 28 °C. In the first stage, changes in the activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO), and peroxidase (POD)) were determined in aphid tissues, at each temperature. In the second stage, microcalorimetry monitored changes in heat emitted by aphids, at each temperature. Our results showed that A. pomi defense responses varied depending on temperature and were highest at 28 °C. The flexible activity of enzymes and increase in the metabolic rate played the role of adaptive mechanisms and ran more effectively at higher temperatures. The A. pomi thus protected itself against ROS excessive induction and the aphids were able to respond quickly to environmental stress.
Collapse
Affiliation(s)
- Jan Dampc
- Department of Experimental Biology and Chemistry, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland;
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland;
| | - Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Roma Durak
- Department of Experimental Biology and Chemistry, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland;
| |
Collapse
|
6
|
del Rosario Cappellari L, Chiappero J, Palermo TB, Giordano W, Banchio E. Impact of Soil Rhizobacteria Inoculation and Leaf-Chewing Insect Herbivory on Mentha piperita Leaf Secondary Metabolites. J Chem Ecol 2020; 46:619-630. [DOI: 10.1007/s10886-020-01193-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
|
7
|
Jia K, Zhao W, Maier PA, Hu X, Jin Y, Zhou S, Jiao S, El‐Kassaby YA, Wang T, Wang X, Mao J. Landscape genomics predicts climate change-related genetic offset for the widespread Platycladus orientalis (Cupressaceae). Evol Appl 2020; 13:665-676. [PMID: 32211059 PMCID: PMC7086053 DOI: 10.1111/eva.12891] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 12/22/2022] Open
Abstract
Understanding and quantifying populations' adaptive genetic variation and their response to climate change are critical to reforestation's seed source selection, forest management decisions, and gene conservation. Landscape genomics combined with geographic and environmental information provide an opportunity to interrogate forest populations' genome-wide variation for understanding the extent to which evolutionary forces shape past and contemporary populations' genetic structure, and identify those populations that may be most at risk under future climate change. Here, we used genotyping by sequencing to generate over 11,000 high-quality variants from Platycladus orientalis range-wide collection to evaluate its diversity and to predict genetic offset under future climate scenarios. Platycladus orientalis is a widespread conifer in China with significant ecological, timber, and medicinal values. We found population structure and evidences of isolation by environment, indicative of adaptation to local conditions. Gradient forest modeling identified temperature-related variables as the most important environmental factors influencing genetic variation and predicted areas with higher risk under future climate change. This study provides an important reference for forest resource management and conservation for P. orientalis.
Collapse
Affiliation(s)
- Kai‐Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | | | - Xian‐Ge Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuqing Jin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Shan‐Shan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Si‐Qian Jiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yousry A El‐Kassaby
- Department of Forest and Conservation SciencesFaculty of ForestryThe University of British ColumbiaVancouverBCCanada
| | - Tongli Wang
- Department of Forest and Conservation SciencesFaculty of ForestryThe University of British ColumbiaVancouverBCCanada
| | - Xiao‐Ru Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Department of Ecology and Environmental ScienceUPSCUmeå UniversityUmeåSweden
| | - Jian‐Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
8
|
Labudda M, Muszyńska E, Gietler M, Różańska E, Rybarczyk-Płońska A, Fidler J, Prabucka B, Dababat AA. Efficient antioxidant defence systems of spring barley in response to stress induced jointly by the cyst nematode parasitism and cadmium exposure. PLANT AND SOIL 2020; 456:189-206. [PMID: 32952222 PMCID: PMC7487286 DOI: 10.1007/s11104-020-04713-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/07/2020] [Indexed: 05/04/2023]
Abstract
AIMS This research aimed to establish how Hordeum vulgare responds to abiotic and biotic stress affecting in tandem. METHODS Plants were inoculated with Heterodera filipjevi and treated with cadmium (Cd) concentration (5 μM) that can occur in the cultivated soil. To verify the hypothesis about participation of increased antioxidative defence in H. vulgare under stress, biochemical and microscopic methods were implemented. RESULTS The amount of superoxide anions and hydrogen peroxide was diminished in plants that were both nematode-inoculated and cadmium-treated. Superoxide anions were rendered harmless by increased activity of superoxide dismutase, and H2O2 was scavenged via Foyer-Halliwell-Asada pathway. The unique enhanced antioxidant capacity of double stressed plants was also linked with the accumulation of S-nitrosoglutathione as nitrosoglutathione reductase activity was inhibited. Furthermore, stimulated activity of arginase in these plants could promote polyamine synthesis and indirectly enhance non-enzymatic antioxidant mechanism. Results indicate that different antioxidants operating together significantly restricted oxidation of lipids and proteins, thus the integrity of cell membranes and protein functions were maintained. CONCLUSIONS The ROS deactivation machinery in barley leaves showed an unusual response during stress induced by H. filipjevi infection and cadmium treatment. Plants could induce a multi-component model of stress response, to detoxify Cd ions and efficiently repair stress damage.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Abdelfattah A. Dababat
- International Maize and Wheat Improvement Center (CIMMYT), Soil Borne Pathogens Program, Ankara, Turkey
| |
Collapse
|